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Inventories consisting of Likert-type items are often 
characterized in the context of item response theory 
(IRT) by fitting Samejima’s (1970) graded response 
model (GRM) to data. The simplest version of a Likert-
type item is the yes-no item, also used in some inven-
tories (e.g., Bortolotti, Tezza, de Andrade, Bornia, & 
de Sousa Júnior, 2013; Olatunji et al., 2009) and for 
which the polytomous GRM reduces to the dichoto-
mous two-parameter logistic model (2PLM). However, 
the advantages of n-ary over binary response modes 
are well known and the use of Likert-type items with 
4–6 response options is widespread. In contrast to 
reliance on polytomous IRT models for tests with 
Likert-type items, knowledge or ability tests are still 
characterized mostly via dichotomous IRT models. 
This is certainly the only option for tests consisting of 
true-false or constructed-response items (e.g., Nogami & 
Hayashi, 2010; Verschoor & Straetmans, 2010), but 
many tests consist of multiple-choice items that admit 
several polytomous IRT characterizations. Yet, tests with 
multiple-choice items are massively analyzed under the 
three-parameter logistic model (3PLM; see, e.g., Bulut 

& Kan, 2012; Kalender, 2012; Nogami & Hayashi, 2010; 
Olea, Abad, Ponsoda, & Ximénez, 2004; Olea, Abad, 
Ponsoda, Barrada, & Aguado, 2011; Rudner, 2010). 
No evidence-based argument seems to have been put 
forth to justify the use of the dichotomous 3PLM over 
polytomous models for multiple-choice items.

Quite to the contrary, previous research suggests 
that a polytomous characterization of multiple-choice 
tests renders more efficient instruments. For instance, 
De Ayala (1989; see also De Ayala, 1992) compared the 
workings of Bock’s (1972) nominal response model 
(NRM) and the 3PLM in an adaptive testing environ-
ment and the results showed that use of the NRM 
permitted estimating ability with considerably fewer 
items than were needed under the 3PLM. This is because 
the item information function (IIF) arising from the 
NRM characterization is higher than that arising from 
the 3PLM characterization of the same item, which in 
turn renders a higher test information function (TIF) 
and lower standard errors (SEs) for ability estimates. 
This superiority of the NRM is presumably gained from 
information provided by the distractors marked by the 
examinee (see Dodd, De Ayala, & Koch, 1995), which 
the 3PLM entirely overlooks. Another reason for the 
superior performance of polytomous models may lie 
in general statistical properties of estimates in multi-
nomial compared to binomial situations (see García-
Pérez, 1989, 1993). A switch toward polytomous 
models for multiple-choice items might thus allow 
estimating ability more accurately (i.e., with lower SEs) 
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despite the fact that the same items and responses 
are used in the process. It is remarkable in this 
respect that the multiple-choice model (MCM) of 
Thissen and Steinberg (1984) has never been com-
pared to the NRM or the 3PLM as to its capability to 
offer a more efficacious characterization of multiple-
choice items.

The main goal of this paper is to compare 3PLM, 
MCM, and NRM characterizations of multiple-choice 
items and tests. The ultimate criterion for the comparison 
is whether the IIFs and the ensuing TIFs are superior 
under polytomous characterizations, and also whether 
the MCM outperforms the NRM in this respect. The 
comparison spans three scenarios. First, when the 
models are fitted to empirical data from a large sample 
of responses to a 43-item multiple-choice test with five 
options per item. Second, when the models are fitted to 
simulated data generated from known item parame-
ters under a plausible polytomous extension of the 
3PLM. Third, when the models are fitted to simulated 
data generated from known item parameters under 
the MCM. The first scenario gives a picture of how 
parameter estimates and model curves vary across 
fitted models for empirical data coming from an 
unknown data-generation process, and it also serves 
the important purpose of checking the data for evidence 
of some theoretical features of polytomous models 
regarding how distractor endorsement frequencies 
vary with ability. The second and third scenarios allow 
investigating whether the known reality that gener-
ated the data is more adequately represented in the 
NRM or MCM characterizations than in the 3PLM 
characterization.

The plan of the paper is as follows. The next section 
describes the three IRT models to be compared and 
their theoretical implications on distractor endorse-
ment frequencies. Then, empirical data from the first 
scenario are analyzed in search for those theoretical 
features, and comparative results for the three fitted 
IRT models are presented. Subsequent sections pre-
sent results under the two other (simulation) sce-
narios. It should be emphasized that the goal of this 
paper is to compare alternative characterizations of the 
same data with an eye towards identifying the reasons 
for differences (if they were found) in IIFs and TIFs 
across models. For this reason, issues that are typi-
cally addressed in simulation studies of other purposes 
(e.g., sample size needed for accurate item parameter 
recovery and ability estimation) will only be partially 
and indirectly addressed here. The ultimate goal of 
the analyses presented here is to gather the evidence 
that might allow an informed decision as to whether 
the dichotomous 3PLM should be replaced with the 
polytomous NRM or MCM for the characterization 
of multiple-choice items.

Alternative IRT characterizations of multiple-choice items

It is hardly contentious that the true function describing 
how the probability of a correct response varies with 
ability should not differ according to what model a 
psychometrician chooses to fit to multiple-choice data. 
Although this true function is always unknown, for 
the purpose of illustration consider a multiple-choice 
item with five response options whose true item 
response function (IRF) under the 3PLM were as 
shown in the left panel of Fig. 1a. This starting point 
seems adequate given the massive use of the 3PLM 
to characterize multiple-choice items, but it should 
not be taken to imply that the 3PLM IRF must be  
the true function for multiple-choice items. This IRF 
describes how the probability p of a correct response 
varies with ability θ through
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Now consider a theoretical characterization of this 
item under the MCM, where the option response func-
tion (ORF) for option k (where 1 ≤ k ≤ n and n is the 
number of options in the item) describes the probability 
that an examinee of ability θ marks option k through

∑
k k k

k n

m mm

a c d a c
p

a c

0 0

=0

exp[ ]+ exp[ + ]
( ) =

exp[ + ]

θ + θ
θ

θ � (3)

with the constraints 
n n

k kk k
a c

=0 =0
= = 0∑ ∑  and 

∑n

kk
d

=1
= 1. Item parameters under this alternative 

characterization must be such that the ORF for the 
correct answer describes the same shape as the 3PLM 
IRF (shown in the left panel of Fig. 1a). This can be 
theoretically achieved in several ways and one of them 
is through the MCM parameters given in Fig. 1b,1 
which embed the extra assumption that the ORF for all 
distractors is nearly the same. This reflects the desir-
able characteristics that (1) all distractors are equally 
attractive to examinees of any given ability and (2) all 

1Because the mathematical expression of the 3PLM and MCM func-
tions differ, matching MCM parameters were sought numerically so as 
to minimize the error of approximation. A minor subtlety here is that 
there is an infinite number of parameter sets that render the same 
shapes for the functions. The particular solution given in Fig. 1b was 
obtained by fixing a1 = 1. With the parameter values given in Fig. 1b, 
the largest absolute point difference between the IRF in Fig. 1a and the 
ORF for option 1 in Fig. 1b is 9.7e−4. This measly difference between 
the two characterizations only reflects the tolerance of 1e−3 used as a 
stopping criterion in the numerical search. A smaller tolerance produced 
smaller errors and rendered MCM item parameters differing from those 
in Fig. 1b only beyond the third decimal place.
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response options (i.e., the correct answer as well as all 
distractors) are equally attractive to examinees of very 
low ability. The IIF under the MCM is given by

( ) ( )
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with θ θ +
m m m

f a c( ) = exp[ ] and is plotted in the right 
panel of Fig. 1b along with the information functions 
for each response option. Despite separate consider-
ation of distractors, the IIF in Fig. 1b is identical to that 
in Fig. 1a.

But not all items have equally attractive distractors. 
For instance, some options are on some items easily 

identifiable as distractors whereas others may be more 
attractive than the correct answer to examinees of low 
ability. Figure 1c shows an alternative MCM character-
ization, which holds if options 4 and 5 are hardly ever 
regarded as plausible answers whereas options 2 and 3 
are more attractive than the correct answer to exam-
inees of low ability. Note in the left panel of Fig. 1c that 
the ORF for the correct answer is still the same as that 
in Figs. 1a and 1b. Despite the change in distractor 
functioning, the resultant IIF (right panel of Fig. 1c) 
remains unchanged.

The properties illustrated in Fig. 1 hold whenever 
the distractor ORFs are monotone decreasing and  
regardless of the value of the 3PLM parameter c or the 

Figure 1. Alternative characterizations of a multiple-choice item in which the probability of a correct response has a fixed 
relation to ability. The left column shows IRFs or ORFs and the right column shows IIFs (black curve) and option information 
curves where applicable, for the 3PLM characterization (a), and two alternative MCM characterizations (b and c).
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inclusion of a lapse parameter in the four-parameter 
extension of the 3PLM. In these cases the IIF arising 
from the MCM is identical to that arising from the 
3PLM and, therefore, separate consideration of the 
distractors does not provide any additional informa-
tion. Nevertheless, distractors with non-monotonic 
ORFs (not illustrated here) are also conceivable and 
those render authentic information gains. This feature 
is an empirical characteristic of the items and, in 
principle, an MCM characterization will render higher 
IIFs than a 3PLM characterization when distractor 
endorsement frequencies vary non-monotonically with 
ability.

Other polytomous models have also been used to 
characterize multiple-choice items. One of them is the 
NRM whose workings were assessed in the context of 
adaptive testing by De Ayala (1989, 1992). In the NRM, 
the ORF for option k is given by
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where 
m m m

f a c( ) = exp[ ]θ θ + . An alternative character-
ization of the item in Fig. 1 under the NRM is not illus-
trated because the NRM cannot theoretically produce an 
ORF for the correct answer that has a non-zero lower 
asymptote and an upper asymptote at unity, as  
shown next. Let option 1 be the correct answer. An 
upper asymptote at unity requires a1 > 0 and a1 >> ak 
for all k ≠ 1 so that, from Equation 5, 

θ→∞
θ p1( ) = 1lim . 

However, a1 > 0 also produces a lower asymptote at 
zero because 

θ→−∞
θp1( ) = 0lim . Then, the NRM can only 

roughly approximate a curve like that in the left panel 
of Fig. 1a at abilities beyond the lower-asymptotic 
regime, also failing to approximate accurately the 
shape of the ORFs for the distractors: By an argument 
analogous to the previous one, the ORF for one of the 
distractors under the NRM will be monotone decreasing 
with an upper asymptote at unity and a lower asymp-
tote at zero.

In sum, any multiple-choice item that is adequately 
described by the 3PLM IRF must have an alternative 
characterization under the MCM such that the ORF for 
the correct answer is identical to the 3PLM IRF. In con-
trast, corresponding ORFs under the NRM must differ 
and their distorted shape may produce more favorable 
but spurious IIFs compared to those under the 3PLM 
or the MCM. This may explain the results reported by 

De Ayala (1989, 1992) and the presumed capability 
of the NRM to extract information from incorrect  
responses at low abilities. The question that arises is 
whether the increase in information provided by the 
NRM applied to multiple-choice items is authentic or 
is instead an artifact of such distortions. At the same 
time, recourse to the MCM should not produce any 
gain in the conditions of Fig. 1 (i.e., with monotone 
decreasing distractor ORFs). The three studies pre-
sented next investigate these issues.

EMPIRICAL STUDY

The main goal of this empirical study is to look for 
evidence regarding how distractor endorsement 
frequencies vary across proficiency levels, with an 
eye toward determining whether or not the distrac-
tor ORFs are monotone decreasing for these items.  
A secondary goal is to obtain and compare alternative 
IRT characterizations of the items.

Data set

The data set comes from a 43-item knowledge test 
taken by 1090 students in an introductory economics 
course. The last option in each 5-choice item was 
‘none of the above’ (NOTA), which was the correct 
answer on 11 items. The paper-and-pencil test was 
administered with instructions to answer all items 
and number-correct (NC) scores had been used for 
course grading.

Analysis

Score distributions and score statistics as well as major 
item statistics were computed. Option endorsement 
curves (empirical trace lines) were computed as a func-
tion of NC score with a sliding-window approach: 
The option endorsement frequencies at each NC score 
X were computed from aggregated data across exam-
inees whose NC score was within three units of X. 
factor 9.2 (Lorenzo-Seva & Ferrando, 2006) was used 
to assess dimensionality. multilog 7.03 (du Toit, 2003) 
was used to estimate item parameters under three 
IRT models: the polytomous NRM and MCM and the 
dichotomous 3PLM. Default options were used except 
for the 3PLM, where a Gaussian prior with mean −1.4 
and standard deviation 0.5 was imposed on the logit 
of pseudo-guessing parameters. Ability estimates 
were computed as the expected a-posteriori (EAP) value 
given the examinee’s responses and the estimated item 
parameters.

Results: Classical analysis and empirical trace lines

NC scores ranged from 9 to 41 with a mean of 24.26  
and a standard deviation of 5.70. Cronbach’s alpha  

https://doi.org/10.1017/sjp.2014.95 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2014.95


Multiple-Choice Item Information   5

was .752, a mild value often found for multiple-choice 
tests. Inspection of item statistics revealed four items 
with very low or even negative item-total correlations 
and the difficulty index was below the chance level 
of .2 also for some items. The reasons underlying the 
deficient behavior of these items will be apparent in 
the empirical trace lines discussed next.

Figure 2 shows empirical trace lines for a subset of the 
items, including three of the suspect items mentioned 
in the preceding paragraph (Results for other items are 
available upon request). In principle, the empirical trace 
line of the correct answer is expected to increase with 
NC score (a proxy for the respondent’s ability) whereas 
distractor trace lines are expected to drop down to zero 
(monotonically or non-monotonically) with increasing 
NC score. As seen in Fig. 2, not all items fulfill these 
expectations.

For instance, on item 1 low scorers seem attracted 
toward options 2 and 5 whereas option 4 seems unat-
tractive to all scorers. The attractiveness of the NOTA 
option (option 5) slightly increases and then drops 

down, but it still remains relatively attractive to high 
scorers. In contrast, the attractiveness of the three 
other distractors drops down monotonically as ability 
increases. Monotone decreasing distractor trace lines 
are observed across the board and this was also the 
case for items not shown in Fig. 2.

Three of the suspect items (items 7, 15, and 33; see 
the bottom row of Fig. 2) have undesirable trace lines 
for other reasons. On item 7, the empirical trace line of 
the correct answer (the NOTA option) slowly increases 
with ability but one of the distractors is massively 
selected by all scorers and its trace line shows a mild 
positive slope. Item 15 displays an even less desir-
able pattern, with the trace line of the correct answer 
(the NOTA option) embedded amongst those of low-
popularity distractors whereas the trace line of a very 
attractive distractor sharply increases with NC score. 
Finally, item 33 displays the equally undesirable char-
acteristic that the trace lines for all response options are 
relatively flat, with two distractors being chosen more 
often than the correct answer except by the highest 

Figure 2. Empirical trace lines for a subset of the 43 items in the test (panels). In each panel, each line joins the empirical proportion 
of times that a given option in the item was marked by respondents whose NC score is within 3 units of the nominal value at 
the abscissa. A star next to only one of the option labels in the insets indicates that this was the correct answer.
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scorers. Item 33 seems an extremely difficult item with 
little psychometric value, whereas the scarce psycho-
metric value of items 7 and 15 seems to lie in a con-
fusing wording. Item 31 was the fourth suspect item, 
in which the trace line of the correct answer was rela-
tively flat with a height around .6 whereas the trace 
lines for the distractors were also flat and similar in 
height to one another. Since the items had not been 
miskeyed, the test would be a better instrument with-
out items 7, 15, 31, and 33. Although improving this 
test was not a goal here, these items were removed and 
all analyses repeated for the resultant 39-item test.

The skewness and kurtosis of the empirical 
distributions of item scores prompted the use of tet-
rachoric rather than product-moment correlations in 
the analysis of dimensionality. A factor analysis of 
the 39-item test indicated a good fit for the unidimen-
sional solution (GFI = .92) whereas a two-dimensional 
solution did not result in a meaningfully better fit 
(GFI = .95) and instead resulted in a correlation of 
.621 between the two factors. In any case, the simula-
tion studies reported later in this paper (where data 
were generated to be strictly unidimensional) reveal 
that the features of the IRT characterizations to be 
reported in the next section are not caused by the 
dimensionality of the data, even when multidimen-
sionality may arguably be suspect.

In sum, empirical trace lines show that distractor 
endorsement frequencies are generally monotone 
decreasing functions, with non-monotonic curves 
observed at most for one option in exceptional items. 
Given that the smallest NC score on the test is 9, the 
shape of empirical trace lines in the NC range 0–8 
remains unknown. Yet, wild guessing on this test 
yields a chance score of 8.6 and, then, the left end of 
the empirical trace lines in Fig. 2 can be regarded as 
revealing the asymptotic low-ability behavior of the 
putative ORFs. The conditions illustrated in Fig. 1 thus 
seem to hold for these items and, hence, MCM and 
NRM characterizations should not render higher IIFs 
and TIFs than a 3PLM characterization. This issue is 
addressed next.

Results: IRT analysis

Item parameter estimates from IRT analyses of the 
39-item test did not differ meaningfully (if at all) from 
estimates in the IRT analysis of the original 43-item 
test. For this reason, model curves are described next 
for the original 43-item test, as this allows looking at 
model curves for the suspect items too. However, TIFs 
and ability estimates discussed later come from the 
39-item test.

One would expect MCM and NRM to approximate 
the set of empirical trace lines shown in Fig. 2 through 

ORFs with suitable parameters, and the dichotomous 
3PLM to approximate the empirical trace line of the 
correct answer through an IRF with also suitable param-
eters. One would also expect the three characteriza-
tions to render a similar ORF for the correct answer. 
Figures 3–5 respectively show the estimated ORFs 
under the MCM and NRM and the estimated IRFs 
under the 3PLM for the items in Fig. 2. It should be 
noted that the abscissa for the empirical trace lines 
in Fig. 2 is the NC score whereas the abscissa for the 
curves in Figs. 3–5 is the unobservable ability. Ability 
in IRT is monotonically but nonlinearly related to 
NC score and, hence, the horizontal axis in Fig. 2 and 
that in Figs. 3–5 differ only by a nonlinear distortion. 
This distortion further differs across fitted models, a 
well-known consequence of an arbitrary metric in the 
parameter estimation process which can nevertheless 
be equated post hoc. Equating is not necessary for our 
purposes here but it must be kept in mind that the 
shapes described by the ORFs or IRFs at the low end of 
the ability continuum in Figs. 3–5 may not reflect accu-
rately the characteristics of the empirical trace lines at 
the low end of the NC score range in Fig. 2 due to the 
nonlinear distortion of the ability scale under each 
model. A comparison of empirical trace lines and fitted 
ORFs or IRFs must also consider that the latter can 
be drawn within any arbitrary range of ability levels 
whereas the range of empirical trace lies is limited to 
the observed range of NC scores. Thus, besides a non-
linear transformation of the horizontal axes, empirical 
trace lines and fitted curves should only be com-
pared within the range dictated by the underlying 
relation between estimated ability and NC score (see 
Fig. 9 below).

On this proviso, the ORFs in Figs. 3 (MCM) and 4 
(NRM) differ somewhat across models but their cen-
tral parts describe reasonably well the paths of empir-
ical trace lines (compare with Fig. 2). Yet, and almost 
invariably across items, the ORFs under these polyto-
mous characterizations have features at the low-ability 
end that are not seen at the low-NC end in Fig. 2. 
Specifically, a large number of estimated distractor ORFs 
are non-monotonic under both models and many of the 
estimated ORFs for correct answers are also non-
monotonic under the MCM. Since the data do not pro-
vide any evidence supporting this low-end behavior of 
the fitted ORFs (see Fig. 2), the low ends of the ORFs 
displayed in Figs. 3 and 4 seem to reflect only the out-
comes of a flexible parameter estimation process and 
the unmatched ranges discussed at the end of the pre-
ceding paragraph. On the other hand, the 3PLM account 
(see Fig. 5) also seems adequate, although its IRFs also 
differ somewhat from the ORF for the correct answer 
under the MCM or NRM characterizations. It should 
be stressed that both polytomous models fitted the 
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data approximately identically: With the 39-item test, 
the overall −2logL was 69,306 for the MCM and 69,684 
for the NRM, with the minimally better fit of the MCM 
being a simple outcome of the flexibility gained by a 
larger number of free parameters per item (14 vs. 8). 
There were also no major differences across models as 
to how they fitted the data on an item-by-item basis, 
despite the differences in estimated ORFs that can be 
observed in Figs. 3 and 4. It should be remembered in 
this respect that the ORFs plotted in Figs. 3 and 4 cover 
a broader range of ability levels than the empirical data 
cover and that the models further differ in their map-
ping of ability to NC score as to linearity and range 
(see Fig. 9 below). Given this flexibility in accommo-
dating the range and scale of the underlying ability 
scale, it should not be surprising that both polytomous 
models can fit the data approximately identically in 
quantitative terms. This is further illustrated in Fig. 6 
for four sample items. Continuous curves are the fitted 
ORFs for each item under the MCM (left column) and 
NRM (right column) whereas symbols depict the empir-
ical option endorsement frequencies as a function of 
the estimated ability of each examinee under each 
model. To prevent excess jaggedness, the ordinate of 

each data point is the average proportion endorsement 
of the corresponding option across examinees whose 
estimated ability (under the model of concern in each 
case) is within 0.15 units of the nominal ability at the 
abscissa of the point. Two aspects of these plots are 
worth pointing out. The first is that both models fit the 
data approximately equivalently, although through 
different ability estimates and with ORFs of different 
shapes; the second is that for neither model can the 
shapes of the ORFs be regarded as determined by  
the data below θ = −2, since there are actually no 
data there. For any given item, the ORFs arising 
from the two models are meaningfully different in this 
low-end region and, as will be seen later, the spurious 
characteristics of the ORFs in this region have strong 
implications on IIFs and the TIF.

More detailed goodness-of-fit analyses could be con-
ducted for a final decision as to which model fits the 
data better in an absolute sense, or as to which one 
gives a more economical account considering the 
number of parameters in each model (e.g., through the 
AIC or the BIC). Many approaches exist to address this 
issue whose outcomes do not always select the model 
that generated the data because the performance of 

Figure 3. Option response functions under the MCM characterization of the test. Empirical trace lines for these items were 
shown in Fig. 2. Color codes are also the same as in Fig. 2.
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these methods varies with characteristics of the unknown 
reality underlying the data (Kang, Cohen, & Sung, 
2009). Given the results in Figs. 2–6, all models seem 
equally tenable empirically and a final decision based 
on goodness-of-fit tests or model-selection approaches 
mistakes the goal of our analyses, which include also 
the simulation studies reported later in this paper and 
in which the underlying reality of the data is known. 
From the practical considerations that motivated this 
research, the issue is not which model fits the data a 
little better or somewhat more economically but which 
of alternative accounts that seem equally plausible 
empirically is more advantageous for the characteriza-
tion of a test with an eye to estimating ability with 
greater precision. And this is where the arbitrarily 
estimated low ends of polytomous ORFs play a sub-
stantial role.

Figure 7 displays the estimated IIF for the items in 
Fig. 2 under each model. IIFs from the 3PLM gener-
ally lie under those arising from either polytomous 
model, which thus seem to extract more information 
at low ability levels. This seems only a result of  
estimated ORFs that are non-monotonic with peaks 
(or troughs) at low abilities (see Figs. 3 and 4) that 
are not backed up by the data (see Fig. 6). The effects 

add up across items and the implications at the over-
all test level are shown in Fig. 8a for the 39-item test: 
The TIF under the dichotomous (3PLM) characteriza-
tion is inferior to those under the polytomous (MCM 
or NRM) characterizations at low ability levels, and 
the NRM characterization is inferior in this respect 
at high ability levels.

A higher TIF suggests that estimated abilities have 
lower SE via polytomous characterizations, but Fig. 8b 
shows that the test characteristic function only differs 
across models in the low-ability range, that is, where 
models differ as to their flexibility to produce non-
monotonic shapes for ORFs. Figure 9 further suggests 
that the choice of model does not have major effects 
on ability estimation, as estimates from all models are 
tightly (though differently) related to NC scores. MCM 
estimates are slightly less so, mostly because they vary 
greatly according to which distractors were selected by 
low scorers (Thissen, Steinberg, & Fitzpatrick, 1989). 
Ability estimates are also tightly related across charac-
terizations (see Fig. 10). These features indicate that 
the only major difference across models is the accuracy 
with which ability has presumably been estimated 
(i.e., the SEs of ability estimates), with polytomous 
models nominally outperforming the 3PLM.

Figure 4. Option response functions under the NRM characterization of the test. Empirical trace lines for these items were 
shown in Fig. 2. Color codes are also the same as in Fig. 2.
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In sum, the results of the NRM characterization of 
this empirical data set agree with those of De Ayala 
(1989, 1992): Compared to the 3PLM characterization, 
the TIF is higher at low abilities and lower at high 
abilities. The MCM characterization produces an anal-
ogous outcome. These results arise from data for which 
the generating model and the true item characteriza-
tion are unknown. The next two sections study the 
origin of these outcomes using simulated data for 
which the true ORFs, IIFs, and TIFs are known.

FIRST SIMULATION STUDY

This simulation study investigates the outcomes of 
fitting the NRM, MCM, and 3PLM to multiple-choice 
data generated to comply with the decreasing distractor 
ORFs illustrated in Fig. 1.

Method

To prevent estimation errors due to scarcity of data,  
a sample of 40,000 examinees was used whose ability θ 
was normally distributed with zero mean and unit var-
iance. A 40-item multiple-choice test with five options 
per item was assumed in which the probability of  
a correct response was given by the 3PLM IRF in 

Equation 1. Item parameters were drawn from a uni-
form distribution on [0.59, 1.18] for a, from an also uni-
form distribution on [−2, 2] for b, and with a fixed 
value of .2 for c. A binary process governed by these 
IRFs determined whether a correct response would 
be given; if the response was incorrect, a polytomous 
extension (inspired by the nested approach of Suh & 
Bolt, 2010) determined which distractor was marked. 
A multinomial process was thus used such that the 
probability of selecting distractor i (1 ≤ i ≤ 4) was di, 

with ∑ ii
d

4

=1
= 1. The set of di parameters for each 

item was drawn so that no individual di was below 
.03 or above .77. This process is analogous to that 
assumed in the illustration of Fig. 1, rendering ORFs 
that conform to both the 3PLM and the MCM. It can 
easily be seen that the IIF under this polytomous ex-
tension is identical to that under the 3PLM, which is 
the true IIF for each item in this study. The resultant 
data were analyzed as described above for the em-
pirical data set.

With this data generation process, the expectation 
is that MCM and 3PLM characterizations render 
analogous estimated IIFs and TIFs, as the conditions of 
Fig. 1 hold. In comparison, the NRM characterization is 
expected to produce a TIF that is higher at low abilities 

Figure 5. Item response functions under the 3PLM characterization of the test. Empirical trace lines for these items were shown 
in Fig. 2. Color codes are also the same as in Fig. 2.

https://doi.org/10.1017/sjp.2014.95 Published online by Cambridge University Press

https://doi.org/10.1017/sjp.2014.95


10   M. A. García-Pérez

and lower at high abilities, as a result of estimated ORFs 
with a lower asymptote at zero for correct answers.

Results

The process by which the data were generated is 
strictly unidimensional but dimensionality was also 
confirmed statistically. Due to the large sample size, 
the uniform spread of difficulty, and exact conformity 
to the 3PLM, Cronbach’s alpha was .898. Figure 11 dis-
plays results for three representative items, revealing 
how misestimation of item parameters under polyt-
omous models distorts estimated IIFs.

Empirical trace lines in Fig. 11a clearly identify an 
easy item (left column), an item of intermediate difficulty 
(center column), and a difficult item (right column). 
Note that the low end of the empirical trace lines does 
not reveal the known characteristics of the generating 
ORFs, namely, a lower asymptote at .2 for the correct 
answer and distractor ORFs that are flat on the left end 

and decrease monotonically as ability increases. This 
is not a result of the nonlinear mapping of ability onto 
NC score. In retrospect, trace lines in Fig. 2 (from nearly 
40 times less data than here) could not have provided 
strong evidence of monotone decreasing ORFs even if 
they held.

As seen in Fig. 11b, the 3PLM characterization recovers 
item parameters adequately, as manifested in esti-
mated IRFs (or IIFs) that are almost identical to the 
true IRFs (or IIFs). In turn, the MCM characteriza-
tion (Fig. 11c) yields parameter estimates that very 
accurately reproduce the true ORFs in items of medium 
or high difficulty (center and right columns) and, hence, 
estimated IIFs are almost identical to the true ones. 
Yet, lack of empirical evidence as to what the left end 
of the ORFs of easy items should be like results in 
spurious parameter estimates that render the non-
monotonic ORFs in the left column of Fig. 11c. As a 
result, the estimated IIF is bimodal with a notch at 
about θ = −2.3 for this item.

Figure 6. Option response functions under the MCM (left column) and NRM (right column) characterizations of four sample 
items (rows) along with empirical option endorsement proportions (symbols) plotted as a function of the ability estimated for 
each examinee under each model. Each data point is the average endorsement proportion for examinees with abilities within 
0.15 units of the nominal ability at the abscissa of each point.
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Finally, the NRM characterization (Fig. 11d) displays 
its inability to render non-zero lower asymptotes for 
the ORF of the correct answer. For easy items (left 
column), parameter estimates make the ORF of the 
correct answer much too steep, resulting also in a 
spurious overestimate of the IIF; for items of interme-
diate difficulty (center column), parameter estimates 
render ORFs of adequate steepness that nevertheless 
head for a zero lower asymptote, thus shifting down 
the estimated IIF; for difficult items (right column), 

estimated item parameters render very shallow ORFs 
that severely underestimate the IIF.

Quantitatively, the fit of the polytomous models 
was almost identical at the overall level, with −2logL 
valued at 2,621,242 for the MCM and 2,626,203 for 
the NRM. No differences in goodness of fit could be 
observed across models at the item-by-item level either. 
This is again understandable despite the resultant dif-
ferences in the shape of estimated ORFs, for the reason 
illustrated in Fig. 6. As a result, the parameter-estimation 

Figure 7. Item information functions under each of the three alternative characterizations of the test and for the same items 
used in the illustrations of Figs. 2–5.

Figure 8. Test information function (a) and test characteristic function (b) under each of the three alternative characterizations 
of the 39-item test.
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process produces estimated ORFs that are only con-
strained within the central and upper regions of the 
ability range, allowing the fitted ORFs to display any 
convenient shape at the low end without compromising 
the fit to the data.

These results show that the MCM and NRM charac-
terizations overestimate the IIFs of easy items and that 
the NRM characterization also underestimates the IIF 
of difficult items. With 40,000 examinees, these outcomes 
cannot be regarded as problems arising from the use of 
small samples. Consequences at the overall test level 
can be seen in Fig. 12a once the different ability metrics 
underlying each fit have been equated.2 Compared to 
the true TIF, the estimated TIF arising from the 3PLM 
characterization is identical, that arising from the 
MCM characterization slightly underestimates the 

TIF in the low-ability range due to the artifactual notch 
in the IIF of easy items (see Fig. 11c), and the NRM 
characterization greatly overestimates the TIF at low 
abilities and underestimates it at intermediate and 
high abilities. The presumed SE of ability estimates is 
correspondingly affected, although test characteristic 
functions are again similar across models except at 
very low abilities (see Fig. 12b) and the relation between 
estimated and true ability is almost identically tight 
across characterizations (see Fig. 13).

SECOND SIMULATION STUDY

The preceding simulation used items that exactly con-
form to the 3PLM and MCM with monotone decreasing 
distractor ORFs. Results confirmed the hypotheses that 
the MCM characterization does not outperform the 
3PLM characterization in these conditions and that the 
NRM characterization renders an estimated TIF that is 
spuriously higher at low abilities and spuriously lower 
at high abilities. The study reported next used items 
that conform exactly to the MCM but not necessarily 
to the 3PLM, and removed the constraint of monotone 
decreasing distractor ORFs.

2Equating was accomplished as follows. First, EAP ability estimates 
were obtained under each model. The 3PLM was then used as a refer-
ence and the ability distributions from the other models were linearly 
rescaled to have the same mean and standard deviation as the reference. 
In Fig. 12, curves for the 3PLM are plotted without change whereas 
curves for the two other models are evaluated at the unscaled θ but 
plotted as a function of the rescaled θ.

Figure 10. Scatter plots of (and correlations between) estimated abilities for all pairings of IRT models for the 39-item test. Data 
points are not scattered around the diagonal because ability estimates are not equated across characterizations and, thus, their 
distributions have different means and standard deviations.

Figure 9. Scatter plot of (and correlation between) estimated ability and NC score under alternative characterizations of the 
39-item test. In each panel, the red curve is the test characteristic function replotted from Fig. 8b. According to this, the three 
models fit the data adequately.
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Figure 11. Illustrative results from the simulation study, showing empirical trace lines of sample items (a) as well as their 3PLM 
(b), MCM (c), and NRM (d) characterizations. In (b)–(d), the top row shows the true ORF for the correct answer as a dashed curve 
and the estimated IRF/ORFs as colored curves; the bottom row shows the true IIF as a dashed curve and the estimated IIF as a 
red curve. Continuous black curves in the top row of (b) show the true ORFs of the distractors in the generating model.
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Method

Item responses under the MCM were generated for 
items with parameters taken from the MCM character-
ization of the empirical data reported above. As dis-
cussed earlier, estimates for some items rendered ORFs 
that displayed strong non-monotonic behaviors not 
backed up by empirical trace lines (see, e.g., items 12, 
16, and 17 in Figs. 2 and 3). Parameters from items 12, 
16, 17, and 23 were excluded from the simulation for 
this reason and data were generated for the remain-
ing 39 items. Removal of these four items still kept 
non-monotonic distractor ORFs within and across 
the remaining items. This set of item parameters 
may not be strictly realistic, but no other approach to 
generating MCM item parameters seems available. 
In any case, this strategy has been used in other 
studies (e.g., Abad, Olea, & Ponsoda, 2009) and also 
servers our purposes here.

Results

Data were analyzed as described for the preceding 
simulation but most graphical results are omitted in 
this description. The NRM characterization showed 
the same misbehavior illustrated in Fig. 11d for the 

preceding simulation: spurious overestimation of the 
IIF of easy items, downward shift of the IIF of items of 
intermediate difficulty, and underestimation of the IIF 
of difficult items. The 3PLM characterization underes-
timated the IIF of items of low and moderate difficulty, 
surely due to the fact that the true ORF of the correct 
answer could not be well approximated by a logistic 
IRF. And, naturally, the MCM characterization was 
the most accurate across the board although it ren-
dered parameters that slightly misrepresented the 
non-monotonicity of the true ORFs and occasionally 
resulted in a slight underestimation of the IIFs at low 
abilities. Figure 14a shows the consequences on the 
estimated TIFs. Only the MCM characterization repro-
duced the true TIF except for a minor underestimation 
at low abilities; the 3PLM characterization missed 
actual information provided by the choice of distrac-
tors (given the non-monotonic ORFs) at low abilities; 
and the NRM characterization again rendered the only 
type of TIF that this model can produce. As was the 
case in the preceding simulation, test characteristic 
functions were similar across models except at low 
abilities (see Fig. 14b) and the relationship between true 
and estimated ability was also similarly tight across 
models.

Figure 12. Test information function (a) and test characteristic function (b) under each of the three alternative characterizations 
of the 40-item test in the first simulation study.

Figure 13. Scatter plot of (and correlation between) estimated and true ability under alternative characterizations of the 40-item 
test in the first simulation study.
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Discussion

Summary of results

The empirical study presented here rendered results 
analogous to those reported by De Ayala (1989, 1992) 
in that the TIF arising from the NRM fit was superior 
to that provided by a 3PLM fit at low ability levels, 
although it was inferior at intermediate and high ability 
levels. The MCM had not been used before in a similar 
comparison but results from the analysis of this data 
set show an analogous trend (see Fig. 8a). The empir-
ical study also showed that distractor endorsement 
frequencies are generally monotone decreasing func-
tions, in contrast to what estimated ORFs from MCM 
and NRM tend to be. This characteristic of parameter 
estimates from polytomous models seems responsible 
for the apparent gain in the information they extract.

Simulation studies investigated this behavior in two 
cases: when distractor ORFs are monotone decreasing 
and when they are not. In both cases, the NRM rendered 
a spurious overestimation of the IIF of easy items and 
an also spurious underestimation of the IIF of difficult 
items. Both types of misestimation are a consequence 
of the inability of the NRM to reproduce an ORF for the 
correct answer with a non-zero lower asymptote. For 
the MCM and the 3PLM, the empirical results were not 
fully reproduced in the simulations: Given sufficient 
data (40,000 examinees) and distractor ORFs that are 
monotone decreasing (first simulation study), the MCM 
characterization only results in a slight misestimation 
of the TIF that otherwise does not show any advantage 
over the accurate TIF estimated through the 3PLM; 
when the generating distractor ORFs are non-monotonic 
(second simulation study), the MCM misestimates the 
true TIF minimally at low abilities whereas the 3PLM 
severely underestimates it at low and intermediate 
abilities.

With respect to our main goal here, the NRM is inap-
propriate for multiple-choice items for which the prob-
ability of a correct response asymptotes meaningfully 
above zero at low abilities, as is usually the case. As 

regards a choice between the 3PLM and the MCM, the 
latter seems more appropriate because it can theoret-
ically accommodate items for which the distractor 
ORFs are monotonic or non-monotonic whereas the 
3PLM is only appropriate for items with monotone 
decreasing distractor ORFs. This conclusion needs some 
qualification, as discussed next.

Adequacy of the MCM

Reliance on the theoretical flexibility just described 
for routine adoption of the MCM in the calibration of 
multiple-choice items faces some difficulties. Parameter 
estimation under the MCM is known to be problematic 
(Abad et al., 2009; Thissen et al., 1989) and it is not at all 
clear that estimated non-monotonic ORFs reveal actual 
characteristics of the items in this respect. As dis-
cussed above, empirical trace lines in our empirical 
data (see Fig. 2) hardly ever showed clear evidence of 
non-monotonicity and yet the MCM generally esti-
mated non-monotonic ORFs (see Fig. 3). The reality 
underlying our empirical data is unknown, but ORFs 
might truly be monotone decreasing; yet, weak empir-
ical evidence to this effect (due to few low-proficiency 
examinees in the sample) and too much flexibility in 
parameter estimation probably cooperate to routinely 
render non-monotonic ORFs under an MCM charac-
terization. Data from our first simulation study permit 
assessing this surmise, as those data were generated 
from monotone decreasing ORFs. Results in Fig. 12a 
may seem to indicate that the surmise is wrong, but 
those results come from a sample of 40,000 examinees. 
The analysis was thus repeated with a subset of 1,090 
examinees (the same number as in our empirical study) 
and the MCM estimated ORFs with pronounced non-
monotonicities in almost all items. The consequences 
at the overall test level are shown in Fig. 15a: The MCM 
grossly overestimates the true TIF at low abilities  
(as does the NRM, although this is not news) whereas 
the 3PLM still estimates the true TIF adequately despite 
the relatively small sample size (compare with Fig. 12a). 

Figure 14. Test information function (a) and test characteristic function (b) under each of the three alternative characterizations 
of the 39-item test in the second simulation study.
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But, again, test characteristic functions are very similar 
across models except at low abilities (see Fig. 15b), and 
estimated ability is also about equally tightly related to 
true ability for all models. A further re-analysis now 
using data from 3000 examinees produced the same 
outcome and only when sample size exceeded 5000 did 
the estimated TIF from the MCM start to resemble the 
true TIF.

These results indicate that the outcomes of fitting the 
MCM to a data set of the usual size should be taken 
cautiously, as there is always the risk of spuriously 
overestimating IIFs and TIFs due to what seems to 
be a tendency of the MCM to estimate non-monotonic 
ORFs. With a sufficiently large sample (as in our simu-
lation studies), data can indicate whether or not the 
estimated ORFs should be monotone decreasing, but 
the size that the sample should have to achieve this 
goal surely varies with true item parameters and across 
ability distributions. Dependable MCM parameters for 
real items do not seem to have been reported, which is 
a pre-condition for simulation studies aimed to deter-
mine the conditions that prevent an MCM character-
ization from rendering artifactual IIFs and TIFs.

Other polytomous models for multiple-choice items

Other IRT models for multiple-choice items have been 
recently proposed (e.g., Abad et al., 2009; Bolt, Cohen, & 
Wollack, 2001; Bolt, Wollack, & Suh, 2012; Revuelta, 
2004, 2005, 2010; San Martín, del Pino, & De Boeck, 
2006; Suh & Bolt, 2010). Some of these models share 
with the NRM the structural feature that the ORF for 
the correct answer has a lower asymptote at zero and, 
hence, their incapability to reflect the non-zero lower 
asymptote of multiple-choice items makes them theoreti-
cally unfit. Then, use of those models with multiple-
choice items will incur the same misestimation of IIFs 
described here for the NRM, giving the impression 
that they extract information from incorrect responses. 
Yet, some of these new models can indeed accommo-
date a non-zero lower asymptote in the ORF of the cor-
rect answer and, hence, they may render realistic IIFs 

potentially superior to those arising from the 3PLM. 
Before studies are carried out to address these compar-
isons, it is worth commenting on one of these models.

Suh and Bolt (2010) proposed a nested multiple-
choice model in which the ORF of the correct answer is 
given by the 3PLM function whereas the ORFs of the 
distractors arise from an NRM-like split of the undif-
ferentiated “incorrect” category in the 3PLM.3 They 
also derived the IIF to be the sum of the IIF under the 
3PLM plus the sum of the distractor information func-
tions. By definition, then, and unless item parameters 
are such that the distractors do not contribute any infor-
mation whatsoever, the IIF under this model is no 
smaller than the IIF under the 3PLM for the same item. 
It should be noted, however, that their definition dif-
fers from the conventional definition in which the IIF 
is the weighted sum of the contributions from each 
option, where the weights are the ORFs. Clearly, the 
IIFs should be defined analogously for a fair compar-
ison of alternative models for multiple-choice items.

Conclusion

Characterization of multiple-choice items under the 
MCM or the NRM does not necessarily extract authen-
tic information from incorrect responses, as the appear-
ance that these models do so (via higher TIFs) can be 
a spurious consequence of either parameter estimation 
errors due to insufficient data (under the MCM) or 
the inadequacy of the model ORFs (under the NRM). 
An adequate polytomous model for multiple-choice 
items would nevertheless be advantageous for items 
with non-monotonic ORFs. In the absence of evidence 
to this effect, the presumed gain in IIF and TIF via 

3It should be noted that they subsequently described the workings 
of a simpler model in which the ORF of the correct answer is given 
instead by the 2PLM function. This simpler version suffers from the 
same problem discussed here for the NRM: The ORF for the correct 
answer is structurally forced to have a lower asymptote at zero. A soft-
ware package has been recently made available to fit this simpler 
model to data (Reif, 2013) and we confirmed that it produces outcomes 
thoroughly analogous to those reported here for the NRM.

Figure 15. Test information function (a) and test characteristic function (b) under each of the three alternative characterizations 
of the 40-item test in the first simulation study when data from only 1090 examinees were used.
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polytomous characterizations must be taken with cau-
tion, as this may simply be a spurious outcome. 
Inspection of empirical trace lines in search for evi-
dence of non-monotonic ORFs seems a good starting 
point for the analysis of large data sets in calibration 
studies.

The analyses reported here belong in the context of 
fixed-length testing, which is indeed the context in 
which items are calibrated for subsequent use in adap-
tive testing. With a calibrated item pool, adaptive testing 
proceeds by sequentially selecting and administering 
the most informative item at the current estimated 
ability. Adaptive testing thus relies heavily on the ade-
quacy and accuracy of the IIFs obtained in the calibra-
tion stage. The results reported here are relevant in this 
context because the use of a polytomous calibration 
that is affected by the problems discussed here will 
result only in an apparent increase in the precision of 
ability estimates, as the higher IIFs and accompanying 
smaller SEs of ability estimates will be artifactual and 
fictitious.
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