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An error in the complex representation of the porous-coating model used in the
study by Fedorov et al. (J. Fluid Mech., vol. 479, 2003, pp. 99–124), investigating
the stabilization effect of ultrasonically absorptive coatings on hypersonic boundary
layers, is pointed out and corrected. This error has been acknowledged by Fedorov
et al. (J. Fluid Mech., vol. 769, 2015, pp. 725–728). The corrected version of the
erroneous linear stability results of the original work is presented and previously made
conclusions are reassessed. The novel numerical results indicate that second-mode
instabilities are shifted to lower frequencies on felt-metal porous coatings, similar to
the behaviour observed on porous coatings with regular microstructure.
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1. Introduction and problem formulation
Several recent studies have shown experimentally (Rasheed et al. 2002), theoretically

(Fedorov et al. 2001) and numerically (De Tullio & Sandham 2010) that porous
coatings with a regular microstructure can stabilize second-mode disturbances in
hypersonic boundary layers. Hence, these coatings may constitute an attractive passive
laminar flow control technique for hypersonic boundary layers (Fedorov 2011).

Fedorov et al. (2003) investigated the stabilization properties of fibrous absorbent
materials and presented for the first time a quantitative comparison between
experimental and theoretical results regarding the effect of ultrasonically absorptive
coatings (UACs) used for hypersonic laminar flow control. Fedorov et al. (2003)
measured spectra of natural and artificially excited disturbances in a hypersonic
boundary layer on a 7◦ half-angle sharp cone, which were used to compute
experimental amplification curves and which were compared with results from linear
stability theory (LST).

As will be shown in § 2, the numerical results for the porous-wall case in Fedorov
et al. (2003) were erroneous due to incorrect boundary conditions. The corrected
LST results are presented in § 3, where we discuss the stability properties of a
hypersonic boundary layer on a solid and on a porous wall around a sharp cone
with zero angle of attack. The mean-flow parameters are given in table 1, where Me,
T∗e and Re∗1e are the Mach number, temperature and unit Reynolds number at the
boundary-layer edge respectively. Here, Re∗1e is defined as Re∗1e :=

√
U∗e/ν∗e , where U∗e
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ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

15
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:tritarelli@ifd.mavt.ethz.ch
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2015.156&domain=pdf
https://doi.org/10.1017/jfm.2015.156


730 R. C. Tritarelli, S. K. Lele and A. Fedorov

Me T∗e (K) Tw Re∗1e (m
−1) γ Pr R∗ (J kg−1 K−1)

Figures 1–3 5.3 59.3 5.5 15.5× 106 1.4 0.708 287.1
Figure 4 5.3 59.3 2.0 107 1.4 0.708 287.1

TABLE 1. Mean-flow parameters for the studied hypersonic boundary layers.

and ν∗e are the velocity and kinematic viscosity at the boundary-layer edge respectively.
Additionally, table 1 gives the chosen numerical values for the heat capacity ratio γ ,
the Prandtl number Pr, the gas constant R∗ and the non-dimensional wall temperature
Tw := T∗w/T

∗
e . In table 1 as well as hereafter, (·)∗, (·)e and (·)w represent dimensional

quantities, variables at the boundary-layer edge and variables at the wall respectively.
In our analysis we will use the same problem formulation and numerical

framework for the LST computations as discussed by Fedorov et al. (2003) with
the exception of the corrected boundary conditions presented in § 2. We denote the
non-dimensional mean-flow variables, i.e. pressure, temperature, density, streamwise
and wall-normal velocity, as P := P∗/(ρ∗e U∗2e ), T := T∗/T∗e , ρ := ρ∗/ρ∗e , U := U∗/U∗e
and V := V∗/U∗e respectively. The coordinate system (x∗, y∗, z∗), used in the
computations and representing the streamwise, wall-normal and spanwise direction, is
non-dimensionalized with the boundary-layer length scale l∗ := √ν∗e x∗/U∗e , where
x∗ is the distance measured from the tip of the cone along the cone surface.
The reference time is given by l∗/U∗e and consequentially the non-dimensional
time is t := t∗U∗e/l

∗ and the non-dimensional circular frequency can be defined as
ω := ω∗l∗/U∗e = 2πf ∗l∗/U∗e , where f ∗ is the dimensional frequency. As the numerical
framework is the same as in Fedorov et al. (2003, 2015), the boundary-layer
equations as well as the parallel and non-parallel linear stability equations used
for the computations are given in Fedorov et al. (2003, 2015) and are not repeated in
this paper. In conclusion, this implies that the normal-mode ansatz of equation (4.9)
of Fedorov et al. (2003), where u, v, w, p and θ denote the disturbance amplitudes of
the velocity components, of the pressure and of the temperature respectively, is used
in this study. The computations in the remainder of the analysis are all performed
in the framework of spatial linear stability analysis, hence we have ω ∈ R for the
circular frequency, β := β∗l∗ ∈ R for the transverse wavenumber and α := α∗l∗ ∈ C
for the eigenvalue of the LST problem. The streamwise wavenumber can, hence,
immediately be defined as αr =Re(α).

2. Corrected porous-wall boundary condition
In the spatial linear stability calculations performed by Fedorov et al. (2003)

the acoustic properties of a thin coating, made of a fibrous absorbent material
(felt-metal), were described by the semi-empirical model of Allard & Champoux
(1992) in conjunction with laboratory measurements of the felt-metal characteristics.
Unfortunately, the equations describing the complex dynamic density ρ̃ := ρ∗(ω∗)/ρ∗w,
the complex dynamic compressibility C̃ := γP∗w/K

∗(ω∗), where K∗(ω∗) is the complex
dynamic bulk modulus, and the propagation constant Λ :=Λ∗ · l∗ were erroneous. The
equations describing ρ̃ and C̃, i.e. equations (4.34)–(4.36) of the study by Fedorov
et al. (2003), were chosen identical to those of the work by Allard & Champoux
(1992) (equations (13) and (30) in conjunction with (46)), thereby neglecting the fact
that the time dependences in the two studies are opposite. In the original work by
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Stabilization of a hypersonic boundary layer 731

Allard & Champoux (1992) the harmonic time dependence was of the form exp(iωt);
however, Fedorov et al. (2003) used a time dependence of the form exp(−iωt) in
the normal-mode ansatz in equation (4.9). This change in time dependence requires a
change in the characteristic impedance from Z0 :=Z∗0/(ρ

∗
e U∗e ) to Z†

0 , where † represents
the complex conjugate. Similarly, it can be shown that the complex dynamic density
ρ̃, the complex dynamic compressibility C̃, as well as the propagation constant Λ and
the wall admittance Ay, are related via complex conjugation in both representations
(Allard & Atalla 2009). This is a direct consequence of the fact that a real-valued
pressure disturbance should yield a real-valued velocity disturbance, cf. Landau,
Lifshitz & Pitaevskii (1984) and Johnson, Koplik & Dashen (1987).

Equations (4.34)–(4.36) in Fedorov et al. (2003) should consequently be replaced
by

ρ̃ = a∞

[
1+ g(λ1)

λ1

]
, C̃= γ − γ − 1

1+ g(λ2)/λ2
, (2.1a,b)

g(λ)=
√

1+ 4a∞µ∗wλ
σ ∗φ r∗2p

, (2.2)

λ1 =−ia∞ρ∗wω
∗/(φσ ∗), λ2 = 4Prλ1, (2.3a,b)

where a∞, φ, σ ∗, r∗p and µ∗w represent the tortuosity of the porous medium, the
porosity, the flow resistivity, the characteristic viscous length scale inside the porous
coating and the dynamic viscosity at the wall respectively. It should be noted that
the tortuosity represents the high-frequency asymptotic limit of the dynamic density,
i.e. a∞ = limω∗→∞ ρ̃(ω∗). The definition of the flow resistivity can be found in
equation (4.37) of Fedorov et al. (2003), where furthermore the viscous length scale
r∗p was correctly defined in equation (4.40) as

r∗p =
πd∗

2(1− φ)(2− φ), (2.4)

with d∗ referring to the diameter of the stainless steel fibres of the felt-metal coating.
It should be highlighted that equation (4.39) for r∗p of Fedorov et al. (2003) was
erroneous, see Fedorov et al. (2015). The definition of the porosity φ is given in (A 7).

Equations (2.1)–(2.3) correspond to the porous-media model derived by Allard
& Champoux (1992), which can be considered to be a special case (applicable to
fibrous absorbent materials only) of the model by Champoux & Allard (1991). The
model by Allard & Champoux (1992) was derived for a material with non-touching
fibres. Fedorov et al. (2003) applied this model to a UAC with touching fibres and
therefore decided to evaluate r∗p differently from Allard & Champoux (1992). In
Fedorov et al. (2003) the pore size r∗p was treated as a hydraulic radius, which was
defined as the radius of the equivalent pore. It was derived based on a statistical
analysis (see appendix A).

Compared with the original work, changing the sign of λ1 in equation (4.36) of
Fedorov et al. (2003) results in (2.3); this makes the model compatible with the time
dependence exp(−iωt) and thereby yields the correct values for ρ̃ and C̃.

The correct boundary conditions for the linear stability computations, replacing
equations (4.31)–(4.33) of Fedorov et al. (2003), can now be written in non-
dimensional form as

y= 0: u=w= θ = 0, v = Ay p, (2.5a,b)
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a∞ σ∗ (kg m−3 s−1) φ d∗ (µm) h∗ (mm)

1 1.66× 105 0.75 30 0.75

TABLE 2. Numerical parameters describing the felt-metal coating.

Ay =− φZ0
tanh(Λ h), (2.6)

Z0 =
√
ρ̃/C̃

Me
√

Tw
, Λ=− iωMe√

Tw

√
ρ̃ C̃, (2.7a,b)

where h := h∗/l∗ is the non-dimensional porous-layer thickness and where (2.7)
is obtained after the non-dimensionalization of the characteristic impedance Z∗0
and the propagation constant Λ∗, given by Z∗0 =

√
ρ∗(ω∗)K∗(ω∗) and Λ∗ =

−iω∗
√
ρ∗(ω∗)/K∗(ω∗). In the definition of the admittance Ay in (2.6), the minus

sign is required because an excess pressure induces a flow into the wall (in the −y
direction). In Fedorov et al. (2003) the minus sign due to the direction of propagation
was incorporated into the definition of Z0; however, in the present work Re(Z0) > 0
is preferred. Additionally, it should be highlighted that the sign of the propagation
constant Λ was changed in comparison to Fedorov et al. (2003), in order to make
the boundary condition compatible with the normal-mode ansatz.

The numerical parameters needed for the evaluation of the boundary conditions and
the porous-coating model are given in table 2, with the exception of the dynamic
viscosity µ∗w, which is given by Sutherland’s law as

µ∗w = 1.458× 10−6 T∗3/2w

T∗w +C∗
, (2.8)

with C∗ = 110.4 K in accordance with the non-dimensional form of the Sutherland
law, which was used in the boundary-layer and stability equations, i.e.

µ :=µ∗/µ∗e =
1+ S
T + S

T3/2 (2.9)

with S= 110.4/T∗e .
It should be mentioned that, although equations (4.34)–(4.36) in Fedorov et al.

(2003) provided an incorrect representation of the porous coating, the identification of
the felt-metal flow resistivity σ ∗ via the method of acoustic standing waves provided
the correct results. Despite the fact that the predicted imaginary parts of Z0, of Ay
and of the reflection coefficient for plane acoustic waves of normal incidence Rref ,
which can be expressed as

Rref := Me
√

Tw + Ay

Me
√

Tw − Ay
, (2.10)

have the wrong sign in Fedorov et al. (2003), the results in figure 12 remain correct
as the normal-incidence energy absorption coefficient Ka := 1 − |Rref |2 = 1 − |R†

ref |2
is taken as the basis for the identification of σ ∗, which therefore is not affected by
the erroneous time dependence. The experimentally obtained value of σ ∗ in Fedorov
et al. (2003) can consequently be used in the present work in order to complete the
semi-empirical model presented in equations (2.1)–(2.4).
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FIGURE 1. (a) Growth rate of two-dimensional disturbances versus frequency at x∗ =
200.1 mm (R = 1761.2); locally parallel approximation. (b) Maximum growth rate of
three-dimensional disturbances versus frequency at x∗ = 200.1 mm (R = 1761.2); locally
parallel approximation. (c) The wave angle ψ∗ = arctan(β/αr) of the most unstable
three-dimensional waves versus frequency at x∗= 200.1 mm (R= 1761.2); locally parallel
approximation. Dashed lines: solid wall; solid lines: porous wall with the corrected
boundary condition. Correction of figure 13 of Fedorov et al. (2003).

3. Stability calculations and comparison with experiment
3.1. Linear stability calculations

In this section the corrected version of the erroneous linear stability results of
Fedorov et al. (2003) is presented. Figures 1, 2 and 4 present the corrected results
of figures 13, 14 and 17 of Fedorov et al. (2003) respectively. Figure 1(a) depicts
the growth rate of two-dimensional disturbances σ ∗α (x

∗, f ∗, β∗ = 0) in a boundary
layer corresponding to the mean-flow parameters given in table 1 at a position x∗
equivalent to a Reynolds number R := U∗e l∗/ν∗e =

√
U∗e x∗/ν∗e of R = 1761.2. The

growth rate σ ∗α (x
∗, f ∗, β∗) is defined as σ ∗α :=−Im(α∗) for the case of locally parallel

LST. For the definition of σ ∗α applicable in the case of the non-parallel LST, we
refer to Fedorov et al. (2003). Additionally, figure 1 presents the maximum growth
rate of three-dimensional disturbances, i.e. σ ∗α,max := maxβ∗[σ ∗α (x∗, f ∗, β∗)], and the
corresponding wave angle ψ∗. Figure 2 presents similar results for a different position
in the boundary layer. Figures 1 and 2 correspond to the experimental conditions of
Fedorov et al. (2003). Whereas these conditions represent a nearly adiabatic wall
temperature, figure 4 represents a scenario with a cooled wall.

The stabilization of the second-mode disturbances due to the porous coating is also
observed with the corrected boundary conditions in figures 1, 2 and 4, similarly to
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FIGURE 2. (a) Growth rate of two-dimensional disturbances versus frequency at x∗ =
283.2 mm (R = 2095); locally parallel approximation. (b) Maximum growth rate of
three-dimensional disturbances versus frequency at x∗ = 283.2 mm (R = 2095); locally
parallel approximation. Dashed lines: solid wall; solid lines: porous wall with the corrected
boundary condition. Correction of figure 14 of Fedorov et al. (2003).

the original results. Furthermore, it can be seen that the porous medium shifts the
maximum growth rate associated with second-mode disturbances to lower frequencies.
This observation is in accordance with earlier studies of the stabilization effect of
porous coatings with regular microstructure, i.e. circular cylindrical holes, performed
by Fedorov et al. (2001), whose results remain unaffected by the present analysis.
The shift of the second-mode instability to lower frequencies therefore seems to be
independent of the particular porous coating under investigation. This conclusion is in
disagreement with the originally presented results, which indicated that the felt-metal
coating shifts the second-mode instability to higher frequencies. This difference can be
observed best when figure 17 of Fedorov et al. (2003) is compared with the present
figure 4.

As a direct consequence of the observed frequency shift, the changeover from
the oblique first-mode instability to the two-dimensional second-mode instability
takes place at lower frequencies, as can be observed by comparing the results of
figure 13(c) of Fedorov et al. (2003) with figure 1(c). Apart from the shift of the
frequency, a considerably increased value of the maximum second-mode growth rate
is observed with the corrected boundary condition, indicating a strong dependence of
the stabilization on the phase of the wall admittance and thereby indicating that the
norm of the reflection coefficient of the wall is not a good criterion for the design
of porous coatings.

The corrected linear stability results help to explain the presence of the low-
frequency lobe in the disturbance spectrum for natural disturbances measured on the
porous surface (see figure 4(b) of Fedorov et al. 2003). This lobe in the frequency
band from 100 to 200 kHz was originally attributed to the destabilization of the first
mode. As a consequence of the aforementioned corrected results, it can be concluded
that the presence of this lobe is associated with two independent trends: along
with the increase of the first-mode growth rate there is a shift of the second-mode
instability to lower frequencies, as can be seen in figure 2(a). The importance of
this shift is emphasized if the ratio Af (S5)/Af (S1) is analysed. This corresponds to
the ratio of the disturbance amplitude at location S5 (x∗ = 289.4 mm) and location
S1 (x∗ = 189.1 mm), near the leading edge of the porous surface (x∗ = 187 mm),
where the experimental mass-flow disturbance amplitude Af (x∗, Θ∗, f ∗) for natural
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FIGURE 3. Amplification of the two-dimensional component of the artificially excited
wavepacket of frequency f ∗ = 280 kHz, i.e. SA∗(x∗, β∗exp = 0), versus the theoretical
amplification curve Anum; (a) locally parallel theory versus experiment, (b) non-parallel
theory versus experiment. Theoretical result for the solid-wall case (dashed lines),
theoretical result for the porous-wall case with the corrected boundary condition
(dot-dashed lines), theoretical result for the porous-wall case as presented in Fedorov
et al. (2003) (solid lines), experiment on the solid wall (dashed lines with A symbol),
experiment on the porous wall (solid lines withE symbol). Correction of figures 15 and
16 of Fedorov et al. (2003).

disturbances and its corresponding phase Φ∗f are computed via the discrete Fourier
transform, i.e.

Af (x∗, Θ∗, f ∗) exp(iΦ∗f (x
∗, Θ∗, f ∗)) := 2

N

N∑
j=1

ṁ′max(x
∗, Θ∗, t∗j ) exp(−2πi f ∗ t∗j ). (3.1)

Here, N denotes the sample count, Θ∗ is the circumferential angle on the cone and
ṁ′max is the maximum of the non-dimensional mass-flow disturbance ṁ′, which is
defined as ṁ′ := ρ ′U+ ρU′, where ρ ′ and U′ are the experimentally measured density
disturbance and velocity disturbance respectively. In the experiments the maximum of
the mass-flow disturbance is computed over the coordinate normal to the axis of the
cone. Analogously to Af and Φ∗f for natural disturbances, the amplitude A(x∗, Θ∗)
and the phase Φ∗(x∗, Θ∗) can be defined for artificially excited disturbances of a
given frequency f ∗. The disturbance amplitudes plotted in figure 4 of Fedorov et al.
(2003) were measured at a circumferential angle of Θ = 0◦.

The ratio Af (S5)/Af (S1), which corresponds to the growth of the instability on
the porous surface, has a peak between 150 and 250 kHz and can most likely be
associated with a second mode, see figure 2(a). However, the presence of the lobe
cannot be attributed definitely to one or the other mode, as the frequency ranges of
both modes are overlapping for the porous-wall case, which is also apparent from the
computational results, e.g. figure 2(a). This conclusion is drastically different from
the conclusion made by Fedorov et al. (2003), who believed that the low-frequency
lobe is due entirely to first-mode instabilities.

3.2. Comparison of numerical and experimental amplification curves
Figures 3(a) and (b) present the correction of figures 15 and 16 of the original
paper and present a comparison between theoretical and experimental amplification
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FIGURE 4. Growth rate of two-dimensional disturbances as a function of frequency f ∗ at
various x∗, T∗w= 2 T∗e , Re∗1e= 107 m−1; locally parallel approximation; (i) x∗= 206.35 mm,
(ii) x∗= 298.72 mm, (iii) x∗= 406.05 mm, (iv) x∗= 515.79 mm. Dashed lines: solid wall;
solid lines: porous wall with the corrected boundary condition. Correction of figure 17 of
Fedorov et al. (2003).

curves. The experimental amplification curve represents the amplification of the
two-dimensional component of the artificially excited wavepacket, denoted SA∗

(x∗, β∗exp = 0), where β∗exp is the azimuthal wavenumber. The azimuthal wavenumber
β∗exp used in the experiments ([β∗exp] = rad deg−1) should be discerned from the
transverse wavenumber β∗ used in the linear stability calculations ([β∗] = rad m−1).
The amplitude SA∗ of the azimuthal wavenumber β∗exp component and its corresponding
phase SF∗ can be determined via

SA∗(x∗, β∗exp)exp(iSF∗(x∗, β∗exp)) :=
∫ Θ∗0

−Θ∗0
A(x∗, Θ∗)exp(i(Φ∗(x∗, Θ∗)− β∗expΘ

∗))dΘ∗,

(3.2)
where the limit of integration Θ∗0 was chosen in order to cover the entire wavepacket
in the experiments, and where the amplitude A(x∗, Θ∗) was calculated for artificially
exited disturbances with a frequency of f ∗ = 280 kHz. The experimentally obtained
amplification curve is compared with the numerical amplification curve Anum(x∗),
defined as

Anum(x∗) := Anum,0exp

(∫ x∗

x∗1(S1)

σ ∗α (x̃
∗, f ∗0 , 0)dx̃∗

)
, (3.3)

where Anum,0 is the amplitude at position S1, which is adjusted to match the
experimental results. The local growth rate for two-dimensional disturbances, is
determined by either the locally parallel LST or the non-parallel LST. For the results
presented in figure 3, the local growth rate was computed for a fixed frequency of
f ∗ = f ∗0 = 280 kHz and for the mean-flow parameters given in table 1.

Comparing the experimental and numerical results in figure 3, we can see that
with the corrected boundary condition, the theoretical results on the porous wall
based on the parallel flow assumption are in better agreement with the experimental
measurements than the originally published results (see figure 3(a)). In opposition
to this improved agreement for the locally parallel theory, the results based on
the weakly non-parallel theory show a considerable discrepancy compared with the
experimental data for the porous-wall case, for which in Fedorov et al. (2003) a
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nearly perfect agreement was erroneously observed (see figure 3(b)). Compared with
the locally parallel theory, the non-parallel theory predicts a smaller amplification
for the solid wall and for the porous wall. This observation is in opposition to the
results of Fedorov et al. (2003), where the non-parallel theory predicted an increased
amplification for the porous-wall case. The fact that for the porous-wall case the
presumably more accurate non-parallel theory shows less satisfactory agreement
with the experimental results needs to be analysed in the future. At this point, one
needs to be reminded that the growth rate of the non-parallel theory is dependent
on the distortion of the eigenfunction and therefore is affected by the choice of
the disturbance norm and the location of its evaluation. In the present work, the
disturbance measure was given by the mass-flow disturbance, which was evaluated
at the wall-normal location of the maximum mass-flow disturbance. Additionally,
it is reasonable to mention that the distributed roughness of the felt-metal surface
could lead to additional growth of the boundary-layer disturbances. In the experiments,
acoustic noise present in the hypersonic wind tunnel could interact with this roughness,
which could lead to a downstream increase in the disturbance amplitude. The linear
stability theory does not account for this effect, which could be present in the
experiment. Therefore, it is natural to assume that the stability theory can overpredict
the UAC performance. This is consistent with the results shown in figure 3(b).

4. Conclusion
An inconsistency between the normal-mode ansatz and the complex representation

of the felt-metal-coating model in the study of Fedorov et al. (2003) has been pointed
out and corrected. Furthermore, the resulting corrected linear stability calculations
have been presented.

The present corrected results, which indicate a shift of second-mode disturbances
to lower frequencies due to felt-metal coatings, help to explain the experimentally
obtained spectra of natural disturbances on the porous wall, as shown in figure 4(b) of
Fedorov et al. (2003). The large amplitude of the disturbances in the low-frequency
range from 100 to 200 kHz can be attributed to a destabilization of first-mode
disturbances and a shift of second-mode disturbances to lower frequencies on the
felt-metal coating. This shift to lower frequencies of the second mode is in accordance
with results for porous coatings with a regular microstructure and therefore seems to
be a feature independent of the type of the porous coating under investigation.

Additionally, it was observed that the locally parallel linear stability analysis on the
porous wall using the corrected boundary conditions shows an improved agreement
with the experimental results.

The major results of the linear stability analysis by Fedorov et al. (2003) remain
unaltered, i.e. the strong stabilization of second-mode disturbances and the minor
destabilization of first-mode disturbances are also observed with the corrected
boundary conditions. The conclusion that ultrasonically absorptive coatings may be
an attractive laminar flow control technique for hypersonic boundary layers remains
valid.
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FIGURE 5. An elementary cell of the felt-metal microstructure: a parallelepiped of
dimension b × b × 2d including two adjoining sections of fibres with diameter d and
mutually orthogonal axis (modified figure 11 of Fedorov et al. (2003), reprinted with
permission of the authors).

Appendix A. Statistical derivation of the viscous length scale r∗p
In Fedorov et al. (2003) the viscous length scale r∗p was not evaluated based

on equation (4.38), as was done in Allard & Champoux (1992). Rather, the expression
for r∗p was derived by using a statistical analysis of the elementary cell shown in
figure 5. Unfortunately, the details of the derivations were omitted in the original
publication and are given below.

Making use of an analogy with the kinetic theory of rarefied gases, we consider
a one-dimensional uniform stream of molecules within the porous material. The
molecules are colliding with the solid frame of the porous material. It is assumed
that the collision frequency per unit volume, Z ∗

FM, for molecules moving parallel to
the felt-metal (FM) surface (in the (x, y)-plane) is proportional to the projected area
of fibres, i.e.

Z ∗
FM =B∗(n∗M, c̄∗) · n∗S · (S∗xz + S∗yz), (A 1)

where n∗M is the number of molecules per unit volume, n∗S is the cell density (average
number of elementary cells per unit volume), c̄∗ is the average molecular speed, and
S∗xz and S∗yz are the areas of the fibres projected to the (x, z)-plane and (y, z)-plane
respectively. The parameter B∗ characterizes the number of molecules colliding with a
unit surface area per unit time. For a rarefied gas, i.e. for Knudsen numbers Kn� 1, it
can be expressed explicitly as B∗= n∗M c̄∗/4. For small Knudsen numbers, B∗(n∗M, c̄∗)
can differ from the expression for a rarefied gas. However, this does not affect the
final result. Based on figure 5, the projected areas can be computed as

S∗xz = S∗yz = d∗b∗
(

1+ πd∗

4b∗

)
(A 2)

and the cell density can be evaluated as

n∗S =
1

2d∗b∗2
, (A 3)

where b∗ is the cell size of an elementary cell of the felt-metal microstructure.
Substitution of n∗S, S∗xz and S∗yz in (A 1) yields

Z ∗
FM =B∗

(
1+ πd∗

4b∗

)
b∗

(A 4)

for the collision frequency inside the felt-metal.
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The same calculation can be performed for a long cylindrical pore of radius r∗
and height H ∗, with the axis of the cylindrical pore directed along the z-axis. The
collision frequency for this configuration reads

Z ∗
Cyl =B∗

2πr∗H ∗

πr∗2 H ∗ =B∗
2
r∗
. (A 5)

The collision frequencies Z ∗
Cyl and Z ∗

FM can be equated in order to obtain the radius
of the equivalent pore,

r∗p =
2b∗

1+ πd∗

4b∗

. (A 6)

Equation (A 6) can be combined with the expression for the porosity of the felt-metal,
i.e.

φ = 1− πd∗

4b∗
, (A 7)

in order to obtain
r∗p =

πd∗

2(1− φ)(2− φ). (A 8)

Equation (A 8) coincides with equation (4.40) of the original paper and was used
together with (A 7) in all the numerical computations of the present as well as the
original paper. The erroneous equation (4.39) of the original paper was unfortunately
used in the analysis of Wang & Zhong (2012).
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