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Abstract. In this paper, a group shift is an expansive action of Zd on a compact
metrizable zero-dimensional group by continuous automorphisms. All group shifts
factor topologically onto equal-entropy Bernoulli shifts; abelian group shifts factor by
continuous group homomorphisms onto canonical equal-entropy Bernoulli group shifts;
and completely positive entropy abelian group shifts are weakly algebraically equivalent
to these Bernoulli factors. A completely positive entropy group (even vector) shift need not
be topologically conjugate to a Bernoulli shift, and the Pinsker factor of a vector shift need
not split topologically.

1. Introduction
By an algebraic Zd action we will mean an action α of Zd by continuous automorphisms
αv (v ∈ Zd ) on a compact metrizable group X . Since the inaugural paper of Kitchens and
Schmidt [12], a remarkably rich and thorough theory has been developed for these actions,
closely related to the theory of modules over Laurent polynomial rings [19]. The case that
X is expansive and zero-dimensional is one fundamental part of the study. In this paper,
we focus on aspects of this case related to Bernoullicity and entropy.

In this paper, we define a group shift to be an expansive action of Zd on a compact
metrizable zero-dimensional group by continuous automorphisms. (In some works treating
more general situations, ‘group shift’ has a more general meaning, as in [6].) We show in
§3 that all group shifts factor topologically onto equal-entropy Bernoulli shifts; this is our
only result for possibly non-abelian groups. This result is another example of the relative
civility of group shifts in contrast to general Zd shifts of finite type: for d, N positive
integers greater than one, there exist Zd shifts of finite type of entropy log N which do not
factor topologically onto a Zd Bernoulli shift on N symbols [3].

In §6, we prove that a finite-entropy abelian zero-dimensional algebraic Zd action has
as an algebraic factor a canonical Bernoulli group shift of equal entropy. Motivated by the
work of Einsiedler and Schmidt [4], in §7 we prove that an abelian group shift is weakly
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algebraically equivalent to this Bernoulli factor if and only if it has completely positive
entropy. This allows in the zero-dimensional case a more simple proof (see Remark 7.3)
for the difficult Bernoullicity theorem of Rudolph and Schmidt [17].

We consider possible generalizations for Zd group shifts of the Kitchens theorem which
classified Z group shifts up to topological conjugacy. In §4, we recall Kitchens’ theorem
and find two generalizations. In particular for d > 1 the Pinsker factor of a Zd group shift
splits topologically if the closure of the homoclinic group is algebraically conjugate to a
Bernoulli group shift. Mostly the generalized statements of Kitchens’ theorem are simply
false, and in §5 we give a variety of counterexamples. For example, a completely positive
entropy Zd group shift need not be topologically conjugate to a Bernoulli shift; we give an
alternative argument for this unpublished result of Kitchens [11]. Also, the Pinsker factor
of a Zd group shift need not split topologically, even if it has entropy log 2 (and is thus a
vector shift as in [10, 11]).

For the most part our proofs make little use of the Noetherian module theory which
is central to the study of algebraic Zd actions. It seems to us that there is some value
where possible to seeing alternative arguments, and in some cases we provide them. Here
a critical tool for us is the homoclinic group, as studied in the abelian case by Einsiedler,
Lind and Schmidt [4, 13]. The alternative proof we provide in Proposition 2.5 extends
some of this to the zero-dimensional non-abelian case, which we have not found in the
literature. Moreover §2 contains general background and particularly background for the
homoclinic group.

2. The Pinsker factor and the homoclinic group
Again, by an algebraic Zd action we will mean an action α of Zd by continuous
automorphisms αv (v ∈ Zd ) on a compact metrizable group X . In general there are two
fundamental cases, one where X is connected and the other where X is totally disconnected
(zero-dimensional). Our focus in this paper is the expansive zero-dimensional case. An
algebraic Zd action (X, α) is expansive if there exists an open neighborhood U ⊂ X of the
identity 0 ∈ X such that

⋂
v∈Zd αv(U)= {0}. To shorten notation, we will often use X to

represent (X, α) or α.
A topological factor map from a topological dynamical system (X, α) to another such

system (Y, β) is a surjective continuous map from X onto Y that intertwines the actions α
and β. A topological conjugacy is a bijective factor map. An algebraic factor map between
algebraic Zd actions is a topological factor map defined by a group epimorphism and an
algebraic conjugacy is an algebraic factor map which is a topological conjugacy.

Let G be any finite group. The product GZ
d

with coordinatewise addition is a compact
zero-dimensional metrizable topological group. For x ∈ GZ

d
and v ∈ Zd , we may write

x(v) as xv. Together with the usual d-dimensional shift action σ , given by (σ v(x))w =
xv+w, it defines the Bernoulli Zd group shift (B(G), σ ). We say that an algebraic Zd

action is algebraically Bernoulli if it is algebraically conjugate to some Bernoulli group
shift. In this paper, by a Zd group shift we will mean an expansive algebraic action on
a zero-dimensional group. Any closed shift-invariant subgroup of a Bernoulli group shift
B(G), together with the Zd action given by the restriction of σ , is a group shift. We may
assume our group shifts have this form (up to algebraic conjugacy, they must).
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The alphabet group of a group shift X is the group {xv : x ∈ X, v ∈ Zd
} ≤ G of symbols

that actually occur in elements of X . When we say a group is a p-group, we mean that p is
a rational prime and every element of the group has order a power of p. An abelian group
shift X is algebraically conjugate to the product (over finitely many rational primes p) of
p-group shifts X(p).

A fundamental result of Kitchens and Schmidt [12] yields that an algebraic action α
of Zd on a zero-dimensional group is expansive if and only if it satisfies the descending
chain condition, i.e. any nested sequence of closed α-invariant subgroups stabilizes after
finitely many steps. As the descending chain condition is equivalent to the existence of
an algebraic conjugacy to some closed shift-invariant subgroup of (GZ

d
, σ ) with G some

(possibly finite) compact Lie group [12, Theorem 3.2], every expansive Zd action on a
compact zero-dimensional group is algebraically isomorphic to a closed shift-invariant
subgroup of some Bernoulli shift. Using the descending chain condition one can easily
show that a Zd group shift in fact must be a Zd shift of finite type (SFT) [12, 19].

Moreover [12, Theorem 3.16], a general (perhaps non-expansive) zero-dimensional
algebraic Zd action is algebraically conjugate to an inverse limit X = (X1← X2← · · · )

of group shifts Xk , k ∈ N (here the maps Xk← Xk+1 are algebraic factor maps). Any group
shift has entropy log N for some N ∈ N (see the remarks before Theorem 3.2); so, if X
has finite entropy, then for some N ∈ N we have h(X)= log N = h(Xk) for all but finitely
many k. We assume familiarity with entropy, and refer to [14, 19] for thorough background.
However, for definiteness recall that the Zd (topological) entropy of a Zd group shift X is
limn(1/|Cn|) log |{x |Cn : x ∈ X}|, where Cn denotes the cube {v ∈ Zd

: 0≤ vi < n}. We
might denote this entropy as hd(α), or just hd(X) or h(X) if context makes the simpler
notation clear. The measure-theoretic entropy h(X, µ) of α with respect to an α-invariant
Borel probability µ is generalized analogously from the Z case.

We will use the following result repeatedly.

THEOREM 2.1. (Addition formula) [14] If φ : X→ Y is an algebraic factor map of
algebraic Zd actions, then

h(X)= h(Y )+ h(ker(φ)). (2.2)

The addition formula (2.2) is a special case of more general results [14, Appendix B],
which follow from work of Yuzvinskii as explained in [14]. The formula (2.2) for
topological entropy also holds for entropy with respect to Haar measure: for an
algebraic Zd action α on X , the Haar measure λ on X is a measure of maximal entropy for
α, i.e. λ is an α-invariant Borel probability such that h(X, λ)= h(X).

An algebraic Zd action (X, α) has a Pinsker factor P(X). This is the maximal zero-
entropy algebraic factor of (X, α); it is also the maximal zero-entropy continuous (not
necessarily algebraic) factor of (X, α); and with its Haar measure, it is the maximal zero-
entropy measurable factor of (X, α, λ). We say a measurable/topological dynamical system
has completely positive entropy (c.p.e.) if its only zero-entropy factor system is the system
containing just one point. An algebraic system (X, α) is c.p.e. (topologically or with
respect to Haar measure) if and only if the Pinsker factor group is the trivial group. An
algebraic system of finite entropy is c.p.e. if and only if the Haar measure is its unique
measure of maximal entropy [19].
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Let ‖v‖ = ‖v‖∞ =max{|vi | : 1≤ i ≤ d} denote the maximum norm on Zd . We now
define a very useful tool for the sequel.

Definition 2.3. For an algebraic Zd action (X, α), x ∈ X is called a homoclinic point if for
every sequence of Zd -vectors vn with limn ‖vn‖→∞ the sequence αvn (x) converges to
the identity in X . The set of homoclinic points forms a subgroup in X , which is called the
homoclinic group of (X, α) and is denoted by 1X .

When X is a group shift, 1X has a very simple definition; in this case,

1X = {x ∈ X | xv = e for all but finitely many v ∈ Zd
},

where e above denotes the identity element in the alphabet group of X .
Lind and Schmidt [13] used the homoclinic group to significantly clarify the nature of

c.p.e. and the Pinsker factor for expansive algebraic actions, as follows. (In the statement,
1X denotes the (topological) closure of 1X in X .)

THEOREM 2.4. [13] For an expansive Zd action by continuous automorphisms on a
compact abelian group X, the following hold:
(1) X has positive entropy if and only if 1X is non-trivial;
(2) h(X)= h(1X );
(3) the Pinsker factor map can be presented as the map π : X→ X/1X ; and
(4) X has completely positive entropy if and only if 1X is dense.

So, 1X is the maximal closed invariant subgroup of X on which the restricted action
has c.p.e.. Lind and Schmidt used Fourier analysis for part of their proof. In the zero-
dimensional (group shift) case, we can avoid the abelian hypothesis and the Fourier
analysis, as follows.

PROPOSITION 2.5. Let X be a group shift. Then the following hold:
(1) X has positive entropy if and only if 1X is non-trivial;
(2) h(X)= h(1X );
(3) the Pinsker factor map can be presented as the map π : X→ X/1X ;
(4) X has completely positive entropy if and only if 1X is dense; and
(5) X/1X is algebraically conjugate to a group shift.

Proof. First suppose that x is a non-trivial homoclinic point in X . Pick R > 0 such
that xv = e if ‖v‖ ≥ R. By composing appropriate translates of x , we see that there are
at least 2nd

distinct configurations in {x |{0,1,...,n R−1}d : x ∈ X}, and therefore hd(X)≥
(1/R)d log 2> 0.

To prove the converse direction of (1), for n, r in N with r < n define

En = {v ∈ Zd
| ‖v‖ ≤ n},

Bn,r = {v ∈ Zd
| n − r ≤ ‖v‖ ≤ n}.

It is routine to check that, for every positive integer r ,

hd(X)= lim
n

1
nd log max

x∈X
card{y|En | y ∈ X and y|Bn,r = x |Bn,r }. (2.6)

https://doi.org/10.1017/S0143385707000697 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385707000697


Zd group shifts and Bernoulli factors 371

Therefore the assumption hd(X) > 0 implies that for any r we can find n ∈ N and points
x, y in X such that x and y agree on Bn,r and are not equal on En−r . Define a configuration
z by setting

zv =

{
(xy−1)v if v ∈ En,

e otherwise.

Recalling that the group shift X is a shift of finite type, we see that, if r was chosen large
enough, then z ∈ X . Clearly z is a non-trivial homoclinic point. This finishes the proof of
(1). We also see that the limit in (2.6) can be achieved using homoclinic points for x in the
formula of (2.6). This proves (2).

It follows from (2) and the addition formula for entropy (2.2) that hd(X/1X )= 0, so
the kernel of π contains the kernel of the Pinsker factor map. It follows from (1) that the
kernel of the Pinsker factor map must contain 1X , which is the kernel of π . Thus (3) is
true, and (4) follows immediately from (3). Finally, (5) follows from Proposition 7.10. 2

The following consequence will be convenient for us.

PROPOSITION 2.7. Suppose φ : X→ Y is an algebraic factor map of group shifts. Then
φ maps 1X onto 1Y .

Proof. Clearly φ(1X )⊂1Y . Also, we have a factor map X/1X → Y/φ(1X ), with
h(X/1X )= 0 and Y/φ(1X )⊃1Y /φ(1X ). It follows that 1Y /φ(1X ) is trivial, since
1Y has completely positive entropy. 2

Notation 2.8. Given n ∈ N, we will use F(n) to denote the Bernoulli shift B(G) such that
the alphabet group is {g ∈ R/Z : ng = 0}. For example, the group shifts B(Z/2) and F(2)
are algebraically conjugate, and they are topologically conjugate to (1/2)F(2), which is a
subshift of the group shift F(4) but is not a subgroup.

Notation 2.9. In what follows Rd = Z[u±1
1 , . . . , u±1

d ] denotes the Laurent polynomial

ring in d variables with coefficients in Z, and R
(p)
d = Fp[u

±1
1 , . . . , u±1

d ], the Laurent
polynomial ring in d variables with coefficients in Fp, where p is a rational prime and Fp

the finite field of p elements.

3. Group shifts factor topologically onto equal-entropy Bernoulli shifts
In this section, we will show (Theorem 3.2) that every group shift has an equal-entropy
topological Bernoulli factor.

Definition 3.1. Let G be a finite group, with identity element e. Let X be a group subshift
of GZ

d
. Let ≺ denote lexicographic order on Zd . Given x ∈ X , the follower set of x in X

is defined to be

F(x)= {g ∈ G : ∃ y ∈ X such that y0 = g and yv = xv for all v≺ 0}.

Abusing notation, we let F(e) denote the follower set of the identity in X .

It is easily seen [9] that F(e) is a normal subgroup of G, and, for any x , the set F(x) is
the coset of F(e) which contains x0. It is well known from work of Yuzvinskii and Conze
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that h(X)= log |F(e)| (see the proof of [14, Theorem 4.5]); for completeness an argument
is included in the proof of the next result.

THEOREM 3.2. Let X be a Zd group shift with alphabet group G. Then there is a
topological factor map φ from X onto a Bernoulli shift B of equal entropy, namely
B = F(e)Zd

.

Proof. For any x in X , the set F(x) is the coset of F(e) which contains x0. For each such
coset, choose a bijection b to F(e). Define a one-block code φ from X to B = (F(e))Zd

by the rule (φx)0 = b(x0).
Every finite B-word occurs in the image of φ, and therefore φ is surjective. Moreover,

because X is SFT [12, Theorem 5.2], there must exist R > 0 such that, for all n, for
any fixed configuration c on the R neighborhood in Zd of the cube Cn = {v ∈ Zd

: 0≤
vi < n, 1≤ i ≤ d}, there are at most |F(e)|nd

configurations on Cn compatible with c.
This implies that the entropy of X is at most log |F(e)|. Since X factors onto B and
h(B)= log |F(e)|, it follows that h(X)= h(B). 2

Remark 3.3. We note some useful and well-known facts for a group shift X which is a
p-group. Here F(e) must be a p-group, so h(X)= log |F(e)| implies that h(X) is an
integer multiple of log p. In particular, because F(p) has no proper subsystem of equal
entropy, the only group shift in F(p) with positive entropy is F(p) itself.

Remark 3.4. We will show below (Theorem 6.5) that for abelian group shifts it is possible
to construct an algebraic factor map onto a Bernoulli shift of equal entropy. However, this
cannot in general be done with the construction used in the proof of Theorem 3.2, even for
Z group shifts. In that construction, if there is a choice of bijections b which makes φ a
group homomorphism, then there is a homomorphism of the alphabet groups G→ F(e)
which restricts to a bijection F(e)→ F(e). Here is a Z group Markov shift example (a
modification of the Kitchens example (7.9)) for which no such homomorphism exists. The
alphabet group G is Z/4⊕ Z/4. The allowed transitions are, for a, b in Z/4,

(a, b)→ (0, 0), (0, 2), (2, 0), (2, 2), (1, 1), (1, 3), (3, 1), (3, 3) if 2b = 0 ∈ Z/4,
(a, b)→ (1, 0), (1, 2), (3, 0), (3, 2), (2, 1), (2, 3), (0, 1), (0, 3) if 2b 6= 0 ∈ Z/4.

No homomorphism ψ : G→ F(e) can restrict to a bijection F(e)→ F(e), because F(e)
has index two in G; ker(ψ) would have to contain an element of order two in the
complement of F(e), and such an element does not exist.

4. Two extensions of Kitchens’ theorem
In his influential early paper on Z group shifts, Kitchens gave the following decisive
topological classification theorem for Z group shifts.

THEOREM 4.1. [9] Let X be a Z group shift. Then X is topologically conjugate to the
product of a Bernoulli shift and an automorphism of a finite group.

We will consider possible generalizations of Theorem 4.1 to Zd group shifts with d > 1.
(In [11], Kitchens himself addressed some of these issues for vector shifts and thus in
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some cases group shifts, as we will see below.) There are severe limitations, which we will
indicate by examples in the next section. In this section we record the two extensions of
Theorem 4.1 which we do know, and state an open problem.

Let X be a group shift. Recall that 1X is the homoclinic group of X , 1X is the group
shift which is the kernel of the Pinsker factor map, and the image P(X) of that factor map
is the group shift which is the maximal zero-entropy continuous factor of X .

PROPOSITION 4.2. Suppose that n ∈ N and X is a group subshift of F(n). Then 1X

is algebraically Bernoulli, and X is topologically conjugate to the product of the group
shifts P(X) and 1X .

Proof. Let n =
∏

p pkp be the factorization of n as a product of powers of the primes p

which divide n. Then F(n) is algebraically conjugate to the product
∏

p F(pkp ), and X

is algebraically conjugate to a product of group shifts X(p), where X(p) ≤ F(pkp ). So
without loss of generality we may assume for a prime p that X = X(p) ≤ F(pk), and
also h(X) > 0.

Let j be the smallest integer such that h(p j X)= 0. It follows from the addition
formula (2.2) that the kernel K of the multiplication-by-p map p j−1 X→ p j X has positive
entropy. Because K ≤ F(p), it follows that K = F(p) (see Remark 3.3).

Write an element x of X in the form x = p−k xk + · · · + p−1x1, where xi ∈

{0, 1, . . . , p − 1}Z
d
. Because K = F(p), we see that, for every element a j of

{0, 1, . . . , p − 1}Z
d
, there exists x in X such that x j = a j and xt = 0 when t > j . Then,

if 1≤ i ≤ j and ai ∈ {0, 1, . . . , p − 1}Z
d
, there exists x in X such that xi = ai and xt = 0

when t > i . By considering sums of such elements, we see that F(p j ) is a group subshift of
X . Since the kernel of the multiplication-by-p j map γ : X→ p j X is contained in F(p j ),
we conclude that ker(γ )= F(p j ). Because F(p j ) has completely positive entropy, it is
contained in the kernel of the Pinsker factor map; thus the zero-entropy factor p j X of X
must be the maximal zero-entropy algebraic factor. Therefore γ is the map X→ P(X),
and 1X is algebraically Bernoulli because it is the kernel of γ which equals F(p j ).

Moreover, if p−k xk + · · · + p−1x1 ∈ X , then by subtracting the element p− j x j

+ · · · + p−1x1 of F(p j ), we see that p−k xk + · · · + p−( j+1)x j+1 ∈ X . We conclude that
the map

p−k xk + · · · + p−1x1 7→ (p−k+ j xk + · · · + p−1x j+1, p− j x j + · · · + p−1x1)

defines a topological (not necessarily algebraic) conjugacy of group shifts
X→ P(X)× F(p j ). 2

Recall that an integer is squarefree if it is not divisible by the square of any prime.
Below, we use Notations 2.8 and 2.9.

THEOREM 4.3. Suppose that X is an abelian group shift and 1X is algebraically
Bernoulli. Then the following are true:
(1) X is topologically conjugate to the product of 1X and P(X); and
(2) if nX = 0 for a squarefree integer n, then X is algebraically conjugate to the product

of 1X and P(X).
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Proof. After considering the presentations of F(n) and X as direct sums of p-groups
for primes p, we assume without loss of generality that h(X) > 0 and there are positive
integers k, M such that X is a group subshift of (F(pk))M . Let Y denote 1X and set D =
{y ∈ Y : py = 0}. Because Y is algebraically Bernoulli, it follows that D is algebraically
Bernoulli; also, h(Y ) > 0 implies that h(D) > 0. Note that D ≤ (F(p))M .

As in [10] and [19], we may view D and (F(p))M as metrizable R
(p)
d -modules (where

each ui must act by a continuous group automorphism) and use the associated duality
theory. This is Pontryagin duality of locally compact abelian groups, with additional
structure. The action of ui on (F(p))M is given by the i th coordinate shift map, ui (x)=
σ ei(x). The dual R

(p)
d -module of a module M, denoted M̂, is the group of continuous

homomorphisms M→ Fp. The action of R
(p)
d on an R

(p)
d -module M̂ is dual to the action

on M; for χ ∈ M̂, (ui (χ))(m)= χ(ui (m)). Of course, M is discrete if and only if its dual
is compact.

Because pD = 0 and D is algebraically Bernoulli with positive entropy, there is a
positive integer j such that D is algebraically conjugate to (F(p)) j , the product of j
copies of F(p). The R

(p)
d -module D̂ is then a free R

(p)
d -module, isomorphic to a direct

sum of j copies of R
(p)
d . Since D ≤ (F(p))M , we have a dual module epimorphism

π : ̂(F(p))M → D̂. By freeness of D̂, this epimorphism π splits, and its kernel D⊥ has
a complementary internal direct summand, N . Define the group shift

C =N⊥ = {x ∈ (F(p))M
: χ(x)= 0 for all χ ∈N }.

We conclude that (F(p))M is the internal direct sum of C and D, i.e. the map C × D→
(F(p))M given by (c, d) 7→ c + d is an algebraic conjugacy of group shifts.

Write an element x in (F(pk))M in the form x = p−k xk + · · · + p−1x1, where
xi ∈ ({0, 1, . . . , p − 1}Z

d
)M . Let p−1x1 = c1(x)+ d1(x) be the internal direct sum

representation with C and D. Let γ be the epimorphism of group shifts X→ X/D. Now
ker(γ )⊂1X and by Proposition 2.7 γ (1X )=1γ X , so we have γ−1(1γ X )=1X .

Note that, given x = p−k xk + · · · + p−2x2 + c1(x)+ d1(x) ∈ X , we have x − d1(x)=
p−k xk + · · · + p−2x2 + c1(x) ∈ X . Let W be the subset of X consisting of all points of
the form p−k xk + · · · + p−2x2 + c1(x). In general, W need not be a subgroup of X (W
might contain an element w such that 0 6= pw ∈ D), but it is closed and shift-invariant, i.e.
a subshift of X . The map W × D→ X given by the rule (w, d)→ w + d is continuous,
shift-commuting, surjective and injective; so, X is topologically conjugate to the product
of subshifts W × D. Also, the restriction of γ to W is bijective, and thus a topological
conjugacy from W to the group shift γ X . It follows that X is topologically conjugate to
the product of group shifts γ X × D.

If γ X has positive entropy, then we can repeat this operation until we reach a quotient
group shift of zero entropy. At that point we have X topologically conjugate to a product
B × Z , where B is a product of copies of F(p), and Z is a zero-entropy group shift which
is the image of X under a homomorphism whose kernel is 1X , i.e. Z is the Pinsker factor
of X . The shifts B and1X are topologically conjugate because all Bernoulli shifts of equal
entropy are topologically conjugate.
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In the case pX = 0, X is the internal direct sum of those subgroups C and D; we have
D =1X and h(γ X)= 0; the subshift W is C ; the restriction of γ to C defines an algebraic
conjugacy C→ γ X ; and X is algebraically isomorphic to D × C . 2

Remark 4.4. We mention some related results of Kitchens. Given a finite field F, a Zd

vector shift is a closed shift-invariant vector subspace of some full-Fm shift, considered as
a vector space over F. Kitchens showed [11, Theorem 3.4] that any vector shift X admits a
finite sequence of vector shift epimorphisms

X = X0→ X1→ X2→ · · · → Xr−1→ Xr = {0},

where ker(X i → X i+1) either has zero entropy or is a full-Fki shift. This is an application
by duality of the primary decomposition theorem for Noetherian modules. This setting
generalizes the case of group shifts X for which pX = 0 with p prime (in which case, X
is a vector shift over the field of p elements).

Kitchens also explained the cocycle structure of a vector shift epimorphism φ : X→
X/Y . Here, he chose a vector shift presentation X1 of X/Y and chose a continuous map
c : Zd

× X1→ X such that, for all v ∈ Zd , the map (σX )
v on X is topologically conjugate

to the map on X1 × Y → X1 × Y defined by the rule

(z, y) 7→ ((σX1)
v(z), (σY )

v(y))+ (0, c(v, z)),

and consequently the map φ is presented as a coordinate projection.

Theorem 4.1 contains the result that all c.p.e. abelian Z group shifts are topologically
conjugate to Bernoulli shifts, even though such group shifts need not be algebraically
conjugate to Bernoulli shifts. For d > 1, if X is a c.p.e. Zd abelian group shift which is
not algebraically Bernoulli, it is possible for X to be topologically conjugate (5.9) or not
topologically conjugate (5.3) to a Bernoulli shift.

Problem 4.5. Classify c.p.e. Zd group shifts up to topological conjugacy. In particular,
when is a c.p.e. abelian group shift X topologically conjugate to a Bernoulli shift?

5. Counterexamples around Kitchens’ theorem
In this section we will give examples which rule out various generalizations of the
Theorem 4.1 of Kitchens. Some must be well known and are provided for completeness.
We use Notations 2.8 and 2.9.

The following example shows that the topological conjugacy of Kitchens’ Theorem 4.1
cannot in general be chosen to be a group isomorphism.

Example 5.1. Let X be the Z group shift generated by F(2) and the point {1/4}Z. Here, X
is topologically conjugate to the group shift Y which is the product of F(2) and the identity
automorphism on Z/2. However, X is not algebraically conjugate to Y , because 2Y is
trivial and 2X is non-trivial.

The phenomenon above likewise occurs in Zd group shifts for d > 1, as in the next
example.
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Example 5.2. Let Z be any non-trivial zero-entropy Z2 group subshift of F(2), such as the
Ledrappier ‘three-dot’ shift. Consider the group subshift of TZ2

which is

X = F(2)+ 1
2 Z ≤ F(4).

Here the closure of the homoclinic group 1X is F(2); the Pinsker factor P(X) is X/F(2),
which is algebraically conjugate to Z ; and X is topologically conjugate to the group
shift Y = F(2)× Z by the one-block map x 7→ ((1/2)b2xc, 2x). However, the topological
conjugacy cannot be achieved by a group isomorphism, because 2Y = 0 but 2X 6= 0.

The next result is due to Kitchens [11]. We give a different argument for the completely
positive entropy step.

PROPOSITION 5.3. The example [10, Example 3.2] of Kitchens is a Z2 abelian group
shift S of completely positive entropy such that 2S = 0, h(S)= log 2 and thus S is
measurably conjugate to a Bernoulli shift on two symbols, but S is not topologically
conjugate to any full shift.

Proof. Following [10], we write a coordinate entry of an element s of the Bernoulli group
shift B = B(F2 ⊕ F2) in the form s(i, j) = (s1

(i, j), s2
(i, j)). The example [10, Example 3.2] is

the subshift S consisting of all s in B such that

s1
(i, j) + s1

(i, j+1) + s2
(i, j) + s2

(i+1, j) = 0, (5.4)

for all (i, j) ∈ Z2. The entropy of S is log 2, because |F(e)| = |{(0, 0), (0, 1)}| = 2.
Stated in dynamical language, the purpose of the example S in [10] was to exhibit a

c.p.e. group shift that is not algebraically conjugate to a Bernoulli shift, which was shown
by investigating algebraic properties of its dual module. The same subshift reappears as
[11, Example 4.11] where Kitchens observed that S is not even topologically conjugate
to a Bernoulli shift. This is because all four fixed points of B are contained in S, but a
Bernoulli Z2 shift with entropy log 2 has only two fixed points.

To finish the proof, it remains to see that S has completely positive entropy and thus is
measurably conjugate to some Bernoulli shift. Kitchens [10] proved this by showing that
the dual R

(2)
2 -module of S is torsion free but not free. Appealing to Proposition 2.5, we

shall give an alternative proof by showing that the homoclinic group is dense in S.
Suppose that n > 1 and (a(i, j)), 1≤ i, j ≤ n is a square configuration occurring in a

point of S. It suffices to show that there is a point s in S such that

s(i, j) =

{
a(i, j) if (i, j) ∈ {1, 2, . . . , n}2,

(0, 0) if (i, j) /∈ {0, 1, 2, . . . , n + 1}2.

To use a picture, we will give the (perfectly general) argument for the case n = 4. The
8× 8 array below has coordinate set {−1, 0, . . . , 6}2, with (−1,−1) at the lower left
corner. The inner 4× 4 square is the given configuration on {1, 2, 3, 4}2; the (boldface)
boundary entries are all (0, 0); and we must specify the remaining entries. The entries
marked + are determined by the inner 4× 4 configuration and the requirement (5.4) for
(i, j) in {1, 2, 3, 4}2. The entries marked · are yet to be determined. We have chosen some
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of the remaining entries to be 0; those choices in particular guarantee that (5.4) holds at
(i, j) if i =−1 or j =−1 and at (i, j)= (0, 0).

(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0) (·, 0) (+, ·) (+, ·) (+, ·) (A, B) (C, D) (0, 0)
(0, 0) (·, 0) (�, �) (�, �) (�, �) (E, F) (G, H) (0, 0)
(0, 0) (·, 0) (�, �) (�, �) (�, �) (�, �) (·,+) (0, 0)
(0, 0) (·, 0) (�, �) (�, �) (�, �) (�, �) (·,+) (0, 0)
(0, 0) (0, 0) (�, �) (�, �) (�, �) (�, �) (·,+) (0, 0)
(0, 0) (0, 0) (0, 0) (0, ·) (0, ·) (0, ·) (0, ·) (0, 0)
(0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)

Working up column 0, and then across row 5, we see there are unique choices for the
corresponding · entries, and then B, such that (5.4) holds on column 0 and at (i, 5) for
i = 1, 2, 3. Similarly, working right in row 0 and then up in column 5, we see there are
unique choices for the corresponding · entries, and then G, such that (5.4) holds on row 0
and at (5, j) for j = 1, 2, 3.

At this point, condition (5.4) is satisfied at all coordinates (i, j) except perhaps
the four coordinates of the square S′′ = {4, 5}2, whose group entries are named
A, B, C, D, E, F, G, H ; we have defined B and G; and the remaining entries must
be specified to satisfy the required four equations. We set A = 0; H = E + F ; C =
G + E + F ; and D = B. The four equations will then be satisfied if C = D, i.e. if in Z/2

B + E + F + G = 0. (5.5)

If we sum the left-hand side of (5.4) over all (i, j) not in S′′, then each entry to the left or
below S′′ appears in this sum exactly twice and B + E + F + G occurs once. The sum is
zero and this proves (5.5). 2

PROPOSITION 5.6. There is a Z2 group shift T such that 2T = 0, h(T )= log 2, T is not
c.p.e. and T is not topologically conjugate to the product of a c.p.e. system and a zero-
entropy system.

Proof. We will construct T as a group subshift of B = B(F2 ⊕ F2). Define the point x in
B by setting

x(i, j) =

{
(0, 1) if i is even,

(1, 0) if i is odd,

and then set y = σ (1,0)x and z = x + y. Let H denote the four-element, shift-invariant
subgroup {0, x, y, z} of B. Define T = S + H , where S is the example of Kitchens studied
in Proposition 5.3. Then x /∈ S, and x + S = y + S because x − y = z ∈ S. Then T is the
disjoint union of the subshifts S and x + S. The closure of the homoclinic group of T is S.
The Pinsker factor P(T ) is the identity map on a two-element group. The Pinsker factor of
a group shift T is the maximal continuous zero-entropy factor of T viewed as a topological
dynamical system (forgetting the algebraic structure). Therefore, if T is topologically
conjugate to the product of a c.p.e. system T ′ and a zero-entropy system Z ′, then Z ′ must
be a system consisting of two fixed points, and T must be topologically conjugate to the
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disjoint union of two c.p.e. systems of full entropy which are topologically conjugate to
each other. One of these two must be S, which is c.p.e. of full entropy; and then the other
must be the subshift x + S. However, these two are not topologically conjugate, because S
has all four fixed points of B and x + S has none. 2

In the proof of Proposition 5.6,1T is not algebraically Bernoulli. By Theorem 4.3 (or in
this case by earlier results [11] of Kitchens described in Remark 4.4), this is unavoidable.

Remark 5.7. Of course, Theorem 4.1 fails badly without the algebraic hypothesis, even for
Z SFTs. For example, if p is prime then the Z SFT X defined by the matrix(

0 p
1 0

)
,

has as a maximal continuous zero-entropy factor (which is also the Pinsker factor for the
measure of maximal entropy) the system Z which is the transposition of two points; but
there is no system W such that X is topologically conjugate to Z ×W , because the full
shift on p symbols has no square root [2]. If 1< n ∈ N, and Y is the Z SFT defined by the
matrix (

n 1
0 1

)
,

then the measure of maximal entropy does not have full support; there is a continuous map
onto a maximal zero-entropy topological factor of Y , but this zero-dimensional factor is
not a subshift.

Let p be a rational prime. In the case that a c.p.e. abelian Z group shift X satisfies
pX = 0, Kitchens proved that X is algebraically Bernoulli ([9], also see [19, Examples
10.11]). (In the Z2 case, this fails by Proposition 5.3.) Kitchens [9] also gave an example
of an abelian Z group shift X such that 4X = 0 and X is topologically but not algebraically
Bernoulli. Fagnani [5] classified up to algebraic conjugacy the c.p.e. Bernoulli Z group
shifts X such that p2 X = 0. In particular, for k = 2 and every rational prime p, Fagnani
(correcting a finiteness claim in [9]) constructed an infinite family of group shifts of entropy
k log p, pairwise not algebraically conjugate, but all topologically conjugate to a Bernoulli
shift. Schmidt [19, Examples 10.11] extended this construction to every k ≥ 2.

We will finish this section by remarking that a simple construction used in [7, 8]
produces Zd examples from these Z examples.

Definition 5.8. Suppose that X is a Zd group shift with alphabet group G. The full Zd+c

extension of X is defined to be the Zd+c group shift X (d→d+c) with domain

{x = x(u,v) ∈ GZ
d
×Zc
: x(.,v) ∈ X for all v ∈ Zc

},

and the usual definition of addition coordinatewise.

Remark 5.9. Suppose that X and Y are Zd group shifts. We remark that:
hd+c(X (d→d+c))= hd(X); X (d→d+c) is topologically/algebraically Bernoulli if and only
if X is; and X (d→d+c) is topologically/algebraically conjugate to Y (d→d+c) if and only if
X is topologically/algebraically conjugate to Y .
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To deduce conjugacy (in either sense) of X and Y from conjugacy of X (d→d+c)

and Y (d→d+c), let X1 denote the subgroup of points in X (d→d+c) fixed by every
element of {0} × Zc. A conjugacy X (d→d+c)

→ Y (d→d+c) must induce a conjugacy of the
associated actions of Zd

× {0} on X1 and Y1. But the action of Zd
× {0} on X1 is conjugate

to X . We leave the verification of the remaining claims as an exercise (see also [8]).
Thus from any of the infinite Fagnani/Schmidt families of Z group shifts X which are

topologically isomorphic to the same Bernoulli but pairwise not algebraically isomorphic,
we get a family of Zd group shifts X (1→d) with the same properties.

6. Abelian group shifts factor algebraically onto equal-entropy Bernoulli group shifts
Recall that for a group shift X its homoclinic subgroup is denoted 1X . We begin with the
following simple lemma. In the abelian (and not necessarily zero-dimensional) case, the
essence of the lemma already appears in [4, Lemma 4.5].

LEMMA 6.1. Suppose that γ : X→ Y is an algebraic factor map between group shifts.
Then the following are equivalent:
(1) h(ker(γ ))= 0;
(2) h(X)= h(Y );
(3) for every closed shift-invariant subgroup W of X, h(γW )= h(W ); and
(4) 1X ∩ ker(γ ) is the trivial group.

Proof.
(1) ⇐⇒ (2) This follows from the addition formula for entropy (2.2).
(1) ⇐⇒ (4) This follows from Proposition 2.5.
(3) H⇒ (2) This is trivial.
(4) H⇒ (3) Let W be a closed shift-invariant subgroup of X . Because ker(γ |W )⊂

ker(γ ) and 1W ⊂1X , it follows from (4) that 1W ∩ ker(γ |W ) is trivial. As before this
implies h(γW )= h(W ). 2

We review a little algebra. For Rd as in Notation 2.9 and n= (n1, . . . , nd) ∈ Zd , we
use the notation

un
= (u1)

n1 · · · (ud)
nd

and we write an element f of Rd as

f =
∑

n∈Zd

c f (n)un,

where each c f (n) is in Z and c f (n) 6= 0 for only finitely many n. Such an f defines a

character χ f on TZd
by the rule

χ f : x 7→
∑

n∈Zd

c f (n)xn

and any character on a subgroup of TZd
is the restriction of some χ f . For f in (Rd)

J we

use the notation f = ( f1, . . . , f J ). From such an f we obtain a character χ f on (TZd
)J

by the rule
x = (x1, . . . , xJ ) 7→ f1(x1)+ · · · + f J (xJ )
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and all characters on (TZd
)J arise in this way. Given a character χ f on TZd

we define a

homomorphism π f : TZ
d
→ TZd

by the rule (π f x)n = χ f (σ
nx).

We will usually restrict the domain of χ f and π f , and will indicate the restricted domain
where needed. When we say that f is zero we mean that it is identically zero, and likewise
a group is zero if it contains just one element.

LEMMA 6.2. Suppose that p is a rational prime, k ∈ N, f ∈Rd and f is not zero mod p.
Let γ denote the restriction of π f to X = F(pk). Then the following hold:
(1) h(γY )= h(Y ), for every closed shift-invariant subgroup Y of F(pk); and
(2) γ X = X.

Proof. To prove (1), it suffices by Lemma 6.1 to show, given a non-trivial homoclinic
point x in X , that γ (x) 6= 0. Let ≺ denote lexicographic order on Zd , and let ≡ denote
congruence modulo p. Define vectors v, w in Zd by

xv 6≡ 0 and n ≺ v H⇒ xn ≡ 0;

c f (w) 6≡ 0 and w ≺ n H⇒ c f (n)≡ 0.

Because ker(γ ) is shift invariant, we may suppose that v= w= 0. Then

(γ x)0 =
∑

n∈Zd

c f (n)xn

≡ c f (0)x0 6≡ 0.

This proves (1). Now (2) follows because X has no proper subshift of full entropy. 2

LEMMA 6.3. Let p be a rational prime. Suppose X is an abelian algebraic subshift of
a Bernoulli group shift B = B1 × · · · × BJ where B j = F(pk j ), and X 6= B. Then there
is a continuous group homomorphism φ : B→ B ′, where B ′ is the Bernoulli group shift
B ′ = B ′1 × · · · × B ′J such that the following hold:
(1) there is an index i such that B ′i = F(pki−1) and B ′j = B j for j 6= i ; and
(2) h(φX)= h(X).

Proof. By Pontryagin duality, since X ≤ B and X 6= B, there is a character χ which
annihilates X but does not annihilate B. Pick f = ( f1, . . . , f J ) ∈ (Rd)

J so that χ = χ f .
Without loss of generality choose f j = 0 if χ f j annihilates B j . Let g = (g1, . . . , gJ ) be
the unique element of (Rd)

J such that f = pr g where r is a non-negative integer and g
is not identically zero modulo p. Let J = { j : f j 6= 0}. If j ∈ J , then χ f j (B j ) 6= 0, and
therefore r < k j , for every j in J . Define the integer K =max{k j : j ∈ J }. Without loss
of generality, if necessary after permuting the coordinate groups B j , we may assume that
1 ∈ J and k1 = K and g1 is not zero modulo p. Because r < K and prχg annihilates X ,
we have

πg(X)≤ F(pr )= pK−r F(pK )≤ pF(pK ). (6.4)

Define φ : B→ B by the rule

(φx)i = xi if i > 1,

(φx)1 = px1 − πg(x).
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It follows from (6.4) that φX ≤ pB1 × B2 × · · · × BJ . Because F(pK−1)= pB1, the
lemma will follow if we show that h(φX)= h(X). By the addition formula (2.2), it suffices
to show that the kernel of φ has zero entropy. Clearly,

ker(φ)= {x = (x1, 0, . . . , 0) ∈ X | px1 − πg1(x1)= 0}.

Define an element ` of Rd by `= pu0
− g1, so the restriction γ of π` to F(pK ) sends a

point y to the point py − πg1(y). Since g1 modulo p is not zero, it follows from Lemma 6.2
that ker(γ ) has entropy zero. Because the algebraic shift ker(φ) is isomorphic to the shift
ker(γ ), it follows that ker(φ) has entropy zero. 2

THEOREM 6.5. Suppose α is a finite-entropy action of Zd by continuous automorphisms
on a compact metrizable zero-dimensional abelian group. Then there is an algebraic
factor map φ : X→ B where B is a Zd Bernoulli group shift such that h(X)= h(B). This
Bernoulli group shift is unique up to isomorphism of its alphabet group.

Remark 6.6. Above, the group shift B is canonically associated to α, but we are not
constructing a canonical factor map to B.

Proof of Theorem 6.5. Without loss of generality we assume that α has positive entropy.
First we prove the existence of φ. Given α, there exists an algebraic factor map onto a group
shift of equal entropy. So, we can assume that X is a group shift. There is a continuous
group isomorphism which sends X to a group which is the product of finitely many
groups X(p), where X(p) is a subgroup of a group of the form B = F(pk1)× · · · × F(pkJ ),
and X(p) is invariant under the Zd shift. For each X(p), iteration of Lemma 6.3 produces
a continuous group epimorphism φ(p) onto a Bernoulli shift of entropy h(X(p)). Define
φ =

⊕
p φ(p). This proves the existence of the Bernoulli shift B.

For uniqueness, let φ : X→ B be an algebraic factor map with B Bernoulli. First
suppose that X is a group shift. As usual, without loss of generality we assume that X
is a p-group. We can assume B =

⊕K
k=1 F(pk)dk with dK > 0 and dk ≥ 0 for 1≤ k < K ,

and clearly those numbers dk determine B up to isomorphism of the alphabet group. We
observe that

h(p j B)= 0 if j ≥ K ,

h(pK−1 B)= dK log p,

h(pK−2 B)= (dK−1 + 2dK ) log p,

h(p j B)= (d j+1 + 2d j+2 + · · · + (K − j)dK ) log p if j ≤ K − 2.

For every non-negative integer j , φ maps p j X onto p j B, and then by Lemma 6.1 we have
h(p j X)= h(p j B). Thus the entropies h(p j X) and the displayed equations determine
the numbers dk recursively. This proves the uniqueness claim in the case that X is a
group shift.

In general, up to algebraic conjugacy, we may assume that X is an inverse limit by
algebraic factor maps of group shifts, X = (X1← X2← X3← · · · ), with x ∈ X written
as x = (x1, x2, . . .). By finite entropy and zero dimension, we have h(Xn)= h(X) for
all large n; by uniform continuity and zero dimension, for all large n there are algebraic
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factor maps φn : Xn→ B such that φ(x)= φn(xn). Now for all large n and all non-negative
integers j we have h(p j Xn)= h(p j Xn+1)= h(p j X). The uniqueness claim then follows
from the group shift case. 2

Remark 6.7. For an action α of Zd on a compact metrizable group, there is a canonical
maximal algebraic factor map onto a zero-dimensional algebraic action, which is the
homomorphism whose kernel is the connected component of the identity [14]. Thus it
follows from Theorem 6.5 that α has as a quotient a canonical Bernoulli group shift of
maximal entropy whenever this maximal zero-dimensional factor has finite entropy; in
particular, whenever α itself has finite entropy.

7. Classification of c.p.e. abelian group shifts up to algebraic weak equivalence
Following Einsiedler and Schmidt [4], we say that two actions α, α′ of Zd by continuous
automorphisms on compact groups X, X ′ are algebraically weakly equivalent if there are
continuous group epimorphisms X→ X ′ and X ′→ X which intertwine the actions. In this
section we classify c.p.e. abelian group shifts up to algebraic weak equivalence, as follows.

THEOREM 7.1. Suppose that X is an abelian group shift of completely positive entropy.
Then X is weakly algebraically equivalent to a Bernoulli group shift. Two Bernoulli group
shifts are weakly algebraically equivalent if and only if they have isomorphic alphabet
groups.

Remark 7.2. There are some earlier examples in this direction from [11]. There, Kitchens
constructed several explicit vector shifts as algebraic quotients of full shifts, and in some
cases constructed an explicit (non-obvious) algebraic conjugacy back to the full shift.

Remark 7.3. Before continuing to the proof of Theorem 7.1 and related matters, we note
that Theorem 7.1 gives an alternative proof in the zero-dimensional case of a difficult
theorem of Rudolph and Schmidt ([17] or [19, Theorem 23.1]): a c.p.e. Zd action by
continuous automorphisms on a compact abelian group is measurably (with respect to
Haar measure) isomorphic to a Zd Bernoulli shift. In the zero-dimensional case, such
an action is an inverse limit of abelian group shifts, which by Theorem 7.1 are factors
of Bernoulli group shifts. Thus the zero-dimensional case of the theorem by Rudolph
and Schmidt follows immediately given two results of the general Bernoulli theory for
amenable group actions: a factor of Bernoulli is measurably Bernoulli [15] and an inverse
limit of Bernoulli’s is measurably Bernoulli (Dan Rudolph pointed out to us that this
follows from [18]).

Let X be a compact metrizable abelian group with expansive Zd action α by continuous
automorphisms; then the homoclinic group 1X is a countable group, and becomes
an Rd module (recall Notation 2.9) via the Zd action by restriction of α. Einsiedler and
Schmidt [4] defined the adjoint action α∗ to be the Zd action dual to this module. They
showed among other results that: α∗ is expansive and c.p.e.; α∗ is weakly algebraically
equivalent to α if α is c.p.e.; and α∗∗∗ is algebraically isomorphic to α∗. When X is an
abelian group shift, so is X∗.
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Proof of Theorem 7.1. By Theorem 6.5 there is a continuous algebraic homomorphism φ

from X onto a Bernoulli group shift B of equal entropy. Theorem 7.1 will then follow from
the uniqueness statement of Theorem 6.5 if we can find an algebraic factor map from B
onto X . For this, we will give two proofs.

First, because h(X)= h(B), it follows from Lemma 6.1 that φ : X→ B induces
an embedding of homoclinic modules 1X →1B . Duality gives an algebraic
epimorphism B∗→ X∗. The general result of Einsiedler and Schmidt [4] mentioned
above gives an algebraic factor map X∗→ X . The composition B∗→ X∗→ X gives an
algebraic factor map B∗→ X . Finally, B∗ and B are algebraically isomorphic, so we have
the required map B→ X .

Second, for a self-contained proof in the spirit of seeing the group shift case directly,
we shall give an elementary construction of an algebraic factor map B→ X . The basic
idea is that any map from the natural generating set of 1B into 1X extends uniquely to an
algebraic map B→ X , and with a little care we can guarantee that this map is surjective.

Without loss of generality, suppose that h(X) > 0, p is prime and B =
⊕K

k=1(F(p
k))dk ,

where dK > 0 and dk ≥ 0 for 1≤ k < K . Let {bk
i : dk > 0, 1≤ i ≤ dk, 1≤ k ≤ K } be the

natural corresponding set of generating homoclinic points in B: here bk
i (v)= 0 for every

v ∈ Zd except v= 0, and bk
i (0) is 1 in the coordinate for the i th copy of F(pk), and 0 in

other coordinates. For each bk
i we will pick an image homoclinic point xk

i of order pk in X .
Such a choice determines a map ψ : B→ X by the rule

ψ :

K∑
k=1

dk∑
i=1

k−1∑
j=0

∑
v∈Zd

c(k)i, j,v p jσ vb(k)i 7→

K∑
k=1

dk∑
i=1

k−1∑
j=0

∑
v∈Zd

c(k)i, j,v p jσ vx (k)i ,

where the c(k)i, j,v are arbitrary in {0, 1, . . . , p − 1}. Every point of B has a unique

expression of the input form above; when the x (k)i are homoclinic, the output expressions
are well defined and ψ is a continuous shift commuting group homomorphism.

For a group shift Y , let Ek(Y )= {y ∈ Y : pk y = 0} and let Dk(Y ) be the closure of the
homoclinic subgroup of Ek(Y ). We claim that, for 1≤ k ≤ K ,

h(pk−1(Dk(X)))= (dK + · · · + dk) log p. (7.4)

To prove the claim, first note that by the entropy addition formula (2.2) we have

h(X)= h(pk X)+ h(Ek(X)),

h(B)= h(pk B)+ h(Ek(B)).

We also have h(X)= h(B) and by Lemma 6.1(3) we have h(pk X)= h(pk B), and
therefore h(Ek(X))= h(Ek(B)). Then again by the addition formula (2.2), we have

h(Ek(X)/Ek−1(X))= h(Ek(B)/Ek−1(B))= (dK + · · · + dk) log p.

Because h(Dk(X))= h(Ek(X)) and D j−1(X)≤ D j (X), again using the addition
formula (2.2) we have

h(Dk(X)/Dk−1(X))= h(Ek(X)/Ek−1(X))= (dK + · · · + dk) log p.
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This proves the claim (7.4), because the group shifts Dk(X)/Dk−1(X) and pk−1 Dk(X) are
isomorphic.

We will need a little notation for our recursive choice of the homoclinic points x (k)i and
some related objects. For 1≤ k ≤ K , let W k

0 be the group subshift generated by the set

Sk = {p
t−1x (t)i | t ≥ k, dt > 0, 1≤ i ≤ dt }.

(So, W K+1
0 = 0.) For k with dk > 0, we will make our choices of the points x (k)i using the

inductive hypothesis that the points x (t)i have been chosen for t > k and that

h(W k+1
0 )= (dK + · · · + dk+1) log p, (7.5)

where for k = K we interpret the right side of (7.5) to be zero.
So, assume that dk > 0 and the inductive hypothesis is satisfied. For 1≤ i ≤ dk , we will

inductively choose points x (k)i and yi , and group shifts Wi . Here W0 =W K+1
0 , and for

1≤ i ≤ dk the group shift generated by Wi−1 and yi is Wi . At step i we will then choose
points xi and yi satisfying the following conditions, assuming if i > 1 that they have been
satisfied at steps t < i :
(1) yi ∈ pk−1 Dk and yi−1 /∈Wi−1;
(2) yi = pk−1x (k)i , where x (k)i is a homoclinic point in Dk ;

(3) x (k)i has order pk ; and
(4) h(Wi )= (dK + · · · + dk+1 + i) log p.
(Note that the last item for i = dk establishes the inductive hypothesis (7.5) for the next
stage.) Now we explain why we can make the choices at stage i satisfying the listed
conditions.
(1) We have W0 ≤ pk−1 Dk and yt ∈ pk−1 Dk for t < i , so Wi−1 ≤ pk−1 Dk . By (7.4) we

have h(Wi−1) < (dK + · · · + dk) log p = h(pk−1 Dk). Therefore we can choose yi

as required.
(2) The point yi is in the complement of the closed subset Wi−1 of pk−1 Dk , and the

homoclinic points of Dk are dense in Dk . So perhaps after redefining yi , we can
choose a homoclinic point x (k)i of Dk such that yi = pk−1x (k)i .

(3) We have pk−1x (k)i 6= 0 because pk−1x (k)i /∈Wi−1. We have pk x (k)i = 0 because

pk Dk = 0. So, x (k)i has order pk .
(4) Because pWi−1 = 0= pWi , recalling Remark 3.3 we see that the entropies of Wi−1

and Wi are integer multiples of log p. Because Wi is generated as a group shift
by the group shift Wi−1 and the single point yi of order p, Wi is an algebraic
factor of Wi−1 × F(p), so either h(Wi )= h(Wi−1) or h(Wi )= h(Wi−1)+ log p.
Because yi is a non-zero homoclinic point not in Wi , we have h(Wi ) > h(Wi−1), so
h(Wi )= h(Wi−1)+ log p = (dK + · · · + dk+1 + i) log p as required.

This finishes our choice of the homoclinic points x (k)i of order pk . It remains to check that

the algebraic map B→ X determined by the rule b(k)i 7→ x (k)i is surjective. Let U denote

the group shift W1 above, generated by the D = dK + · · · + d1 points pk−1x (k)i of S1.
Now h(U )= D log p and pU = 0.

There is an algebraic factor map γ mapping F(p)D
= Y onto U , determined by

sending the D natural generating homoclinic points of Y to the points pk−1x (k)i .
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Because h(Y )= h(U ), the restriction of γ to 1Y is injective, and thus an isomorphism
onto the group generated by S ′. Consequently, given any choices of terms c(k)i,k−1,v from
{0, 1, . . . , p − 1} with only finitely many of them non-zero, we have

K∑
k=1

dk∑
i=1

∑
v∈Zd

c(k)i,k−1,v pk−1σ vx (k)i = 0 H⇒ every c(k)i,k−1,v = 0. (7.6)

Now we consider our map ψ : B→ X determined by the choices b(k)i 7→ x (k)i . Because
B and X are c.p.e. with equal entropy, ψ will be surjective if its restriction to 1B is
injective. For this, given an arbitrary choice of terms c(k)i, j,v from {0, 1, . . . , p − 1} with
all but finitely many non-zero, and given

z :=
K∑

k=1

dk∑
i=1

k−1∑
j=1

∑
v∈Zd

c(k)i, j,v p jσ vx (k)i = 0, (7.7)

it suffices to show that all the terms c(k)i, j,v are zero. So, suppose not. A non-zero term

c(k)i, j,v p jσ vx (k)i in the sum for z in (7.7) is a point of order pk− j > 0. Let pt be the

maximum such order and consider the presentation of 0= pt−1z as the sum of the non-
zero points c(k)i, j,v p j+t−1σ vx (k)i . The sum of these non-zero points is a sum of the form on
the left side of (7.6). This contradicts (7.6), and finishes the proof. 2

Remark 7.8. If φ : X→ Y is an algebraic factor map of equal-entropy group shifts, then φ
restricts to an injection γ :1X →1Y and φ maps 1X onto 1Y . This by no means assures
that the map 1X →1Y will be bijective. For example, suppose X is c.p.e. abelian, Y = B
a Bernoulli group shift and γ is surjective. Then γ−1

:1B→1X extends to an algebraic
factor map ψ from B onto X . In this case φψ is the identity on1B = B and it follows that
φ is an algebraic conjugacy. In particular, if X is c.p.e. and not algebraically Bernoulli, then
the homomorphism φ : X→ B constructed in Theorem 6.5 can never restrict to a bijection
1X →1B .

Example 7.9. In this example, X is a c.p.e. Z group shift such that X∗ is not algebraically
Bernoulli. Inductively set X〈0〉 = X and X〈n+1〉 = X∗

〈n〉. Then for all n > 0, the group shift
X〈n〉 is also not algebraically Bernoulli.

Here X comes from [9, Example 3] of Kitchens; X is the Markov subgroup of the
Bernoulli shift with alphabet Z/4⊕ Z/2 with transitions

(0, 0), (2, 0), (1, 1), (3, 1)→ Z/4⊕ {0},
(1, 0), (3, 0), (2, 1), (0, 1)→ Z/4⊕ {1}.

The homoclinic group 1X is generated under the shift by two points of the form
x = (0, 0)∞.(2, 0)(0, 0)∞ and x ′ = (0, 0)∞(1, 0).(1, 1)(0, 0)∞. We note that as an R1-
module, 1X is not cyclic. For if 1X were generated by a single homoclinic point
z = (zi )i∈Z = (z1

i , z2
i )i∈Z, then x ′ would be a sum of shifted multiples of z and so z2

i = 1
for at least one i ∈ Z. Obviously having another z2

j = 1 would force an infinite number
of coefficients an ∈ Z/4 in x ′ =

∑
n anσ

n(z) to be non-zero. Without loss of generality
assume that z2

0 = 1 and z2
j = 0 for all j 6= 0. Now all an (n 6= 0) have to be even but a0 has to
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be odd. This implies that z1
0 and z1

−1 are odd and z1
i are even for all i /∈ {0,−1} and therefore

2z = (0, 0)∞(2, 0).(2, 0)(0, 0)∞. As x2
i = 0 for all i ∈ Z, the equation x =

∑
n bnσ

n(z)
is only valid if every bn is even, but then again the two odd components z1

−1 and z1
0 force

infinitely many bn to be non-zero.
The system X∗ contains elements of order four and has entropy log 4. If X∗ were

algebraically Bernoulli, then its dual module 1X would have to be cyclic with a generator
of order 4; but 1X is not cyclic. Therefore X∗ is not Bernoulli. By [4, Theorem 4.7], X〈n〉
is algebraically conjugate to X〈n+2〉 for all n ≥ 1. If Y is algebraically Bernoulli, then Y is
algebraically conjugate to Y ∗. It follows that no X〈n〉 is algebraically Bernoulli.

To continue the concrete example, note that projection onto the Z/4 coordinate defines
an algebraic factor map φ from X onto the Bernoulli group shift B with alphabet Z/4. As
guaranteed by Remark 7.8, the induced injection of homoclinic groups is not surjective;
φ(1X ) is the set of homoclinic points y in B such that

∑
n yn is zero mod 2, and φ(1X )

has index 2 in1B . The Laurent modules1B and1X are of course not isomorphic, because
1B is cyclic and 1X is not.

We do not know if the abelian hypothesis in Theorem 7.1 is necessary. On the other
hand, an algebraic factor of a group shift must be algebraically conjugate to a group shift,
for the following reason.

PROPOSITION 7.10. Suppose that (X, α) and (X ′, α′) are algebraic Zd actions, and α′

is an algebraic factor of α. If X is zero-dimensional, then so is X ′. If α is expansive,
then so is α′.

Proof. First, suppose that X is zero-dimensional, and u, v are points in X with distinct
images under the assumed algebraic factor map X→ X ′, with kernel K . For sufficiently
small clopen neighborhoods Cu, Cv of u, v the sets K + Cu , K + Cv are disjoint and
clopen. Therefore X ′ is zero-dimensional.

For the other claim, we use equivalence of expansiveness and the descending chain
condition ([12] or [19, Corollary 4.7]). Suppose that α′ is not expansive. Then there is
an infinite decreasing chain of distinct α′ invariant subgroups, and their preimages give a
chain of the same sort for α. Therefore α is not expansive. 2

For the case Zd
= Z and X ′ a non-expansive inverse limit of equal-entropy Bernoulli

shifts, it follows from [1, Theorem 2.10] that there cannot even exist a shift of finite type X
which admits a topological factor map from X onto X ′.
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