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Abstract

Infectious bursal disease virus (IBDV) causes an immunosuppressive disease in young chick-
ens. Two serotypes of this double-stranded RNA virus exist but only serotype 1 viruses cause
disease in chickens. Detection and strain identification of IBDV is important because anti-
genic subtypes found within serotype 1 make it necessary to tailor vaccination programs to
the antigenic type found in the bird’s environment. Because conventional virus isolation and
characterization are not practical for routine diagnosis of IBDV, antigen-capture enzyme-
linked immunosorbent assay (ELISA) and molecular assays based on reverse
transcription–polymerase chain reaction (RT-PCR) technology were developed. Compared
with antigen-capture ELISA, RT-PCR assays have greater versatility and are more sensitive
and specific. Strain identification has been accomplished using a variety of post-RT-PCR
assays, including restriction enzyme digestion of the RT-PCR products. The resulting restric-
tion fragment length polymorphisms (RFLP) are used to differentiate viruses into molecular
groups that correlate with antigenic and pathogenic types. Recently, two types of real-time
RT-PCR have been used to identify and differentiate strains of IBDV. Both methods use dis-
tance-dependent interaction between two dye molecules, known as fluorescence resonance
energy transfer (FRET). The dye molecules are attached to one or more nucleotide probes
that detect specific nucleotide sequences of the virus. Our laboratory has used a two-probe
assay to identify single-nucleotide mutations among IBDV strains. A mutation probe is used
in this assay to detect substitution mutations in a region of the viral genome that encodes a
neutralizing epitope of the virus. These assays are accurate, reliable and inexpensive com-
pared with conventional RT-PCR because they do not require RFLP or other labor-intensive
post-RT-PCR assays to distinguish viral strains.
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Introduction

Two serotypes of infectious bursal disease virus (IBDV)
have been identified but only serotype 1 viruses have
been found to cause disease in chickens (Jackwood et
al., 1985; Ismail et al., 1988). At least six antigenic sub-
types of IBDV serotype 1 viruses have been identified
using conventional virus-neutralization in cell culture
(Jackwood and Saif, 1987). Antigenic variant IBDV
strains have been isolated from commercial flocks of
chickens with high levels of maternal antibodies to

IBDV (Rosenberger and Cloud, 1986; Ismail et al., 1990).
Ismail and Saif (1991) demonstrated that vaccination
with one subtype of serotype 1 did not always protect
chickens from challenge with another serotype 1 sub-
type, particularly when a vaccine dose containing low
virus titers was used. Differences in the virulence of
IBDV strains have also been documented. Classic IBDV
strains cause clinical disease, and mortality can range
from 0 to 25%. Variant strains of the virus generally do
not cause inflammation or clinical disease but they do
infect lymphocytes and cause immunosuppression. In
the mid 1980s a very virulent strain of IBDV was identi-
fied that can cause mortality up to 70% in susceptibleE-mail: Jackwood.2@osu.edu
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birds (van den Berg et al., 1991). The antigenic and
pathogenic variation among IBDV strains makes the
diagnosis of these viruses very important for establishing
the best control measures.

Molecular diagnosis of IBDV strains

Virus neutralization assays to identify antigenic subtypes
of serotype 1 viruses are time-consuming and expensive
and require the IBDV strain in question to replicate in
cell culture. Pathogenicity studies must be conducted in
specific pathogen-free chickens. Researchers have
turned to molecular diagnostic assays for the identifica-
tion of these different IBDV strains.

RT-PCR

The reverse transcriptase–polymerase chain reaction
(RT-PCR) assay has been used by several laboratories to
identify IBDV. Most researchers have focused on a vari-
able sequence region of the VP2 gene that is known to
encode one or more neutralizing epitopes of the virus.
At least one of these epitopes appears to be located in
hydrophilic peak B of the VP2 protein. Several neutraliz-
ing monoclonal antibodies have been mapped to
specific amino acid sequences in the hypervariable
region of VP2. Two of these recognize different epitopes
in hydrophilic peak B that are clustered around amino
acids 321 and 324, respectively (Eterradossi et al., 1998).
Another monoclonal antibody, 17–82, recognizes a con-
formational-dependent epitope in hydrophilic peak B;
amino acids 318 (glycine) and 323 (aspartic acid) are
critical for binding of this monoclonal antibody (Heine
et al., 1991). Frequent mutations in hydrophilic peak B
between amino acid positions 317 and 323 have been
documented by nucleotide sequencing of this region
(Bayliss et al., 1990; Heine et al., 1991; Lin et al., 1993;
Schnitzler et al., 1993; Vakharia et al., 1994; Dormitorio
et al., 1997; Eterradossi et al., 1999; Proffitt et al., 1999;
Jackwood et al., 2001).

To differentiate the antigenically different strains of
IBDV, researchers have used the variable region of VP2.
Initial RT-PCR assays were followed by digestion with
multiple restriction enzymes (Wu et al., 1992; Jackwood
and Jackwood, 1994; Liu et al., 1994). These assays met
with limited success and were soon replaced by RT-PCR
followed by restriction enzyme fragment length poly-
morphism (RFLP) assays (Lin et al., 1993; Jackwood and
Sommer 1997; Zierenberg et al., 2001). We have used
this assay to detect and identify IBDV strains in our lab-
oratory (Jackwood and Sommer, 1997, 1998, 1999). This
assay has been useful in placing vaccine strains of the
virus into molecular groups. Within a molecular group,
IBDV strains are related by ancestry (Jackwood et al.,
2001). Furthermore, viruses within a molecular group

have nucleotide and amino acid sequences that are rela-
tively more alike compared with viruses in different
molecular groups. The results indicate that RFLP profiles
can be used to predict the relative similarities and differ-
ences among unknown IBDV strains, but determining
the actual antigenic relatedness among IBDV strains still
requires in vivo testing.

The RT-PCR–RFLP procedures used to generate
molecular groups of IBDV are designed to assess the
nucleotide similarity or diversity among viruses. If the
gene sequences responsible for specific phenotypic dif-
ferences are known, it should be possible to devise a
method to detect the genetic differences controlling
these traits. Even when the gene sequences controlling a
trait are not known, it has been possible to identify a
genetic marker that is highly correlated with a particular
phenotype. An example of this is the identification of a
molecular marker for very virulent IBDV strains by Lin et
al. (1993). These scientists found that all known very
virulent IBDV strains contain an SspI restriction site in
the variable sequence region of VP2, a finding we have
confirmed and extended (Jackwood and Sommer 1999).

Although the RT-PCR–RFLP assay was an excellent
diagnostic assay to rapidly identify the relative related-
ness among IBDV strains, this assay has several
limitations. It required two days to complete and the
cost of each assay was too high to permit wide use of
the test. Moreover, most diagnostic laboratories were not
amplifying the same VP2 gene fragment, so results could
not be compared between the different laboratories.
Although the RFLP assay was successful because restric-
tion enzymes were used to target sequences associated
with, or involved in, determining the antigenic or patho-
genic characteristics of the virus, some important
nucleotide sequences could not be targeted because a
restriction enzyme site in that region was not present.
To circumvent some of these limitations, real-time RT-
PCR was used to diagnose and differentiate IBDV strains
(Moody et al., 2000; Raue and Muller, 2001; Jackwood
and Sommer, 2002; Jackwood et al., 2003; Raue and
Mazaheri, 2003).

Real-time RT-PCR

Moody et al. (2000) used the TaqMan real-time RT-PCR
assay to quantify viral load in the blood of IBDV-
infected chickens. Although very rapid and sensitive,
this assay was not used to differentiate different strains
of IBDV. We recently reported on the use of the
LightCycler (Roche Diagnostics, Mannheim, Germany)
and hybridization probe system (Roche, Molecular
Biochemicals, Almeda, CA) to differentiate among IBDV
strains. This real-time RT-PCR probe system employs flu-
orescence resonance energy transfer (FRET) to identify
the RT-PCR products. There are two probes, one labeled
with fluorescein isothiocyanate and the other with a Red
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640 fluorophore. These probes are not destroyed during
amplification, as they are in the TaqMan system. Thus,
they can be used after RT-PCR amplification to generate
a melting temperature (Tm) for each IBDV strain. The Tm

is the temperature at which one of the probes (usually
identified as the mutation probe) will dissociate from the
RT-PCR product. Sequence identity or mutations can be
assessed by comparing the Tm of the mutation probe for
each viral RT-PCR product (Bernard et al., 2001). A Tm

for the homologous virus (exact sequence match) is
determined first. This value is then compared with the
Tm values determined for unknown viruses. A Tm within
two standard deviations of the homologous Tm indicates
that the sequences of the mutation probe and test virus
are identical (Jackwood et al., 2003). If a Tm for the test
virus is lower than two standard deviations from the
homologous Tm, the sequences are considered to be dif-
ferent in at least one or more nucleotides (Jackwood
and Sommer, 2002; Jackwood et al., 2003). Since these
studies were conducted with a mutation probe to a
region of VP2 that encodes a neutralizing epitope
(Heine et al., 1991; Eterradossi et al., 1998) the results
provided information on the antigenic relatedness of the
viruses being tested.

Melting temperature analysis following real-time RT-
PCR has the potential to identify mutations in any region
of the IBDV genome and to provide a relative value for
the amount of sequence homology between wild-type
IBDV and any vaccine strain, and can be used to help in
the selection of candidate wild-type viruses for autoge-
nous vaccines. The use of autogenous vaccines has
helped control infectious bursal disease in local regions
of the USA where outbreaks are not controlled by com-
mercially available vaccines. Selecting the field virus to
use in an autogenous vaccine is difficult and expensive.
Screening viruses from outbreaks using real-time RT-PCR
will greatly increase the speed of this process and signif-
icantly lower the cost. The greatest power of real-time
RT-PCR is in reducing the number of vaccine virus can-
didates being considered for use in a flock or for
development into an autogenous vaccine. This will sub-
stantially reduce the number of bird experiments needed
to select the best commercial vaccine or autogenous
vaccine candidate.
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