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Abstract
Consider any fixed graph whose edges have been randomly and independently oriented, and write {S� i}
to indicate that there is an oriented path going from a vertex s ∈ S to vertex i. Narayanan (2016) proved
that for any set S and any two vertices i and j, {S� i} and {S� j} are positively correlated. His proof relies
on the Ahlswede–Daykin inequality, a rather advanced tool of probabilistic combinatorics.

In this short note I give an elementary proof of the following, stronger result: writing V for the vertex
set of the graph, for any source set S, the events {S� i}, i ∈V , are positively associated, meaning that
the expectation of the product of increasing functionals of the family {S� i} for i ∈V is greater than the
product of their expectations.
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1. Introduction
Oriented percolation is the study of connectivity in a random oriented graph. In most settings,
we start from a graph with a fixed orientation and then keep each edge with a given probability.
Classical models of this type include the north-east lattice [3] and the hypercube [5].

Another broad and natural class of random oriented graphs is obtained by starting from a fixed
graph and then orienting each edge, independent of the orientations of other edges. Note that, in
the general case, the orientations of the edges need not be unbiased: some edges can be allowed to
have a higher probability of pointing towards one of their ends than towards the other. Percolation
on such randomly oriented graphs has been studied, for example in [7], and more recently in [8],
which motivated the present work.

In [8], Narayanan showed that if the edges of any fixed graph are randomly and independently
oriented, then writing {S� i} to indicate that there is an oriented path going from a vertex s ∈ S
to vertex i, we have

P(S� i, S� j)� P(S� i) P(S� j).

The aim of this note is to strengthen and simplify the proof of this result. More specifically, let V
be the vertex set of the graph. We prove that the events {S� i}, i ∈V , are positively associated,
without resorting to advanced results such as the Ahlswede–Daykin inequality [1].
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1.1 Positive association and related notions
There are many ways to formalize the idea of a positive dependence between the random variables
of a family X= (Xi)i∈I . A straightforward, weak one is to ask that these variables be pairwise
positively correlated, that is,

for all i, j ∈ I, E(XiXj)�E(Xi)E(Xj).

Amuch stronger condition, due to [4], is known as positive association. In the following definition
and throughout the rest of this note, we use bold letters to denote vectors, as in X= (Xi)i∈I , and
we write X�X′ to say that Xi � X′

i for all i. A function f : RI →R is said to be increasing when
X�X′ =⇒ f (X)� f (X′).

Definition. The random vector X= (Xi)i∈I is positively associated if, for all increasing functions f
and g,

E( f (X)g(X))�E( f (X))E(g(X))

whenever these expectations exist.

Without further mention, we only consider test functions f and g for which E( f (X)), E(g(X))
and E( f (X)g(X)) exist.

We say that the events Ai, i ∈ I, are positively associated when the corresponding vector of
indicator variables (1Ai)i∈I is positively associated. Similarly, a random subset R of the fixed set I
can be seen as the vector

R= (1{i∈R})i∈I ,

so that R is said to be positively associated when the events {i ∈ R}, i ∈ I, are positively associated.
This is equivalent to saying that for any increasing functions f and g from the power set of I to R,

E( f (R)g(R))�E( f (R))E(g(R)),

where f being increasing is understood to mean that r′ ⊂ r =⇒ f (r′)� f (r).
Positive association is famous for the FKG theorem, which states that it is implied by a lattice

condition that can sometimes be very easy to check [6]. Another reason why it is so useful is that it
implies weaker positive dependence notions that have to be checked in applications. One example
of this is the existence of increasing couplings and the corresponding notion of positive relation
used in the Stein–Chen method; see e.g. [2] and [9].

1.2 Notation
Let us fix some notation to be used throughout the rest of this note.

We study the simple graph G= (V , E). Unless explicitly specified otherwise, V is assumed to
be finite and we let |V| denote its cardinality. The edges of G have a random orientation that is
independent of the orientations of other edges and we write {i→ j} to indicate that the edge {ij}
is oriented towards j. Formally, we are thus given a family of events {i→ j}, {ij} ∈ E, such that
{i→ j} = {j→ i}c and for all {ij}, {i→ j} ⊥⊥ ({k→ l}, {kl} �= {ij}).

Finally, for every pair of vertices i and j, we write {i� j} for the event that there exists an
oriented path going from i to j. Similarly, for every source set S we let {S� i} = ⋃

j∈S { j� i} be
the event that there is an oriented path from S to i, and for every target set T we let {i� T} =⋃

j∈T {i� j} be the event that there is an oriented path from i to T. If there is an ambiguity
regarding which graph is considered for these events, we will specify it with the notation {i G� j}.
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2. Positive association of the percolation cluster
2.1 Preliminary lemma
Lemma 2.1. Let � be a finite set and let R be a positively associated random subset of �. Let Xr

i ,
r ⊂ � and i ∈V, be a family of events on the same probability space as R with the property that:

(i) r′ ⊂ r =⇒ Xr′
i ⊂ Xr

i , for all i ∈V,
(ii) for all r ⊂ �, (Xr

i )i∈V is positively associated and independent of R.
For all i ∈V, define XR

i by

XR
i :=

⋃
r⊂�

{R= r} ∩ Xr
i .

Then the events XR
i , i ∈V, are positively associated.

Proof. Let f and g be two increasing functions. We have

E( f (XR)g(XR))=
∑
r⊂�

E( f (Xr)g(Xr)1{R=r})

=
∑
r⊂�

E( f (Xr)g(Xr)) P(R= r)

�
∑
r⊂�

E( f (Xr))E( g(Xr)) P(R= r),

because Xr ⊥⊥ R and Xr is positively associated. Now, let u : r 
→E( f (Xr)) and v : r 
→E(g(Xr)),
so that the last sum is E(u(R)v(R)). Note that u and v are increasing, since f and g are increasing,
and, by hypothesis, r′ ⊂ r =⇒ Xr′ �Xr . Therefore, by the positive association of R,

E(u(R)v(R))�E(u(R))E(v(R)).

Finally, again using the independence of Xr and R, we have E(u(R))=E(f (XR)) and E(v(R))=
E(g(XR)), which concludes the proof.

2.2 Main result
Theorem 2.2. Let G be a finite graph with vertex set V, whose edges have been randomly and
independently oriented. Then, for any source set S, the events {S� i}, i ∈V, are positively associated,
that is, for all increasing functions f and g and writing X= (1{S�i})i∈V,

E( f (X)g(X))�E( f (X))E(g(X)).

Proof. Our proof uses the same induction on the number of vertices as Narayanan’s. The dif-
ference is that we use Lemma 2.1 rather than the Ahlswede–Daykin inequality to propagate the
positive dependence.

The theorem is trivial for the graph consisting of a single vertex (a family of a single variable
being always positively associated) so let us assume that it holds for every graph with strictly less
than |V| vertices.

Let � be the neighbourhood of S, that is,
� = {v ∈V \ S : ∃s ∈ S s.t. {vs} ∈ E}.

Then, let R be the random subset of � defined by
R= {v ∈ � : ∃s ∈ S s.t. s→ v}.

Observe that the events {i ∈ R}, i ∈ � are independent, so that the set R is positively associated.
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Next, let H be the subgraph of G induced by V \ S. Note that, for all i ∈V \ S,
{S G� i} = {R H� i}.

For every fixed r ⊂ �, the family {r H� i} for i ∈V \ S is independent of R because it depends only
on the orientations of the edges of H, while R depends only on the orientations of the edges of G
that go from S to�, and these two sets of edges are disjoint. Moreover, by the induction hypothesis,
the events {r H� i}, i ∈V \ S, are positively associated. Since for fixed sets r and r′ such that r′ ⊂ r,
{r′� i} =⇒ {r� i} for all vertices, we can apply Lemma 2.1 to conclude that the events {R� i},
i ∈V \ S, are positively associated.

To conclude the proof, note that the events {S� i} are certain for i ∈ S and that the union of a
family of positively associated events and of a family of certain events is still positively related.

2.3 Corollaries
Corollary 2.3. Let G be a finite graph with independently oriented edges. For any target set T, the
events {i� T}, i ∈V, are positively associated.

Proof. Consider the randomly oriented graphH obtained by reversing the orientation of the edges
of G, i.e. such that {i H→ j} = {j G→ i}. Then, for all i ∈V ,

{i G� T} = {T H� i},
and we already know from Theorem 2.2 that the events {T H� i}, i ∈V , are positively associated.

Corollary 2.4. Let G be an infinite graph with independently oriented edges. Let f and g be increas-
ing, non-negative functions on R

V that depend only on a finite number of coordinates (i.e. such that
there exists a finite set U ⊂V and f̃ : RU → [0,+∞[ such that f = f̃ ◦ ϕ, where ϕ is the canonical
surjection from R

V to RU). Then, for any source set S, letting X= (1{S�i})i∈V,
E( f (X)g(X))�E( f (X))E(g(X)).

Proof. Let Gn be an increasing sequence of finite graphs such that G= ⋃
n Gn, and for all i ∈V ,

let

X(n)
i = {S Gn� i},

so that X(n)
i ⊂ X(n+1)

i and Xi = ⋃
n X

(n)
i . Since the functions f and g are increasing, so are the

sequences f (X(n)) and g(X(n)). Thus, using Theorem 2.2 and monotone convergence,

E
(
lim
n

f (X(n))g(X(n))
)
�E

(
lim
n

f (X(n))
)
E

(
lim
n

g(X(n))
)
.

Finally, if f and g depend on a finite number of events Xi, then for every realization of X we have
limn f (X(n))= f (X) and limn g(X(n))= g(X).

Corollary 2.5. (Narayanan 2016). For any (possibly infinite) graph with independently oriented
edges, for any source set S and for any two vertices i and j,

P(S� i, S� j)� P(S� i) P(S� j).

Proof. Take f : (xk)k∈V 
→ xi and g : (xk)k∈V 
→ xj in Corollary 2.4.
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Corollary 2.6. Let G be a finite graph with independently oriented edges and vertex set V. For any
source set S, let

N =
∑
i∈V\S

1{S�i}

denote the size of the oriented percolation cluster of G, and set λ =E(N). Then,

dTV(N, Poisson(λ))�min (1, λ−1)
(
Var (N)− λ + 2

∑
i∈V\S

P(S� i)2
)
,

where dTV denotes the total variation distance.

Proof. This is a direct application of the Stein–Chen method to the positively related variables
1{S�i}, i ∈V \ S: see, for example, Theorem 4.20 in [9].

The gain of Corollary 2.6 is that we only need a suitable upper bound on Cov (1{S�i}, 1{S�j})
to show that the size of the oriented percolation cluster is Poissonian.
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