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TEACHER SYMPOSIUM

Teaching Bayesian

Diogo Ferrari, University of California, Riverside, USA

Statistics

he questions discussed in this article are: What

challenges emerge when teaching introductory-

level Bayesian statistics to non-statistics gradu-

ate students who want to become well-informed

users of Bayesian methods, and what content-
selection strategies can instructors adopt to overcome those
challenges? Before addressing these questions, we may ask
why this consideration is important and if there are any
distinctive challenges to teaching Bayesian statistics that
differ from teaching non-Bayesian statistics.

Bayesian statistics regained popularity among statisticians
and applied researchers in various disciplines in the 1990s. By
the end of the decade, scholars were debating whether the
Bayesian approach to inference should be taught at the under-
graduate level. The third edition of the 1997 issue of The
American Statistician dedicated its Teachers’ Corner section to
the topic. It included articles by Moore (1997), Berry (1997),
and Albert (1997) and discussions by well-known statisticians:
Jeffrey Witmer, Thomas Short, Dennis Lindley, David Freed-
man, and Richard Scheaffer. Moore (1997) advocated for not
teaching Bayesian statistics at the elementary level because
Bayesian methods were not widely used yet, conditional
probabilities are difficult to understand, there were no suitable
textbooks, and—unlike the frequentist approach—there was no
standard set of prescriptive procedures to teach students.
Berry (1997) and Albert (1997) countered these points, arguing
that Bayesian inference is more intuitive and easier to grasp
than frequentist approaches.

We should not teach a subject simply because it is easy or
avoid teaching it because it is difficult. Usefulness to answer
substantive questions should be one criterion to decide what
to teach and, in that regard, Bayesian methods have grown
significantly in importance since The American Statistician
first debated the value of teaching Bayesian statistics in
elementary courses. Since then, scholarly work using Bayesian
statistics, or developing solutions that rely on Bayesian
approaches, has only increased. This can be attributed in part
to the popularization of papers by, for example, Geman and
Geman (1984) and Gelfand and Smith (1990), who used
stochastic methods to approximate marginal distributions
and values of integrals, particularly the Metropolis algorithm
developed in the 1950s (Metropolis et al. 1953) and later
generalized in the 1970s by Hastings (1970). This populariza-
tion was accompanied by the technological development of
computers that allowed implementations of Metropolis—Hast-
ings algorithms to estimate posterior probabilities for virtually
any problem, especially those that are difficult to solve using
non-Bayesian methods. Moreover, there now are better text-
book options to teach Bayesian statistics at different levels

(e.g., Ghosh, Delampady, and Samanta 2007; Hoff 2009;
Kruschke 2015) and some written by political scientists (e.g.,
Gelman et al. 2014; Gill 2014; Jackman 2009). There also are
good introductory papers (e.g., Jackman 2004) and articles that
suggest specific content and class schedules (e.g., Utts and
Johnson 2008).

Nevertheless, certain challenges of teaching Bayesian stat-
istics persist. Before discussing these challenges in detail,
I distinguish between teaching statistics from a Bayesian
perspective (as discussed in the Teachers’ Corner section men-
tioned previously) and teaching Bayesian statistics. Teaching
statistics from a Bayesian perspective introduces students to
statistical reasoning using the Bayesian paradigm. This is a
broader debate that involves core questions about statistical
education in general and alternative ways to think about
inference.

Tuse the phrase “teaching Bayesian statistics” to refer to the
immediate and pressing challenges of teaching Bayesian stat-
istics to non-statisticians under the current organization of
university-level statistical education. I focus on this aspect of
statistical education—that is, teaching Bayesian statistics
rather than teaching statistics from a Bayesian perspective.

The question of teaching Bayesian statistics is pressing
because, as discussed previously, academic literature using
Bayesian methods has become ubiquitous since the 199os,
which increases the pressure to include Bayesian statistics in
the graduate curriculum. The challenges of teaching Bayesian
statistics range from pedagogical methods to content-selec-
tion issues. There already is a large literature dedicated to
investigating and proposing sound pedagogical practices to
foster inclusion in the classroom, promote diversity, and
improve students’ learning experience and retention; some
literature provides specific examples and recommendations
to teach statistics to non-statisticians (Gelman 2005; Gelman
and Nolan 2017). Therefore, I discuss another aspect of this
challenge—namely, selecting content that facilitates students’
learning experience.

The challenges of teaching introductory Bayesian statistics
courses to undergraduate students with no background in
statistics are quite different from those of teaching graduate
students who possess some background in statistics or Bayes-
ian statistics in particular. Students taking Bayesian statistics
often have some previous experience in statistics—enough to
understand conditional probabilities, conditional moments,
and basic inference. This article focuses on these students.

The challenges that instructors face in preparing these
students to be educated consumers are slightly different than
those we encounter in educating and developing thoughtful
users of Bayesian analysis. Although the following discussion
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can serve both cases, I focus on the latter goal. With these
considerations, I restate the introductory questions: What
challenges can emerge when teaching Bayesian statistics,
and how can strategic content selection overcome those chal-
lenges?

Although the challenges can vary among groups of stu-
dents, at least two challenges are likely to emerge for those

Statistics” often refer to non-Bayesian methods. Therefore, it
is not unreasonable to assume that if students have some
background in inference, it often is grounded in non-Bayesian
perspectives.

I am not advocating that, in general, students should learn
statistics from a Bayesian perspective at the elementary level.
However, there surely are a few consequences for not doing so,

The question of reachjng Bayesian statistics is pressing because academic literature
using Bayesian methods has become ubiquitous since the 1990s, which increases the
pressure to include Bayesian statistics in the graduate curriculum.

with some background in non-Bayesian statistics but no
background in Bayesian statistics—which often is the case
for graduate students taking their first course in Bayesian
methods.

The first challenge is the “mindset shift” toward Bayesian
inference reasoning, and it is a consequence of not teaching
statistics from a Bayesian perspective. If the standard (implicit
or explicit) choice in a university’s statistical curriculum is to
develop a non-Bayesian intuition when teaching statistical
thinking in introductory courses, then the first challenge for
instructors teaching Bayesian statistics is to help students
with a mindset shift between Bayesian and non-Bayesian ways
of thinking about inference.

Bayesian statistics requires a specific mindset to think
about inference, which differs in important ways from the
way that non-Bayesian statisticians conduct the inference,

including that instructors may need to facilitate a mindset
shift for students between inferential paradigms. For better or
worse, new content will pass through the filter of students’
previous statistical backgrounds in non-Bayesian methods.
Instructors can use this to the students’ advantage. The next
section suggests how instructors can utilize students’ previous
experiences in non-Bayesian statistics.

A second challenge, for similar reasons, is that students
lack familiarity with various statistical distributions com-
monly used in Bayesian analysis, as well as their basic features:
the support of the distributions, the functional form of the
density, the kernel, the meaning of the parameters, and the
shape of the distribution as a function of the parameters.
Different from non-Bayesian parametric approaches, we must
select distributions for the data and the unknown parameters.
Selecting a distribution for the data in Bayesian analysis is not

If the standard (implicit or explicit) choice in a university’s statistical curriculum is to
develop a non-Bayesian intuition when teaching statistical thinking in introductory
courses, then the first challenge for instructors teaching Bayesian statistics is to help
students with a mindset shift between Bayesian and non-Bayesian ways of thinking

about inference.

draw conclusions, and evaluate the quality of the inferential
procedure. Bayesian approaches often are briefly and superfi-
cially covered—if covered at all—in standard introductory
statistics courses. It is fair to state that most if not all of the
elementary and introductory courses at undergraduate and
graduate levels focus primarily on frequentist approaches,
perhaps blended with likelihood methods. I do not have
complete data about the curriculum of all universities; how-
ever, I am inclined to think that this is the typical case. Many
departments do not offer separate, optional Bayesian methods
in their curriculum. Courses on statistics usually are under-
stood as having a non-Bayesian perspective. If readers are
skeptical about the bias toward non-Bayesian statistics in
standard curriculum, note that we do not see courses titled
“Introduction to Frequentist Statistics” as often as we see
“Introduction to Bayesian Statistics.” Course titles such as
“Introduction to Statistical Inference” and “Introduction to
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different than selecting for non-Bayesian analysis. However,
Bayesian analysis employs a larger set of statistical distribu-
tions that typically are not covered in non-Bayesian courses,
including Beta, Gamma, Dirichlet, Wishart, and many others.
All other topics that are common in Bayesian analysis—for
example, Markov chain Monte Carlo (MCMC) and sensitivity
analysis—rely on a solid grasp of these elements and a transi-
tion to the Bayesian inference mindset.

MINDSET SHIFT USING SIDE-BY-SIDE EXAMPLES AND A
FOUR-STEP MODELING APPROACH

Students who have some statistical inference background but
are learning Bayesian statistics for the first time often struggle
to understand the difference between estimating an unknown
parameter in a non-Bayesian manner and updating the
posterior distribution of the “parameter” in a Bayesian
framework.
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The confusion is not difficult to clarify, but for that reason it
can be overlooked by instructors. It is common to read phrases
like “the estimator of the parameter (8)” and “the true value of
0.” Many researchers use a half-Bayesian approach in which they
adopt the Bayesian computation apparatus but assume that a
single fixed value of the parameters generated the data. If
students are not familiar with the procedures, this half-Bayesian
approach can contribute to their confusion. Using this approach,
it is correct to state that the posterior distribution approaches
that fixed value of  when the size of the data increases, but it is
conceptually incorrect using the Bayesian framework to state the
inferential question as learning the “true” value of ® because 0 is
a random variable—even when we assume that there is an
underlying true fixed value of the parameter behind the data-
generating process. More precisely, what we learn in Bayesian
approaches is not the “true” value of @ but rather its distribution
—or the distribution of our beliefs about possible values of 6—
after we take into account the data. Arguably, there is nothing
wrong with a half-Bayesian approach; however, it can be con-
fusing for a student learning the subject for the first time.

To facilitate a mindset shift from a non-Bayesian to a
Bayesian paradigm, instructors can combine a four-step mod-
eling approach when developing examples and periodically
provide side-by-side solutions using the frequentist—or perhaps

by providing a structure for modeling substantive problems and
they can follow these steps themselves.

T use this four-step procedure as a guideline and motivation
for all other topics I cover in introductory courses, and I
explicitly restate and follow the steps in all examples. In terms
of motivation to introduce other topics, step 2 leads naturally
to issues of prior selection (e.g., Jeffrey’s prior, conjugate
priors, objective Bayes, and sensitivity) and how to handle
them. Some challenges emerge for students when selecting the
prior in step 2, which is discussed in the next section. Steps
3 and 4 lead naturally to issues of computing integrals when
there is no analytical solution, which helps to motivate Monte
Carlo methods, MCMC, and the issues that emerge with those
procedures, including MCMC implementation, convergence
diagnostics, and stopping rules.

I explicitly construct every example following these four
steps and I often present Bayesian and non-Bayesian solutions
side by side to help students recognize differences between the
paradigms. Here is an example of a side-by-side comparison
that instructors can adapt and use in their own course. Sup-
pose we installed an alarm system in our house and we go away
on a trip. We set up the alarm to ring on our cell phone, and we
can remotely activate an additional anti-burglary tech system
if we believe a burglary is in progress. The anti-burglary

To facilitate a mindset shift from a non-Bayesian to a Bayesian paradigm, instructors
can combine a four-step modeling approach when developing examples and
periodically provide side-by-side solutions using the frequentist—or perhaps the
“likelihoodist”—approach and the Bayesian paradigm.

the “likelihoodist’—approach and the Bayesian paradigm.

The four-step approach follows four modeling steps that
the instructor can illustrate explicitly—and with students’
participation—in every example of application of Bayesian
models. The four steps are as follows:

1. Select the data model.

2. Select the prior model.

3. Derive the posterior.

4. Compute the posterior quantities of interest.

There are many benefits to explicitly following these four
steps in every example and emphasizing each one as the
examples progress. One benefit is that students do not see the
analysis as a “bag of models” that we merely mechanically plug
into the data but rather as a logical process in which the analyst
makes a series of modeling decisions in each step. Instructors
can use this to emphasize that the quality and adequacy of those
modeling decisions must be assessed and to demonstrate that
such an assessment is an essential part of the modeling process.
Students will better understand the importance of grasping the
logic and steps behind Bayesian modeling and not that they
simply must learn an assortment of seemingly unrelated
models. Another benefit is that the four steps empower students
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system is expensive to recharge after it has been activated, so
we should use it only if we are highly confident that there is a
burglar. These are our indicators:

X

{1, alarm is active

o, alarm is not active

0

1, there isaburglary happening
o, there is noburglary happening
The alarm manual contains information summarized in

table 1.

Table 1
Anti-burglary Example

0=0 (no burglary) 0=1 (burglary)

x=o0 p(x=0|0=0)=0.95 p(x=o0|0=1)=o0.01
(alarm off, no burglary) (alarm off, burglary happening)
p(x=1|0=0)=o0.05 p(x=1|6=1)=0.99
X=1

(false alarm) (alarm on, burglary happening)
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If we hear the alarm (X =1), is there a burglary happening
(6=1)? A non-Bayesian way to answer this question is to use
the likelihood function to estimate 0. We choose the value of 0
that maximizes p(X =1|0). Comparing p(X =1|6=0) =o0.05 to
p(x=1]0=1)=0.99, we choose 8 =1. That is, we choose the 6
that makes the data more likely. This is the estimation step.
Regardless of anything else that may be occurring, if we hear
the alarm, we should adopt 8 =1. There is no way to solve this
problem using a frequentist approach, but we can decide to
reject (or not) that estimated value using a likelihood method
to estimate 0. I use these points to briefly discuss inference and
compare the paradigms.

If we select @ =1, we are still not completely certain if there
is a burglary happening because there is a small chance that it
is a false alarm. What is the chance that there is a burglary
happening if we hear the alarm? Formally restated, what is
p(0]x=1)? Only the Bayesian paradigm can answer that ques-
tion, which is as follows:

p(X=1|8)p(8)
> o= p(X=1|0)p(6)

pOIX=1)=

The only unknown is p(8), the prior. I use two possible
choices for that quantity. In one case, we have no clue about
the overall probability of burglary (p(6=1)=p(6=0)=0.5).
In the other scenario, we know that the neighborhood is
extremely safe (p(8=o0)=o0.9). In this case, we reason about
the probability of 8—that is, the fixed observed data X =1
changed our belief about 0.

Table 2

We can work with other examples to emphasize the differ-
ences between confidence intervals and posterior probabil-
ities. Here is one possible example: Assume that there is a
probability @ that a random person will vote for a party A. We
take a random sample and 40 of 100 people state that they will
vote for that party.

I discuss with students the selection of the data model that
results in the choice of a binomial distribution (i.e., step 1 of
the four-step procedure) and a uniform distribution for the
prior (i.e., step 2) and show (i.e., step 3) that:

P(8lx) < p(x16)p(6)

We can use a simplified version of non-Bayesian inference
side by side in this example. We can compute the point estimate
and the confidence interval for the problem. Thus, we can show
that in frequentist approaches, we compute the point estimate;
however, we must ask what would happen with that estimator if
we had observed a different sample. It helps to show that we
must rely on the sampling distribution of the estimator—usually
based on asymptotic results—think about repeated sampling,
and construct confidence intervals based on the variance of the
estimator. For this example, it is as follows:

6:4—0 ; CI( {04 ty Var o4+ta Var|0 ]
100 V V

=[0.303,0.496]

=0"(1-0)" " =0%°(1-0)*°

I use simplified versions of non-Bayesian procedures
because teaching advanced, non-Bayesian procedures is not

Comparing Bayesian and Non-Bayesian Approaches

Non-Bayesian (Typical) Approaches

Bayesian (Typical) Approach

0 is a fixed and unknown quantity

0 is random and unknown

X is “random”: Some procedures care about the samples that
we could have observed

X is “fixed”: We care only about the sample that we did observe

Learning about 6:

Estimate @ with 8: maximum likelihood, method of moments,
least square, etc.

We compute the posterior: p(8]x)x p(x[0)p(0)

Estimation summaries:

Point estimates; standard errors and confidence intervals of
the estimator

Posterior mean, median, quantiles, and regions of high (posterior)
probability

Properties of the estimation:

a. Bias (small-sample properties)

a. Coverage (in some cases)

b. Root mean squared error (RMSE)

b. Sensitivity to the choice of the prior

c. Consistency, efficiency (asymptotic properties)

Inference:

Reject hypothetical values of 8 that make the observed data highly
unlikely to happen

Consider values of 8 with high posterior probability

Measures of quality of the inference:

Bias, efficiency, consistency, power of the test,
sensitivity to model assumptions, etc.

a. Posterior predictive checks

b. Bayes Factor, Bayesian Information Criterion (BIC), Deviance
Information Criterion (DIC)

c. If MCMC was used: Convergence checks

d. Sensitivity to prior distribution
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Table 3

Example of a Table for Selection of Prior Distributions

Candidate Support Density Kernel
Uniform [01] p(6)=1 1
— 4 -1/, \f-1 a-1(._\B-1
Beta [0.1] p(0|a,B)—B(a’B)G (1-0) 0%7(1-0)
1 0-u\*
Truncated Normal [0.1] p(8lu,o, 0,1)=m¢(9) €Xp - o

the goal of the course. Readers can find good discussions and
additional examples to compare different inferential para-
digms in Christensen (2005). The number of details to include
depends on the students’ background. The idea is to leverage
the understanding of Bayesian inferential reasoning using
students’ previous backgrounds and to avoid creating confu-
sion between the paradigms.

During the course, I incrementally construct table 2 until it
is fully filled, which naturally occurs as we approach the final
lectures. The table is stylized to emphasize key differences, and
it works well to help with the mindset shift between Bayesian
and non-Bayesian paradigms. After constructing intentionally
simple examples of Bayesian inference—such as those pre-
sented previously—to compare against non-Bayesian cases, I
present the table again and derive the non-Bayesian and
Bayesian inference, side by side. Although I use the four-step
procedure to develop each example, I compare Bayesian and
non-Bayesian approaches in only some of them.

In summary, in addition to helping with the mindset shift
and to internalizing and understanding the Bayesian frame-
work, the side-by-side examples and the four-step approach
serve three other purposes: (1) to ground the comparison
between Bayesian and other approaches and make their dif-
ferences more apparent; (2) to describe a simple step-by-step
procedure to derive Bayesian models; and (3) to motivate the
discussion of other topics, such as MCMC and sensitivity
analysis.

A BAG OF PRIOR DISTRIBUTIONS

Another challenge that can emerge when teaching Bayesian
statistics is related to the process of selecting prior distribu-
tions (i.e., step 2 in the four-step procedure). Students often
lack familiarity with both the process of selecting a distribu-
tion to model the data and the properties of various distribu-
tions often used in Bayesian analysis to model the prior. These
properties include the support, the functional form of the
density, the kernel, the meaning of the parameters, and the
shape of the distribution as a function of the parameters. It is
likely that many students have never learned about Beta,
Gamma, and other common distributions. This issue is easy
to address and, for that reason, it also often is overlooked by
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instructors—which can lead to confusion later when introdu-
cing more complex models.

Arguably, the support of a distribution and how its shape
depends on the parameters are the more important aspects for
practical applications. Therefore, it is worth covering those
topics using examples, which can be constructed using the
four-step procedure described in the previous section.

It also is useful to provide a table such as table 3 that
students can reference quickly when trying to find a prior
model. Following the previous example with the proportions,
we can present a table with prior options and compare their
properties. This develops the students’ intuition of the process
behind prior selection, introduces some distributions, empha-
sizes the distributions’ support, and teaches how to think
about their parameters and how they affect the shape of the
distribution. Which prior should be selected from the previous
example about the likelihood of a random person voting for
party A? Some of the options are as follows:

This exercise of prior selection is repeated in each example I
present and allows students to choose among the options of
priors I provide, which usually is a superset with options the
support of which is outside of the values that the parameter
can take. The exercise can be supplemented with animations
to show the effect of the parameter values on the shape of the
prior; subsequently, similar animations can be used to show
their effect on the posterior (i.e., sensitivity).

DISCUSSION

Important topics could not be covered in this article due to
space limitations, including decisions about the scope of
sensitivity analysis and the issues with MCMC estimation
and diagnostics. These are certainly essential elements that
instructors must address when teaching Bayesian statistics,
and they have their own challenging aspects. I also did not
discuss pedagogical approaches, including active-learning
methods and a flipped classroom.

I'focused instead on two issues related to teaching Bayesian
statistics for non-statistician students at the graduate level
who have some background in statistics: the mindset shift
from non-Bayesian to Bayesian reasoning about inference and
the familiarity with a bundle of distributions for prior selec-
tion, which typically is not taught in other statistics courses.
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It is up to instructors to identify whether their students
are facing these challenges. Quizzes and checkpoints can be
useful for that purpose. The four-step approach to build
Bayesian models and inference, frequently using side-by-
side examples of Bayesian and non-Bayesian approaches,
and the table of priors—all suggested here—can help if
students are experiencing the learning difficulties discussed
in this article. =
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