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SUMMARY
This paper discusses a planar 2-DOF (degrees of freedom) parallel kinematic machine with actuation
redundancy. Its inverse dynamic model is constructed by utilizing the Newton–Euler method based
on the kinematic analysis. However, the dynamic model cannot be solved directly because the
number of equations is less than the number of unknowns, which is due to the redundant force. In
order to solve this problem, the relationship between the deformations of the links and the position
errors of the moving platform are further explored. Then a novel method, which aims at minimizing
the position errors of the machine, is proposed to optimize the redundant force. It also enables
to solve the dynamic model. Finally, the dynamic performance analyses of this machine and its
non-redundant counterpart are provided by numerical examples. Besides, another optimization
method proposed for minimizing the constraint forces is also applied for comparison. The results
show the effectiveness of the novel methods in improving the position precision of the machine.

KEYWORDS: Parallel kinematic machine; Actuation redundancy; Dynamic modeling; Redundant-
force optimization; Dynamic performance analysis.

1. Introduction
Parallel kinematic machine, which can be called PKM in short, appears as a new type of machine in
recent decades. It possesses many advantages compared with the serial machine, such as high stiffness,
rapid response, and large payload capacity.1–3 Due to these potential advantages, the PKM has already
drawn great attention of numerous researchers and been applied to industrial fields extensively.4 With
further research, however, the PKM has been found suffering from some drawbacks, including
relatively small useful workspace, complex singularities, deformation and vibration of kinematic
chains, and so on. The appearance of actuation redundancy5–7 in a PKM can be an effective way
to conquer these problems. A reasonable control of the redundant force will reduce or eliminate
singularities, enhance stiffness, and improve precision.8–11 However, an improper control without
optimization will generate additional internal forces, greater consumption of servo motors, and even
damage to the machine. Therefore, it is of great importance to optimize the redundant force for
increasing the performance of the actuation-redundant PKM.

The introduction of actuation redundancy makes a PKM become an over-constraint machine. So
its dynamic modeling will be noticeably complicated. The popular dynamic modeling methods for
general PKMs include the Newton–Euler method,12–15 the Lagrange method,16,17 the principle of
virtual work,18,19 the Kane Equation,20,21 and the screw theory method.22 Nevertheless, all these
methods, when used in the dynamic modeling of an actuation-redundant PKM, will lead to the result
that the number of equations is less than the number of unknowns. It results in the non-unique solution
of the dynamic model, which turns out to be a challenging task.
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To solve this problem, some appropriate supplementary conditions should be found. Currently,
the primary solution is establishing performance criteria to optimize the redundant force. Once the
redundant force is obtained, the dynamic model can also be solved. Zheng23 provided two methods
to solve the load distribution problem for two coordinating industrial robots handling a single object,
which could be deemed to be an actuation-redundant machine. The first method selected least energy
consumption as the optimization criterion, and the other method was proposed for minimizing exerted
forces on the object. The result showed the second method was more effectiveness and suitable for
real-time application. Tao24 minimized the square of the joint torques to resolve a similar problem.
Nahon25 used the quadratic programming approach with constraints to solve the problem of a hand
grasping an object as an actuation-redundant kinematic chain. This approach allowed them to obtain
minimum internal forces. Merlet26 presented two solutions to obtain optimized redundant force:
one for minimizing the joint rates and the other for minimizing the actuator torques, which were
all based on the pseudo-inverse solution. Nokleby and Garg9,27 presented an optimization-based
solution to determine the force capabilities of actuation-redundant PKM. Their result showed that
this method could make better use of the maximum torque/force capabilities of the actuators when
compared to the non-redundant PKM and the pseudo-inverse solution. Lee28 used the redundant force
to produce an effective spring effect by proper internal load distribution. A methodology for optimal
kinematic design of antagonistic stiffness was proposed and a five-bar mechanism was developed for
experimental verification.

All these methods mentioned above are feasible in solving the optimization of the redundant force.
However, there is no literature considering minimizing the position errors of the moving platform,
which is extremely crucial in advanced PKMs. Furthermore, the kinematic chains of PKMs are
generally composed of elongated rods, so they are easy to deform under external loads, which will
reduce the position precision of the machine.29,30 Therefore, it is necessary and feasible to improve
the precision by optimizing the redundant force for actuation-redundant PKM.

In this paper, the dynamic modeling and redundant-force optimization of a planar 2-DOF (degrees
of freedom) PKM with actuation redundancy are studied. The dynamic model of this machine is
constructed by the Newton–Euler method. Then a novel redundant-force optimization method is
proposed to minimize the position errors of the moving platform. A matrix, which is called position
precision matrix in this paper, is obtained in the process of the optimization. It can reflect the machine’s
capability of resisting deformations to a certain extent. For the sake of verifying the effectiveness
of this method, the dynamic performance of this machine and its non-redundant counterpart when
running the selected trajectory is investigated by numerical examples. The analyses include the
performance of their position precision matrixes, position and tracking errors, driving parameters,
and constraint forces of joints. Finally, another redundant-force optimization method for minimizing
the constraint forces is also applied for comparison.

2. Inverse Kinematic Analysis

2.1. Description of the actuation-redundant PKM
Figure 1 shows the schematic diagram of a planar 2-DOF actuation-redundant PKM. The machine is
composed of a moving platform, two vertical rails, four identical links, and three sliders. The moving
platform A1A2A3A4 takes the form of a square. The links A1B1 and A2B2 connect the moving
platform at points A1 and A2 to the slider P1 at points B1 and B2 by revolute joints, respectively. The
other two links A3B3 and A4B4 connect the moving platform at points A3 and A4 to the sliders P2

and P3 at points B3 and B4 by revolute joints, respectively. The motion of each slider is controlled
by a corresponding servo motor when it moves along the rail, thus to drive the links to control the
motion of the moving platform. There exists a parallelogram mechanism which limits the rotation of
the moving platform. So, this machine possesses two translational degrees of freedom. The link A4B4

and the slider P3 comprise an actuation-redundant kinematic chain. Near point A4, a force sensor is
installed on link A4B4. It is designed for the force closed-loop control, so that the servo motor can
apply a predetermined force to the moving platform at point A4 along the direction of A4B4.

2.2. Inverse kinematics
As illustrated in Fig. 2, a reference coordinate frame {O}{O−XYZ} is located at the midpoint
of C1C2, a moving coordinate frame {T }{T −xyz} is attached to the moving platform at its
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Fig. 1. Schematic diagram of the machine.
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Fig. 2. Vector loop of a specific kinematic chain.

central point, and another moving coordinate frame {Bi}{Bi−xiyizi} is attached to link AiBi at
point Bi .

The rotation matrixes of the coordinate frames {T } and {Bi} with respect to {O} can be described
respectively as

O RT = I3×3 (1)

and

O RBi = [R ix, R iy, R iz] =
⎡
⎣ cos αi −sin αi 0

sin αi cos αi 0
0 0 1

⎤
⎦, (2)

where αi is the angle between the xi-axis and the X-axis.
According to Fig. 2, the vector loop equation for the ith kinematic chain can be written as

t + O R T
T Ai = Cj + bie2 + Ll i , (3)

where t = [x, y, 0]T, T A i = [T xAi,
T yAi, 0]T, and Cj = [xCj , yCj , 0]T (j = 1, 2) are the position

vectors of points T , Ai , and Cj in coordinate frames {O}, {T }, and {O}, respectively. Besides,
e2 = [0, 1, 0]T is the unit vector of vertical rail, and bi is the distance between points Bi and Cj . L is
the length of link AiBi , and l i is the unit vector of the link in coordinate frame {O}, which can be
expressed as

l i = [lix, liy, 0]T = Rix = [ cos αi sin αi 0 ]T. (4)
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When the position vector t is given, the inverse kinematics can be determined uniquely based on the
assembled mode in Fig. 1. Then l i and bi can be calculated according to Eq. (3).

The position vector of centroid ci of link AiBi in coordinate frames {Bi} and {O} can be expressed
respectively as

Bi rci = L

2
[1, 0, 0]T (5)

and

rci = Cj + bi e2 + O RBi
Bi rci . (6)

Differentiating Eq. (3) with respect to time yields

vT = vi e2+L (ωi × l i) , (7)

where vT = ṫ = [vT x, vTy, 0]T is the velocity of point T , vi is the velocity magnitude of point Bi ,
and ωi is the angular velocity of link AiBi .

Taking dot product and cross multiplication of Eq. (7) with l i at both sides, we can obtain the
velocity magnitude of point Bi and the angular velocity of link AiBi respectively as

vi = l i · vT

l i · e2
(8)

and

ωi = 1

L
[l i × (vT − vie2)] . (9)

Taking the derivative of Eq. (6) with respect to time, we can obtain the velocity of point ci as

vci = vi e2 + ωi × (
O RBi

Bi rci

)
. (10)

Differentiating Eq. (7) with respect to the time yields

aT = ai e2+L (εi × l i) + ωi × (ωi × (Ll i)) , (11)

where aT = v̇T = [aT x, aTy, 0]T is the acceleration of point T , ai is the acceleration magnitude of
point Bi , and εi is the angular acceleration of link AiBi .

Using the same method as above, the acceleration magnitude of point Bi , the angular acceleration
of link AiBi , and the acceleration of point ci can be calculated respectively as

ai = l i · aT + (
ωT

i ωi

)
L

l i · e2
, (12)

εi = 1

L
l i × (aT − aie2) , and (13)

aci = ai e2 + εi × (
O RBi

Bi rci

) + ωi × (
ωi × (

O RBi
Bi rci

))
. (14)

3. Inverse Dynamic Modeling
The Newton–Euler method is widely used in the dynamic analysis of PKMs, in which the equations
of the motion for each kinematic chain and the moving platform can be derived31 and all the reaction
forces of links can be computed, which are indispensable in solving their deformations. Therefore, the
dynamic model of this machine is constructed by utilizing the Newton–Euler method and D’Alemblert
principle. Inertial forces and moments are applied on link AiBi and the moving platform. Their force
analyses are shown in Figs. 3 and 4, respectively.
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Referring to Fig. 3, the force balance equation of link AiBi can be described as

FAi + FBi + mi g + f i = 0, (15)

where mi is the mass of link AiBi , f i = −mi aci is its inertial force, and FAi = [FAiv, FAil, 0]T and
FBi = [FBiv, FBil, 0]T represent the constraint forces at points Ai and Bi , respectively.

Taking moment about point Bi , the moment balance equation of link AiBi can be obtained as

(
O RBi

Bi rci

) × (mi g + f i) + Ll i × FAi + ni = 0, (16)

where ni = −J iεi is the inertial moment of link AiBi , and J i is its moment of inertia.
From Eq. (16) we can obtain FAiv as

FAiv = −eT
3 [ni + (

O RBi
Bi rci

) × (mi g + f i)]/L. (17)

According to Fig. 4, the force balance equation of the moving platform can be described as

Mg + Fext+FT −
4∑

i=1

FAi = 0, (18)

where M is the mass of the moving platform, FT = − MaT is its inertial force, and Fext =
[Fextx, Fexty, 0]T is the external force acting on the moving platform.
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Taking moment about point T , the moment balance equation of the moving platform can be
obtained as

(
O R T R

) × (Mg + FT ) −
4∑

i=1

(
O RT

T Ai
) × FAi + Mext = 0, (19)

where R = [T Rx,
T Ry, 0]T is the position vector of the centroid of the moving platform in coordinate

frame {T }, and Mext is the external moment acting on the moving platform.
Equations (18) and (19) can be simplified as

P
[
FA1l FA2l FA3l

]T = Q, (20)

where

P =
⎡
⎣ l1x l2x l3x

l1y l2y l3y

u1 u2 u3

⎤
⎦ ,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Fextx − MaT x +
4∑

i=1
liyFAiv − l4xFA4l

Fexty − Mg − MaTy −
4∑

i=1
lixFAiv − l4yFA4l

T RyMaT x − T Rx(Mg + MaTy) + Mext −
4∑

i=1
wi FAiv − u4FA4l

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

ui = liy
T xAi − lix

T yAi, wi = lix
T xAi + liy

T yAi .

There are four unknowns (FAil) in Eq. (20), while the number of equations is three, so it is obvious that
the dynamic model cannot be solved directly. Supplementary conditions should be added for solving
this problem. Since the redundant force FA4l can be controlled actively by the actuation-redundant
kinematic chain, it can be optimized for the purpose of minimizing the running position errors of the
moving platform, which will offer a feasible supplementary condition. In order to achieve this goal,
the relationship between the position errors of the moving platform and the redundant force should
be established.

4. Optimization of the Redundant Force
As for the machine, there are a large number of inevitable errors in the process of manufacturing and
assembling, including the distance and parallelism between the two rails, the length of link AiBi , the
installed position of point Ai , and so on. All these are static position errors, which can be calculated
and compensated through kinematic calibration; while those errors of the moving platform, which
are caused by the deformations of components during operation, are changing dynamically. So it is
impossible to eliminate them by the conventional static compensation in advance. Due to the charac-
teristic of those errors, they should be compensated in real time. The actuation redundancy will be an
effective approach to minimize the dynamic errors through the optimization of the redundant force.

Considering the structural feature of this machine, the deformations of the rails, the sliders and the
moving platform can be neglected. The deformations of the links are mainly to be taken into account
here.

4.1. Relationship between the deformations of the links and the kinematic errors of the moving
platform
Tension and compression deformation will occur in the links, which can be called as axial deformation
and bending deformation during operation. As shown in Fig. 5, the axial deformation will lead to the
axial error δLi of link AiBi , and the bending deformation will lead to the angular error δαi of link
AiBi .
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Fig. 5. Deformation diagrams of link AiBi .

Except for the redundant link A4B4 which is controlled by torque model, the deformations of
links AiBi (i = 1, 2, 3) will lead to the kinematic errors of the moving platform. These errors include
the position errors (δx and δy) and the rotation error (δθ) which is perpendicular to the XY plane.
Considering these errors, Eq. (3) should be rewritten as

t + δ t + (
O RT + δO RT

)
T A i = Cj + bie2 + (L + δLi)(l i + δl i), (21)

where δ t = [δx, δy, 0]T, δO RT = (WI ) δθ , W =
⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦, and δl i = δαi[− sin αi cos αi 0 ]T.

Subtracting Eq. (3) from Eq. (21) and ignoring the higher order items yields

δ t + δO RT
T A i = Lδl i + l iδLi. (22)

Equation (22) reflects the relationship between the kinematic errors of the moving platform and
deformations of the links. Considering that both ends of link AiBi are connected by revolute joints,
the bending deformation can only occur under the gravity and inertia moment of the link, which are
relatively smaller than constraint forces of the joints. Besides, the maximum bending deformation
occurs near the middle of the link, so its influence on the error of the end point of the link is
little. Therefore, in order to simplify the problem, only the axial deformations of the links will be
investigated.

Taking dot product of Eq. (22) with l i at both sides yields

l i · (
δ t + δO RT

T A i

) = δLi. (23)

The relationship between the axial deformations of the links and the kinematic errors of the moving
platform can be obtained from Eq. (23) as

E[ δx δy δθ ]T = [ δL1 δL2 δL3 ]T, (24)

where

E =
⎡
⎣ l1x l1y u1

l2x l2y u2

l3x l3y u3

⎤
⎦ = PT.

4.2. The axial deformation of the links
The force analysis diagram for solving the axial deformation of link AiBi is shown in Fig. 6, where
pi (x) represents the distributed load on the link, including the gravity and inertial force, which can
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Fig. 6. Force analysis diagram of link AiBi .

be described as

pi (x) = mi (g − axi)

L
= mi

(
g − (

aBi + εi × (xl i) − (
ωT

i ωi

) · (xl i)
))

L
. (25)

Setting point Bi as the origin, the axial force Fdx of link AiBi at coordinate x can be written as

Fdx =
∫ L

x

(
lT
i pi (x)

)
dx + FAil. (26)

The axial deformation of link AiBi can be described as

δLi =
∫ L

0

Fdxdx

ESi (x)
=

∫ L

0

∫ L

x

(
lT
i pi (x)

)
dx + FAil

ESi (x)
dx, (27)

where Si (x) is the cross-sectional area of the link at coordinate x and E is the elastic modulus.
The cross-sectional area Si (x) is considered to be constant along the longitudinal direction of the

link. From Eq. (27) we can yield

δLi =
∫ L

0

∫ L

x

(
lT
i

(
mi

(
g − (

aBi + εi × (xl i) − (
ωT

i ωi

) · (xl i)
))))

dx + FAilL

ESiL
dx

= L

6ESi

(
3mi l

T
i (g − aBi) + mi

(
ωT

i ωi

)
L + 6FAil

)
. (28)

Substituting Eq. (28) in Eq. (24) yields

E

⎡
⎣ δx

δy

δθ

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

L

6ES1

(
3m1lT

1 (g − aB1) + m1
(
ωT

1ω1
)
L + 6FA1l

)
L

6ES2

(
3m2lT

2 (g − aB2) + m2
(
ωT

2ω2
)
L + 6FA2l

)
L

6ES3

(
3m3lT

3 (g − aB3) + m3
(
ωT

3ω3
)
L + 6FA3l

)

⎤
⎥⎥⎥⎥⎥⎥⎦

. (29)

4.3. Optimization of the redundant force
The above analyses show that the deformation of the links leads to the position errors and the rotation
error of the moving platform during operation. Among them, the rotation error does not affect the
precision of the center of the moving platform, so that the optimization goal can be defined as

H = min
√

(δx)2 + (δy)2. (30)
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In order to obtain a satisfied redundant force FA4l , Eq. (30) should be represented in the expression
of FA4l .

Equation (29) can be written as a general form of

F = K E D + G, (31)

where

F = [
FA1l FA2l FA3l

]T
,

D = [
δx δy δθ

]T
,

K =

⎡
⎢⎢⎢⎢⎢⎢⎣

ES1

L
0 0

0
ES2

L
0

0 0
ES3

L

⎤
⎥⎥⎥⎥⎥⎥⎦

,

G =

⎡
⎢⎢⎢⎢⎢⎣

−m1

6

(
3lT

1 (g − aB1) + (
ωT

1ω1
)
L

)
−m2

6

(
3lT

2 (g − aB2) + (
ωT

2ω2
)
L

)
−m3

6

(
3lT

3 (g − aB3) + (
ωT

3ω3
)
L

)

⎤
⎥⎥⎥⎥⎥⎦ .

Substituting Eq. (31) in Eq. (20) yields

ET (K E D + G) = Q. (32)

The kinematic errors of the moving platform can be obtained from Eq. (32) as

D = E−1 K−1
(
E−T Q − G

) = R Q + N, (33)

where R = E−1 K−1 E−T and N = −E−1 K−1G.
Substituting Eq. (33) in Eq. (30), we can obtain the optimization objective function H as

H = f (FA4l) =
√

aF 2
A4l + bFA4l + c, (34)

where

a = a2
1 + a2

2 ≥ 0,

b = 2 (a1b1 + a2b2) ,

c = b2
1 + b2

2,

a1 = −r11l4x − r12l4y − r13u4,

a2 = −r21l4x − r22l4y − r23u4,

b1 = r11q1 + r12q2 + r13q3 + n1,

b2 = r21q1 + r22q2 + r23q3 + n2,
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q1 = Fextx − MaT x +
4∑

i=1

liyFAiv,

q2 = Fexty − Mg − MaTy −
4∑

i=1

lixFAiv,

q3 = T RyMaTy − T Rx(Mg + MaTy) + Mext −
4∑

i=1

wi FAiv.

r11, r12, r13, r21, r22, r23 are the components of matrix R and n1, n2, n3 are the components of
matrix N.

Referring to Eq. (34), the optimal value of force FA4l will be discussed as follows:

FA4l =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− b

2a
, a > 0

Fmin, a = 0 and b > 0
Fmax, a = 0 and b < 0
0, a = 0 and b = 0

, (35)

where Fmax and Fmin represent the maximum and minimum axial forces provided by the actuation-
redundant kinematic chain, respectively.

Substituting FA4l in Eq. (33), we can obtain the kinematic errors of the moving platform, and then
forces FAil (i = 1, 2, 3) can be calculated by using Eq. (31).

Then FBi can be obtained according to Eqs. (15) and (17) as

FBi = −FAi − mi g + mi aci . (36)

Assuming that there is no friction between the sliders and the vertical rails, the force balance equations
of the sliders can be described as

FP 1 − (FB1 + FB2) + ms1(g − a1e2) = 0, (37)

FP 2 − FB3 + ms2(g − a3e2) = 0, (38)

FP 3 − FB4 + ms3(g − a4e2) = 0, (39)

where FP 1, FP 2, and FP 3 are the forces acting on the sliders P1, P2, and P3, and ms1, ms2, and ms3

are the masses of the sliders P1, P2, and P3.
The driving forces of the servo motors can be obtained from the components in the Y-direction of

FP 1, FP 2, and FP 3 as

Fd1 = (FB1y + FB2y) + ms1(g + a 1), (40)

Fd2 = FB3y+ ms2(g + a3), (41)

Fd3 = FB4y+ ms3(g + a4). (42)

5. Simulation Analyses
The dynamic performance of the machine proposed and its non-redundant counterpart is analyzed
by numerical examples in this section. Besides, another performance criterion for minimizing the
constraint forces is also applied to optimize the redundant force for comparison.
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Table I. The related parameters of the actuation-redundant PKM.

Parameters Meanings Values Unit

M Mass of the moving platform 3034 kg
m Mass of the link 1985 kg
Si Cross-area of the link 0.075 m2

Ji Moment of inertia of the link 1856 kg·m2

ms1 Mass of slider P1 1750 kg
ms2 Mass of slider P2 850 kg
ms3 Mass of slider P3 850 kg
L0 Length of the link 3.35 m
L1 Distance between the vertical rails 4.2 m
L2 Side length of the moving platform 0.8 m

Workspace 
boundary

Trajectory

Starting point

Running 
direction

β i 
(0, 5.45)

x /m

y /m

Fig. 7. Workspace and trajectory.

The related parameters of the actuation-redundant PKM are shown in Table I. Except for the
redundant kinematic chain, the two machines are identical.

5.1. Trajectory planning
The trajectory of each moving platform should be provided to analyze the dynamic performance of
these two machines. Since the redundant kinematic chain has no influence on the mobility of the
machine, when the distance of the sliders P1 and P2 moving along the rails is 1 m, the workspace
of the two machines is the same, as shown in Fig. 7. In the workspace, a circle is selected as the
trajectory of the moving platform. The center point of the trajectory is at (0, 5.45) m, and the diameter
is 0.75 m. The starting point and running direction are also shown in Fig. 7.

When the trajectory is determined, the accelerating characteristics are then analyzed. To avoid
impact during operation, S-shape curve is used to plan the trajectory32 and the acceleration of the
moving platform can be illustrated as

a =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2a0

T
t

(
0 ≤ t ≤ T

2

)

−2a0

T
t + 2a0

(
T

2
< t ≤ T

)
0 (T < t ≤ Tt − T )

−2a0

T
(t − Tt + T )

(
Tt − T < t ≤ Tt − T

2

)
2a0

T
(t − Tt )

(
Tt − T

2
< t ≤ Tt

)

, (43)

https://doi.org/10.1017/S0263574714000265 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000265


252 Dynamic modeling and redundant-force optimizaiton of actuation redundancy PKM

(a) Condition number of matrix R of the 
non-redundant PKM

x/m
y/m

Cond(R)

(b) Condition number of matrix R of the 
actuation redundant PKM

Cond(R)

x/m

y/m

Fig. 8. Condition numbers of the position precision matrixes.

where a0 is the maximum acceleration, T is the time in acceleration and deceleration stages, and
Tt is the total running time. The velocity v and displacement s during operation can be obtained by
integration. In this simulation, a0 = 0.25 m/s2 and T = 2 s.

5.2. Dynamic performance analyses of the two machines
In this section, the dynamic performance of the two machines will be analyzed for comparison to
show the effect of the optimized redundant force on the actuation-redundant PKM. These analyses
include the performance of their position precision matrixes, position and tracking errors, driving
parameters, and constraint forces of joints.

Equation (33) shows that the position errors of the moving platform is determined by matrix R,
named position precision matrix here. This matrix is only defined by the dimension parameters and the
pose of the machine. Therefore, it is essential to select suitable dimension parameters and trajectories
to guarantee the performance of matrix R, which will be beneficial to ensure high precision of the
moving platform during operation. Otherwise, it will be difficult to compensate the position errors
even if the actuation redundancy is introduced.

The performance of matrix R can be characterized by its condition number. The smaller the
condition number is, the better performance the matrix has. The condition numbers of matrix R of
the two machines in their workspaces are shown in Fig. 8. It can be seen that the condition number
of matrix R of the actuation-redundant PKM is smaller, which indicates that the redundant kinematic
chain improves the machine’s capability of resisting deformations at a certain extent, thus ensuring a
better position precision of the machine.

The condition numbers of matrix R of the two machines in the specified circular trajectory are
shown in Fig. 9. It can be inferred that the position precision of the actuation-redundant PKM will be
superior to the non-redundant one when running this trajectory.

To emphasize the role of the optimized redundant force in improving the position precision of the
machine during operation, the position and tracking errors of these two machines when running the
given circular trajectory will be computed.
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Cond(R)

Angle /°

Fig. 9. Condition numbers of the position precision matrixes in circular trajectory.

Err/μm

Time/s

Fig. 10. Position errors of the non-redundant PKM.

The position errors in X and Y directions and the total position error of the non-redundant PKM
when running the circular trajectory are shown in Fig. 10. It can be seen that the maximum position
error of the center of the moving platform is nearly 32 μm and it occurs in the region where the
condition number of matrix R is also at its maximum.

The tracking error is shown in Fig. 11. The red dotted line and the black solid line represent the
ideal circular trajectory and the actual trajectory, respectively. To get a better view, the position error
in actual trajectory is amplified to 1000 times.

The position and tracking errors of the actuation-redundant PKM with optimized redundant force
when running the same circular trajectory are shown in Figs. 12 and 13, respectively. It can be seen
that the position and tracking precision are all obviously improved and the maximum position error
is reduced to less than 12 μm.

In order to obtain a better comparison of the dynamic performance of these two machines, their
other important dynamic parameters, including driving parameters and constraint forces, are analyzed
further.

The driving forces of the two machines when running the circular trajectory are shown in Figs. 14
and 15, respectively.

It shows that the maximum redundant driving force occurs in the region where the condition
number of matrix R of the non-redundant PKM is also at its maximum. It can be concluded that the
worse the performance of the machine is, the greater redundant driving force is needed to compensate
for the position errors during operation.

The driving power of each motor of the two machines is given in Figs. 16 and 17, respectively.
In order to get a better comparison, the total driving power of the two machines is given in Fig. 18.

It can be seen that the driving power of the actuation-redundant PKM is always bigger than the
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x/m

y/m

Fig. 11. Tracking error of the non-redundant PKM.

Err/μm

Time/s

Fig. 12. Position errors of the actuation-redundant PKM.

y/m

x/m

Fig. 13. Tracking error of the actuation-redundant PKM.
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F/N

Time/s

Fig. 14. Driving forces of the non-redundant PKM.

F/ N

Time/s

Fig. 15. Driving forces of the actuation-redundant PKM.

P/ w

Time/s

Fig. 16. Driving power of each motor of the non-redundant PKM.

non-redundant PKM. So the improved position precision of the actuation-redundant PKM is at the
cost of more consumption.

Besides, the constraint forces of the joints of each link are analyzed. The constraint forces of joints
Ai (i = 1, 2, 3) and joints Bi (i = 1, 2, 3) of the non-redundant PKM are given in Figs. 19 and 20,
respectively.

The constraint forces of joints Ai (i = 1, 2, 3, 4) and joints Bi (i = 1, 2, 3, 4) of the actuation-
redundant PKM are given in Figs. 21 and 22, respectively.

Through comparison we can find that the constraint forces of the actuation-redundant PKM are
relatively larger at the start and end of the trajectory. However, because of the effect of the redundant
force, its constraint forces reduce obviously at the middle of the trajectory, compared with the
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P/w

Time/s

Fig. 17. Driving power of each motor of the actuation-redundant PKM.

P/w

Time/s

Fig. 18. Total driving power of each machine.

Fa/N

Time/s

Fig. 19. Constraint forces of joints Ai of the non-redundant PKM.

non-redundant PKM, especially the constraint forces of joints A1 and B1. It shows the function of
the redundant force in controlling the constraint forces to reduce the deformations of the links, thus
contributing to improve the position precision of the machine.

5.3. Optimization method for minimizing the constraint forces
In order to illustrate the effectiveness of the method proposed in improving the position precision
of the machine further, another redundant-force optimization method for minimizing the constraint
forces is applied for comparison.24,25 The constraint forces of joints Ai and Bi directly affect the
deformations of the links, so they can also be minimized to improve the position precision of the
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Fb/N

Time/s

Fig. 20. Constraint forces of joints Bi of the non-redundant PKM.

Fa/N

Time/s

Fig. 21. Constraint forces of joints Ai of the actuation-redundant PKM.

Fb/N

Time/s

Fig. 22. Constraint forces of joints Bi of the actuation-redundant PKM.

machine. The optimization goal can be defined as

H ′ = min

(
4∑

i=1

(‖FAi‖ + ‖FBi‖)

)
. (44)

The method proposed before can be called as method I and this method can be called as method II.
The constraint forces of joints Ai and joints Bi of the actuation-redundant PKM when using method
II are given in Figs. 23 and 24, respectively. It can be seen that they are indeed smaller.
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Fa/N

Time/s

Fig. 23. Constraint forces of joints Ai of the actuation-redundant PKM when using method II.

Fb/N

Time/s

Fig. 24. Constraint forces of joints Bi of the actuation-redundant PKM when using method II.

Err/μm

Time/s

Fig. 25. Total position error of the actuation-redundant PKM when using the two methods.

The total position errors of the actuation-redundant PKM when using the two methods are all given
in Fig. 25. The constraint forces when using method II are reduced, so the deformations of the links
should be smaller and the position precision of the machine should be improved. However, it can be
seen from Fig. 25 that the total position error of the actuation-redundant PKM when using method
II is always bigger. It proves the effectiveness of method I in improving the position precision of the
machine

The total driving power of the actuation-redundant PKM when using the two methods is given in
Fig. 26. It shows that the consumption of the machine is nearly the same in both cases.
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P/w

Time/s

Fig. 26. Total driving power of the actuation-redundant PKM when using the two methods.

Err/μm

Time/s

Fig. 27. Total position error of the actuation-redundant PKM under external loads.

When external load of F = [4, 3] × 104 N is applied on the moving platform of the actuation-
redundant PKM, the total position errors of the machine when using the two methods are provided
in Fig. 27. It can be seen that the maximum position error of the machine using method II increases
obviously, from 15 μm to nearly 30 μm. By contrast, the position error of the machine using method
I is still relatively small and the maximum position error increases less than 6 μm. It well proves that
method I can ensure that the machine possesses a better capacity in resisting external disturbance,
thus obtaining higher position precision.

Another two trajectories are selected for analyzing the position errors of the two machines. The
first one is still a circular trajectory with the same center point of the previous one, while its diameter
is 1.5 m. The other one is a line trajectory, with its start point at (–1,–1) m and the end point at (1,1) m.
The motion parameters and the external load when running these two trajectories remain unchanged.

The total position errors of the two machines when running the given trajectories are provided in
Figs. 28 and 29, respectively. The results show the effectiveness of the novel method proposed in
reducing the position error of the machine once more.

5.4. Insufficiency of the actuation redundancy
Expanding the diameter of the previous trajectory to 2.5 m, the position errors of the two machines are
analyzed once more. The condition numbers of matrix R of the two machines in the expanded circular
trajectory are shown in Fig. 30. It can be inferred that the performance of the actuation-redundant
PKM is not so much superior to the non-redundant PKM. Moreover, in the middle segment of the
trajectory, the condition numbers of the two machines are relatively large, which indicates that their
performance will be all-low in this region.

Their tracking errors are shown in Figs. 31 and 32, respectively. It shows that because of the
poor performance of matrix R, the position errors of the moving platform are not compensated well
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Err/μm

Time/s

Fig. 28. Total position errors of the machines when running the new circular trajectory.

Err/μm

Time/s

Fig. 29. Total position errors of the machines when running the line trajectory.

Cond(R)

Angle /°

Fig. 30. Condition numbers of the position precision matrixes in expanded trajectory.

although the actuation redundancy is added. At this moment, it is necessary to optimize the structure
and the running trajectory of the machine further.

6. Conclusion
This paper studies the dynamic modeling and proposes a novel method for redundant-force
optimization of a planar 2-DOF PKM with actuation redundancy. This method is aiming at improving
the position precision of the moving platform during operation, and solving the dynamic model
constructed by the Newton–Euler method. Then the dynamic performance of this machine and its
non-redundant counterpart is investigated by numerical examples. Their performance of the position
precision matrixes, position and tracking errors, the driving parameters, and constraint forces are
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y/m

x/m

Fig. 31. Tracking error of the non-redundant PKM.

y/m

x/m

Fig. 32. Tracking error of the actuation-redundant PKM.

analyzed. Besides, another redundant-force optimization method for minimizing the constraint forces
is also applied for comparison. Finally, insufficiently optimized redundant force in improving the
position precision of the machine is provided, and further work on the optimization of the actuation-
redundant PKM is proposed. The following conclusions can be drawn:

1. The optimization of the redundant force, which aims to minimize the position errors of the moving
platform, can be used as a reasonable supplementary to solve the dynamic model.

2. The performance analysis of the position precision matrixes shows that the addition of the
redundant kinematic chain is beneficial to the improvement of the machine’s capability of resisting
deformation in some cases.

3. The simulation analyses of the two machines when running the smaller circular trajectory show that
the optimized redundant force can better compensate the position errors of the moving platform
caused by the deformation of the links. The maximum position error is reduced from 32 μm to
less than 12 μm.
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4. The optimization method for minimizing the constraint forces contributes to reduce the constraint
forces of joints compared with the novel method, while the position errors of the machine are
always larger during operation, especially when the machine is suffering external load.

5. When the performance of the position precision matrix is poor, it will be difficult to compensate
the position errors of the machine even though the actuation redundancy is applied. It is essential
to optimize the structure and running trajectory of the machine further to improve its performance.

The analyses and comparison study have proved the effectiveness of the novel method in the dynamic
model solving and the redundant-force optimization to improve the position precision of the actuation-
redundant PKMs to a certain extent.
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