
J. Fluid Mech. (2021), vol. 915, A15, doi:10.1017/jfm.2021.61

Scaling behaviour of small-scale dynamos driven
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A numerical investigation of convection-driven dynamos is carried out in the plane layer
geometry. Dynamos with different magnetic Prandtl numbers Pm are simulated over a
broad range of the Rayleigh number Ra. The heat transport, as characterized by the Nusselt
number Nu, shows an initial departure from the heat transport scaling of non-magnetic
Rayleigh–Bénard convection (RBC) as the magnetic field grows in magnitude; as Ra
is increased further, the data suggest that Nu grows approximately as Ra2/7, but with
a smaller prefactor in comparison with RBC. Viscous (εu) and ohmic (εB) dissipation
contribute approximately equally to Nu at the highest Ra investigated; both ohmic and
viscous dissipation approach a Reynolds-number-dependent scaling of the form Rea,
where a ≈ 2.8. The ratio of magnetic to kinetic energy approaches a Pm-dependent
constant as Ra is increased, with the constant value increasing with Pm. The ohmic
dissipation length scale depends on Ra in such a way that it is always smaller, and
decreases more rapidly with increasing Ra, than the viscous dissipation length scale for all
investigated values of Pm.
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1. Introduction

Planetary and stellar magnetic fields are ubiquitous throughout the observable Universe.
These magnetic fields are thought to be actively generated by the convection-driven
motion of electrically conducting fluid (Ossendrijver 2003; Jones 2011). Rayleigh–Bénard
convection (RBC), consisting of a fluid layer contained between plane parallel boundaries,
is a common system in which to study convection due to its simplicity, whilst retaining the
primary physical features expected to be important in many natural systems (Meneguzzi
& Pouquet 1989; Cattaneo 1999). Although RBC has been investigated in great detail
with regard to electrically insulating fluids, the influence of dynamo action on heat and
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momentum transport is less well understood. This study reports on numerical results of a
broad parameter survey of RBC-driven dynamos.

Natural dynamos can be distinguished by the characteristic length scale of the
self-generated magnetic field, relative to that of the forcing length scale. Large-scale
dynamos generate magnetic fields that are both system scale and forcing scale, whereas
small-scale dynamos generate magnetic fields with typical length scales that are
comparable with, or less than, the typical velocity length scale (Meneguzzi, Frisch &
Pouquet 1981; Rincon 2019; Tobias 2019). Breaking the reflectional symmetry of the flow
field via the Coriolis force, for instance, is known to be conducive to large-scale dynamo
action (Parker 1955; Steenbeck, Krause & Rädler 1966; Moffatt 1970; Childress & Soward
1972; Calkins et al. 2015); such effects are likely to be important for the generation of the
global-scale components of planetary and stellar magnetic fields. However, small-scale
dynamos are also relevant, especially with regard to the Sun’s outer convective layer,
where an intense small-scale field is generated.

Two global diagnostic quantities of central interest in convection are the rate of heat
transport through the layer and the typical flow speed, as measured by the non-dimensional
Nusselt number, Nu, and the Reynolds number, Re, respectively. For a fixed value of the
thermal Prandtl number, Pr = ν/κ (where ν is the kinematic viscosity and κ is the thermal
diffusivity), convective flow regimes depend on the non-dimensional Rayleigh number,
Ra; functional relationships of the form Nu = f (Ra) and Re = g(Ra) (where f and g denote
generic functions) are sought. For heat transport with Pr = O(1) in non-rotating systems,
theory has suggested both a Nu ∼ Ra1/3 scaling, from marginal stability analysis of the
thermal boundary layer (Malkus 1954), and a Nu ∼ (Ra/Pr)1/2 scaling, which assumes an
ultimate regime in which the entire fluid layer becomes turbulent (Kraichnan 1962; Spiegel
1965); the former is independent of the fluid layer depth, whereas the latter is independent
of diffusion coefficients (ν, κ). The convective ‘free-fall’ scaling of Re ∼ (Ra/Pr)1/2,
thought to arise from a balance between nonlinear advection and the buoyancy force,
and expected to be valid when Re � 1, is consistent with the Nu ∼ (Ra/Pr)1/2 heat
transport scaling (e.g. Ahlers, Grossmann & Lohse 2009). Laboratory experiments and
numerical simulations observe a Nu ∼ Ra2/7 scaling over a significant range in Ra (e.g.
Castaing et al. 1989; Shraiman & Siggia 1990; Cioni, Ciliberto & Sommeria 1997), and
a transition to a Nu ∼ Ra1/3 scaling at the largest values of Ra (e.g. Cheng et al. 2015).
Two-dimensional numerical simulations find another transition to a still steeper scaling
near Ra ∼ 1013, where Nu ∼ Ra0.35 is observed (Zhu et al. 2018). Scaling behaviour close
to Re ∼ Ra1/2 has been observed in both low-Prandtl-number fluids (Vogt et al. 2018)
and Pr = O(1) fluids (Qiu & Tong 2001). Numerical simulations in a triply periodic
geometry show both the Nu ∼ Ra1/2 and Re ∼ Ra1/2 scaling (Lohse & Toschi 2003),
providing evidence that these ‘ultimate’ scalings are indeed relevant for RBC, and that
the presence (or absence) of thermal and kinetic boundary layers dictates the observed
scaling exponents.

The work of Meneguzzi & Pouquet (1989) showed that RBC acts as an efficient
source of energy for dynamo action, provided the flow is driven sufficiently. Subsequent
numerical investigations, both Boussinesq and compressible, have shown that magnetic
field tends to be localized to the upwelling and downwelling regions (Cattaneo, Emonet
& Weiss 2003; Bushby & Favier 2014). A common belief is that small-scale non-rotating
dynamos equilibrate when both the kinetic and magnetic energies are comparable to each
other, a hypothesis that seems to be supported by numerical studies (Cattaneo et al. 2003;
Haugen, Brandenburg & Dobler 2004). However, the heat and momentum transport in
RBC-driven dynamos remains largely unexplored; it is currently unknown what influence
dynamo action has on the scaling behaviour of both Nu and Re with varying Ra.
915 A15-2
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Viscous dissipation plays a fundamental role in heat transport in non-magnetic RBC.
In a statistically stationary state, the viscous dissipation εu is directly related to Nu
(e.g. Chandrasekhar 1961). The scaling behaviour of Nu with Ra is therefore intimately
connected with the scaling of εu, and therefore also with the scaling of Re. The
non-dimensional Taylor microscale λu is often used to characterize the length scale at
which viscous dissipation becomes dominant; the scaling behaviour of λu with Re is
therefore thought to control the observed Nu–Ra scaling (e.g. Grossmann & Lohse 2000).
In RBC-driven dynamos, both viscous and ohmic dissipation are present. Clearly, the
presence of ohmic dissipation provides an additional degree of freedom when determining
heat transfer scaling laws (e.g. Zürner et al. 2016); understanding heat and momentum
transport in RBC-driven dynamos therefore requires an understanding of both λu and an
analogous ohmic dissipation scale λB.

Two additional parameters that are important in dynamos are the magnetic Prandtl
number, Pm = ν/η (where η is the magnetic diffusivity), and the magnetic Reynolds
number, Rm = Pm Re. The magnetic Reynolds number characterizes the relative size of
magnetic induction compared to magnetic diffusion. Planetary interiors (French et al.
2012; Pozzo et al. 2013) and liquid-metal experiments (e.g. Cioni, Chaumat & Sommeria
2000; Aurnou & Olson 2001) are characterized by Pm ∼ O(10−5), and typical values in
the Sun range from Pm ∼ O(10−6) to Pm ∼ O(10−3) (Ossendrijver 2003). These physical
values lead one to conclude that Rm � Re in planets and stars. On the other hand, Pm
can be as large as O(1022) in protogalactic plasmas, in which case the opposite limit
Rm � Re occurs (Schekochihin, Boldyrev & Kulsrud 2002a). Although natural dynamo
systems have a widespread range of Pm, direct numerical simulation (DNS) studies are
limited to relatively modest values of 10−2 � Pm � 10, due primarily to limitations in
accessing large values of Re and/or Rm (Sheyko, Finlay & Jackson 2016; Schaeffer et al.
2017; Rincon 2019).

Simulations of isothermal, mechanically forced dynamos in triply periodic domains
have yielded insight into the behaviour of (λu, λB) with varying Re and Rm, and the scaling
behaviour of the magnetic and kinetic energies. Brummell, Cattaneo & Tobias (2001)
found a scaling of the form λB ∼ Rm−1/2 that arises when a balance between magnetic
field generation and diffusion is present. A scaling law for magnetic energy (at small Rm),
Emag ∼ Re−1Rm1/2, was also derived based on a balance between Lorentz force and the
part of the viscous force that is induced by the magnetic field. Haugen et al. (2004) showed
that, for a fixed value of Pm, the ratio of magnetic energy to kinetic energy (Emag/Ekin)
converges to a constant value as the Reynolds number increases. It was also found that the
ratio of ohmic dissipation to viscous dissipation (εu/εB) converges for large Re, while the
converged value is weakly influenced by Pm.

A phenomenological model has been proposed to address the saturation of the ratio of
magnetic energy to kinetic energy (Emag/Ekin) for large Pm (Schekochihin et al. 2002b;
Tobias et al. 2013). The saturation process begins when the magnetic energy becomes
comparable with the kinetic energy at the viscous scale. The magnetic field and velocity
are modified scale-by-scale until, eventually, an equipartition between the two energies
is reached at the integral scale. When Pm is large but Pm < Re1/2, only a fraction of
the equipartition is reached, and a saturated level of Emag/Ekin ∼ Pm/Re1/2 is derived.
For small Pm, where Pm � 1, it is expected that the saturated level of the energy ratio
becomes independent of Pm, and the energy ratio Emag/Ekin approaches a constant value
(Fauve & Pétrélis 2007).

The primary goal of the present study is to investigate the scaling behaviour of heat
and momentum transport in RBC-driven dynamos, and the associated balances in the
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momentum and induction equations. The scaling of viscous and ohmic dissipation and
their contribution to heat transport are analysed. The influence of the magnetic Prandtl
number on the length scales associated with the velocity and magnetic fields, as well as
the ratio of magnetic energy to kinetic energy, will also be discussed. In § 2 the governing
equations and numerical methods are discussed; in § 3 the results of the numerical
simulations are presented; and concluding remarks are given in § 4.

2. Governing equations and methods

We consider a fluid layer of depth H that is confined between plane parallel
boundaries with temperature difference �T = Tbot − Ttop > 0, where Tbot and Ttop are the
temperatures of the bottom and top surfaces, respectively. The gravitational acceleration
has constant magnitude g, and points perpendicular to the bottom boundary. The fluid
has density ρ, kinematic viscosity ν, thermal expansion coefficient α, thermal diffusivity
κ , magnetic permeability μ and magnetic diffusivity η. The governing equations are
non-dimensionalized using the layer depth H, the large-scale magnetic diffusion time scale
H2/η, and magnetic field scale B = √

ρμνη/H. The equations are then given by

(∂t − Pm∇2)u = u × (∇ × u) + Pm(∇ × B) × B + Ra Pm2

Pr
θ ẑ − ∇p, (2.1)

(∂t − ∇2)B = ∇ × (u × B), (2.2)(
∂t − Pm

Pr
∇2

)
θ = −u · ∇θ, (2.3)

∇ · u = 0, (2.4)

∇ · B = 0, (2.5)

where u = (u, v, w) is the velocity field, B = (Bx, By, Bz) is the induced magnetic field,
θ is the temperature, p is the pressure and the Cartesian coordinate system is denoted by
(x, y, z).

The Rayleigh number (Ra), thermal Prandtl number (Pr) and magnetic Prandtl number
(Pm) are defined as

Ra = gα�TH3

νκ
, Pr = ν

κ
and Pm = ν

η
. (2.6a–c)

The particular values used for the fluid properties, as specified by Pr and Pm, are
determined by computational restrictions, and an interest in accessing dynamical regimes
that are applicable to geophysical and astrophysical systems. Planetary interiors are
characterized by Pr � Pm, with a ratio Pr/Pm ≈ 105. In contrast, the Sun and other stars
are composed of plasmas that typically have Pr � Pm. Both the Pr/Pm < 1 and Pr/Pm >

1 regimes are therefore of physical interest, though both are also computationally
demanding. Extreme spatial resolutions are required to reproduce the wide separation of
magnetic and velocity scales (Tobias et al. 2013). In this study, Pm is varied from 0.8 to 7,
while for the majority of our cases Pr is fixed to unity; a set of simulations with Pr = 0.05
and Pm = 1 is also presented.
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Scaling behaviour of small-scale dynamos

The mechanical boundary conditions are impenetrable and stress-free such that

w = ∂u
∂z

= ∂v

∂z
= 0 at z = 0, 1. (2.7)

The thermal boundary conditions are isothermal,

θ = 1 at z = 0, and θ = 0 at z = 1. (2.8a,b)

The magnetic field is enforced to be vertical at the boundaries,

Bx = By = 0 at z = 0, 1. (2.9)

Since the magnetic field is solenoidal, the above boundary conditions automatically imply
that

∂Bz

∂z
= 0 at z = 0, 1. (2.10)

Note that, although the boundary conditions on the magnetic field allow for the
development of a non-zero horizontally averaged (mean) magnetic field, no appreciable
mean field has been observed in the simulations reported here. As the system is
non-rotating, this is to be expected.

2.1. Energy relations
If we ‘dot’ the momentum equation (2.1) with u and volumetrically average the result, we
obtain

∂t[ 1
2 u2] = Pm[u · J × B] + Ra Pm2

Pr
[wθ ] − Pm[ζ 2], (2.11)

where the square brackets [·] denote a volumetric average only (no time average) and the
vorticity vector and the current density vector are denoted by ζ = ∇ × u and J = ∇ × B,
respectively. Similarly, by dotting the induction equation (2.2) with B, we obtain

∂t[ 1
2 B2] = −[u · J × B] − [J 2]. (2.12)

Multiplying the kinetic energy equation (2.11) by (1/Pm2) and the magnetic energy
equation (2.12) by (1/Pm), and adding the results gives

∂t[ekin + emag] = Ra
Pr

[wθ ] − 1
Pm

[ζ 2] − 1
Pm

[J 2], (2.13)

where we define the kinetic energy density and the magnetic energy density as,
respectively,

ekin = 1
2Pm2 u2, (2.14)

emag = 1
2Pm

B2. (2.15)

The only requirement for the scalings of the energy densities is that their ratio differs by a
non-dimensional factor of Pm. The scalings used above are essentially in viscous diffusion
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time scale units, and therefore facilitate comparison with RBC simulations (including
those reported here). If we now time-average equation (2.13), we obtain

0 = Ra
Pr

〈wθ〉 − 1
Pm

〈ζ 2〉 − 1
Pm

〈J 2〉, (2.16)

which simply states that the work done by the buoyancy force is exactly balanced by the
combined effects of ohmic and viscous dissipation.

The energy balance relationship (2.16) can be put into a slightly more useful form by
introducing the Nusselt number, Nu, which is defined as the ratio of total heat transfer
(convective and conductive) to conductive heat transfer. In our non-dimensional units, this
becomes

Nu = 1 + Pr
Pm

〈wθ〉. (2.17)

Therefore, the energy balance becomes

Ra
Pr2 (Nu − 1) = εB + εu, (2.18)

where we define the ohmic and viscous dissipation as

εB = 1
Pm2 〈J 2〉 and εu = 1

Pm2 〈ζ 2〉. (2.19a,b)

We note that, given our isothermal boundary conditions, an equivalent definition of the
Nusselt number is given by

Nu = − ∂θ̄

∂z

∣∣∣∣
z=0

, (2.20)

where θ̄ is the horizontally and time-averaged (mean) temperature. Multiplying the
heat equation by θ and space-time averaging the resulting equation then gives another
equivalent definition of the Nusselt number,

Nu = Pm
Pr

〈|∇θ |2〉, (2.21)

where the quantity on the right-hand side is often referred to as the thermal dissipation.
In reporting our numerical results, we shall only make use of the volume- and

time-averaged kinetic and magnetic densities, which we denote by, respectively,

Ekin ≡ 〈ekin〉, (2.22)

Emag ≡ 〈emag〉. (2.23)

Similarly, the Reynolds number is computed as

Re =
√

2Ekin. (2.24)

2.2. Simulation details
The equations are solved using a standard toroidal–poloidal decomposition of the velocity
and magnetic field such that the solenoidal conditions are satisfied exactly (e.g. Jones &
Roberts 2000). A fully spectral code (Marti, Calkins & Julien 2016) is used for simulating
the above equations with Fourier series in the horizontal dimensions and Chebyshev
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polynomials in the vertical dimension. The nonlinear terms are dealiased with the standard
two-thirds rule. The equations are discretized in time with a third-order implicit–explicit
Runge–Kutta scheme (Spalart, Moser & Rogers 1991). The code was benchmarked with
the studies of Meneguzzi & Pouquet (1989) and Cattaneo et al. (2003).

While the most extreme three-dimensional RBC simulations have reached Rayleigh
numbers as large as Ra ≈ 1012 (e.g. Stevens, Lohse & Verzicco 2011), the accessible
range of Rayleigh numbers in dynamo simulations is restricted to significantly smaller
values of Ra. As shown below, the ohmic dissipation scale is always smaller than the
viscous dissipation scale for the cases studied here, implying that much higher spatial
resolution is required to simulate dynamos in comparison to RBC. For example, for a
Pm = 5 dynamo, the required resolutions in both the horizontal and the vertical directions
are up to approximately two times the resolution needed for an equivalent Rayleigh number
for RBC. Moreover, the existence of Alfvén waves in dynamos requires a significantly
smaller numerical time step in comparison to RBC. As Pm (or Rm) is increased, the
spatiotemporal resolution requirements become increasingly severe.

The aspect ratio of the computational domain is defined as

Γ = L
H

, (2.25)

where L is the periodicity length in the x and y dimensions (only domains of square
cross-section are considered here). The horizontal dimensions are scaled by integer
multiples (n) of the critical horizontal wavelength λc = 2π/kc, where kc is the critical
horizontal wavenumber. For the impenetrable, stress-free, isothermal boundary conditions
used in the present work, the critical Rayleigh number and critical wavenumber for the
onset of hydrodynamic convection are Rac = 27π4/4 ≈ 657.5 and kc = π/

√
2 ≈ 2.22,

respectively. Thus, the aspect ratio is given by

Γ = 2πn
kc

≈ 2.83n. (2.26)

While large aspect ratios are generally preferred, they are obviously more computationally
demanding due to the larger resolution requirements. The aspect ratio is known to have
an influence on many computed quantities, though it is expected that simulation statistics
will converge as Γ is increased. Three-dimensional RBC simulations using aspect ratios
up to Γ = 128 show that, whereas bulk quantities such as Nu and Re asymptote to nearly
constant values near Γ ≈ 4 for Ra � 2 × 107, other statistical quantities such as integral
scales require significantly larger values of Γ to observe convergence (Stevens et al. 2018).
Nevertheless, there is a trade-off between reaching larger aspect ratios and reaching larger
Rayleigh numbers. In the present work we strive to reach large Rayleigh numbers while
achieving convergence in Nu and Re; the smallest aspect ratio used here is Γ ≈ 5.7. All
simulation parameters are listed in the Appendix.

3. Results

3.1. Onset of dynamo action
Dynamo simulations were carried out with five different values of the magnetic Prandtl
number, Pm = (0.8, 1, 3, 5, 7). Approximate values for the critical magnetic Reynolds
number for the onset of dynamo action, Rmd, were determined for each value of Pm by
iterating the Rayleigh number Ra. Each simulation was started from an initial state with
small random noise in the magnetic field. In this regime, the influence of the Lorentz force
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Figure 1. Estimated values of the critical magnetic Reynolds number Rmd and the critical Rayleigh number
Rad for the onset of dynamo action. (a) Exponential growth rate (γ ) of magnetic energy versus magnetic
Reynolds number (Rm). (b) Exponential growth rate (γ ) of magnetic energy versus Rayleigh number (Ra).
The interpolated critical magnetic Reynolds number (Rmd) and the critical Rayleigh number for dynamo action
(Rad) for each magnetic Prandtl number (Pm) are shown by a ‘×’ symbol. (c) Plot of Rmd versus Pm; and
(d) plot of Rad versus Pm.

is negligible in comparison to other forces, and the magnetic energy would undergo an
exponential growth (on average) if Rm(Ra) > Rmd, and exponential decay (on average)
when Rm(Ra) < Rmd. The growth or decay rate of magnetic energy is denoted by γ , and
was computed by a least-squares fit of the form ln(Emag) = γ t + b, where b is a constant
coefficient for individual cases. We note that γ is twice the dynamo growth rate.

As shown in figure 1(a,c), the critical magnetic Reynolds number is estimated by a linear
interpolation between the cases close to the onset of dynamo action. Some additional cases
not shown on the plot were also simulated; however, these cases were found to be so close
to Rmd that the magnetic energy oscillated over a wide range and no clear exponential
growth or decay was observed, confirming that our estimated Rmd values are very close to
the exact values. The critical magnetic Reynolds number shown in figure 1(a) suggests that
Rmd decreases with increasing Pm; this result is expected and in agreement with previous
studies (e.g. Schekochihin et al. 2007; Käpylä, Käpylä & Brandenburg 2018).

Bushby et al. (2012) and Käpylä et al. (2018) showed that dynamo action can be excited
at a smaller value of Rmd with the use of a larger aspect ratio. Käpylä et al. (2018) found
that, when Pm = Pr = 1, an aspect ratio Γ � 3 is needed for the growth rate to saturate. In
all of our simulations (including those cases with Pr < 1), an aspect ratio of at least Γ �
8.5 is used for the determination of Rmd; thus the simulation domain should be sufficiently
large to avoid the issue arising from the use of small values of Γ .

While a small subset of simulations were performed with Pr = 0.01 and Pr = 0.05, we
did not systematically test the role of the aspect ratio for these cases. A single set of tests
for Pr = 0.05 (where we increased the aspect ratio Γ from ≈8.5 to ≈14.1) showed that
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increasing the aspect ratio did decrease the growth rate. However, the estimated values of
Rmd and Rad were influenced only slightly.

The critical Rayleigh numbers for dynamo action (Rad) are estimated using the same
procedure as that used for computing Rmd. As shown in figure 1(b,d), Rad decreases as
Pm is increased. For Pm = (0.8, 1, 3, 5, 7) the estimated Rayleigh numbers for the onset
of dynamo action are Rad = (4.9 × 105, 2.2 × 105, 1.6 × 104, 5.2 × 103, 3.1 × 103). As
we will show in the following sections, these computed values of Rad can be useful for
collapsing specific data.

A selection of Pr = (0.01, 0.05) cases with Pm = 1 was also carried out to understand
how Pr influences dynamo action. Figure 1(a,c) shows that a smaller value of Pr yields
a lower value of Rmd when Pm is held constant. For Pr = (0.01, 0.05, 1) with Pm = 1,
we find critical magnetic Reynolds numbers of Rmd = (135, 138, 167). This effect might
occur because cases with lower Pr (at the same Rm and Pm) tend to have a more coherent
flow structure (e.g. Goluskin & Spiegel 2012; Pandey, Scheel & Schumacher 2018; Vogt
et al. 2018), which might be more beneficial to dynamo action. At the same Rm, dynamos
with coherent flow are found to have a larger growth rate than dynamos without coherent
structures (Tobias et al. 2013). However, a previous study of rotating spherical dynamos
suggested that higher values of Rm are required for dynamo action if Pr becomes too small,
though this effect is due to the influence of rotation (Simitev & Busse 2005). Nevertheless,
the Prandtl number appears to play an important role for the onset of small-scale dynamo
action; a more systematic investigation, beyond the scope of the present work, is needed to
understand this effect in detail.

3.2. Heat transport
In all results presented hereafter, we focus solely on the nonlinear regime of small-scale
dynamos. Figure 2(a) shows the Nusselt number (Nu) versus Ra for all the cases
investigated; the Nu ∼ Ra2/7 scaling is shown for reference. The compensated Nusselt
number (Nu/Ra2/7) is also plotted in figure 2(b). RBC cases without magnetic fields,
shown as the black circles, are also plotted for comparison. When the dynamos are
activated, the (Nu, Ra) curves depart from the RBC scaling. For each value of Pm, a
scaling slope slightly smaller than 2/7 (typically found in RBC at these parameter values)
appears. However, as Ra is increased further, these slopes appear to approach a 2/7 scaling
again, suggesting that the influence of Pm on the scaling of Nu is weak. For a fixed value
of Ra, the heat transfer is reduced as Pm is increased, or, equivalently, as the strength
of the magnetic field is increased. Though not shown, the dynamos exhibit similar mean
temperature profiles in comparison to RBC, as suggested by the similar heat transport
scaling.

In figure 3 both the viscous dissipation, εu, and the ohmic dissipation, εB, are
plotted versus the Reynolds number. As suggested in figure 3(a) and the corresponding
compensated plot shown in the inset, the viscous dissipation strongly depends on the
Reynolds number; a numerical fit of εu = 1.14Re2.78 is found and shown. We find that the
influence of Pm on εu is negligible. A scaling of εu ∼ Re3 has been derived for the viscous
dissipation in the bulk of the turbulent thermal convection (outside of the boundary layers),
while εu ∼ Re5/2 has been derived for the boundary layer (Grossmann & Lohse 2000;
Scheel & Schumacher 2017). We find that our computed scalings are intermediate between
these predicted scalings. Although ohmic dissipation cannot be determined purely by Re,
we observe that, in figure 3(b), ohmic dissipation is approaching the viscous dissipation
scaling line as Re increases. The compensated plot in figure 3(b) shows the asymptotic
scaling behaviour of εB ∼ Re2.78 when Re is large enough for each individual Pm.
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Figure 2. Heat transport for all cases: (a) Nusselt number (Nu) versus Rayleigh number (Ra); and
(b) compensated Nusselt number (Nu/Ra2/7) versus Rayleigh number.
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Figure 3. Dissipation for all cases: (a) viscous dissipation εu versus Reynolds number Re; (b) ohmic
dissipation εB versus Re; (c) fraction of ohmic dissipation fohm versus Ra; and (d) fohm versus Ra/Rad , where
Rad is the critical Rayleigh number for dynamo action. A compensated plot is also shown as an inset in
panels (a) and (b).

This result suggests that the hydrodynamics properties of the fluid might be controlling
both viscous and ohmic dissipation, and inertia appears to play a more important role in
the energy cascade than the Lorentz force.

A quantity that provides a useful comparison between viscous and ohmic dissipation is
the fraction of ohmic dissipation defined by

fohm ≡ εB

εu + εB
. (3.1)

Figure 3(c) shows fohm versus Ra for the dynamo cases. As expected, the flow is dominated
by viscous dissipation near the onset of dynamo action. For each value of Pm, fohm initially
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Figure 4. Vertical profiles of horizontally and time-averaged viscous dissipation εu(z) and ohmic dissipation
εB(z). (a) Profiles for Pm = 5 and Ra = 6 × 105 (Rm ≈ 1100). The corresponding non-magnetic case (RBC)
is also plotted for comparison. (b) Profiles for Pm = 5 and Ra = 1 × 107 (Rm ≈ 3900). The total dissipation
εu and εB are calculated by depth averaging the profile.

increases rapidly with increasing Ra, but appears to flatten and approaches fohm → 0.5 as
Ra is increased. For our most extreme case of Pm = 5 and Ra = 1 × 107 (our largest value
of Rm), a value of fohm ≈ 0.5 is reached, suggesting that, in the regime of large Ra, both
ohmic dissipation and viscous dissipation are contributing equally to heat transport.

As shown in figure 3(d), fohm (for a given Pr) collapses when plotted versus the
rescaled Rayleigh number Ra/Rad, where Rad is the critical Rayleigh number for dynamo
action estimated in the previous section. This result suggests that fohm only has a weak
dependence on Pm, while the degree of supercriticality of the Rayleigh number Ra/Rad is
playing the dominant role. Similar convergent behaviour of fohm that is weakly dependent
on Pm was also observed in the hydromagnetic study of Haugen et al. (2004), although
their converged fraction of ohmic dissipation is fohm ≈ 0.7. We notice that our Pr = 0.05
cases suggest that Pr appears not to have a strong influence on the saturated level of fohm,
though the convergence rates appear to be affected.

Vertical profiles of the horizontally and time-averaged local dissipation εu(z) and εB(z)
are shown in figure 4(a) for a typical dynamo with Pm = 5 and Ra = 6 × 105 (Rm =
1122). Note that here

εu(z) = 1
Pm2 (∇ × u)2, (3.2)

εB(z) = 1
Pm2 (∇ × B)2. (3.3)

The ohmic dissipation is dominant near the boundary, while viscous dissipation is
dominant in the bulk when Rm is not too large. We also observe that ohmic dissipation
has a markedly thinner boundary layer in comparison to that of the viscous dissipation.
Moreover, both profiles show similar structure within the interior, suggesting that both
dissipation mechanisms are dynamically linked. The vertical profile of viscous dissipation
for the equivalent RBC case is also shown in figure 4(a) for comparison. The viscous
dissipation structure of the dynamo remains very similar to that of the RBC case (although
their magnitudes are different), suggesting that viscous dissipation has a direct influence on
ohmic dissipation in the bulk. The dissipation profiles for our most extreme (largest value
of Rm) dynamo case corresponding to Pm = 5 and Ra = 1 × 107 are plotted in figure 4(b).
Here the boundary layers become much thinner and the dissipation is dominated by the
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Figure 5. Flow speeds for all cases: (a) Reynolds number versus Rayleigh number; and (b) compensated
Reynolds number (Re/Ra1/2) versus Rayleigh number.

contribution in the bulk. Again, we find that both profiles show similar structure within
the bulk, while the magnitudes are approaching similar values as the Rayleigh number is
increased.

The behaviour of the dissipation near the boundaries is probably influenced by the
choice of boundary conditions. Although we did not perform simulations with no-slip
mechanical boundary conditions (as opposed to the stress-free conditions used here),
three additional simulations with Pm = 5 and Ra = (1 × 104, 1 × 105, 6 × 105) were
performed in which electrically insulating electromagnetic boundary conditions were
used. With these insulating boundary conditions, we found that the depth dependence of
the dissipation profiles remained essentially unchanged relative to the vertical magnetic
field boundary conditions. Though we found differences in magnitudes of the total
dissipation, no systematic variation was investigated. We note that, although the ohmic
dissipation tends to be largest near the boundaries, the integrated contribution of this
boundary layer region to the total dissipation is relatively small due to the thinness of
the layer.

3.3. Flow speeds and energy
Figure 5(a,b) shows the Reynolds number Re and compensated Reynolds number
Re/Ra1/2 versus Ra for all cases. The convective free-fall scaling (Re ∼ Ra1/2) is shown
for reference. Curve fits to the data yield Re ∼ (Ra0.45, Ra0.43, Ra0.43, Ra0.44, Ra0.44) for
Pr = 1 and Pm = (0.8, 1, 3, 5, 7), respectively. We observe that, for the given values of
Pr and Ra, the dynamos tend to have smaller flow speeds in comparison to the RBC data,
since the magnetic energy comes at the cost of kinetic energy. As Ra is increased, the
dynamos show a departure from the RBC scaling. The compensated Reynolds number
shown in figure 5(b) shows that this departure is very slight, though there is a trend of
increased departure with increasing Pm. The Pr = 0.05 cases show the most rapid growth
of Re with increasing Ra, though there are insufficient data to suggest any significant
difference in scaling behaviour between the different Prandtl numbers. Despite the fact
that approximately half of the dissipation is ohmic (i.e. fohm ≈ 0.4) for the Pr = 0.05
cases, there is very little difference in flow speeds between the dynamos and RBC. Of
course, the Nusselt numbers for these Pr = 0.05 cases are rather small: Nu � 4.

The efficiency of the dynamos can be measured by the ratio of the magnetic energy to
the kinetic energy (Emag/Ekin). As shown in figure 6(a), cases with different values of Pm
show similar behaviour: (Emag/Ekin) increases as Ra is increased, and it appears that the

915 A15-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.61


Scaling behaviour of small-scale dynamos

10–2

104 100 102101 103106

100

10–2

10–3

10–1

Pr = 1, Pm = 0.8

Pr = 0.05, Pm = 1
Pr = 1, Pm = 7
Pr = 1, Pm = 5
Pr = 1, Pm = 3
Pr = 1, Pm = 1

Ra Ra/Rad

E m
ag

/E
ki

n

E m
ag

/E
ki

nP
m

2
/3

(b)(a)

Figure 6. (a) The ratio of magnetic energy to kinetic energy (Emag/Ekin) versus the Rayleigh number Ra.
(b) The rescaled energy ratio Emag/(EkinPm2/3) versus the rescaled Rayleigh number (Ra/Rad), where Rad is
the critical Rayleigh number for dynamo action.
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Figure 7. Magnetic energy for all cases: (a) magnetic energy versus Rayleigh number; and (b) compensated
magnetic energy (Emag/(Ra Pm2/3)) versus rescaled Rayleigh number Ra/Rad .

ratio approaches constant values at large Rayleigh number. The convergence of the energy
ratio was also observed in the mechanically forced dynamo simulations of Haugen et al.
(2004); however, the dependence on magnetic Prandtl number was not discussed. The data
can be reasonably collapsed by rescaling the energy ratio with Pm2/3, and rescaling the
Rayleigh number with Rad, as shown in figure 6(b). Since the growth of Re depends on
Pr (e.g. figure 5a,b), we do not expect the Pr = 0.05 data to follow the same trend as the
Pr = 1 data. When Ra/Rad is large enough, dynamos with larger Pm can transfer kinetic
energy to magnetic energy more efficiently. We note that for Ra = 5 × 105 and Pm = 5
the energy ratio Emag/Ekin ≈ 0.2 agrees with the result of Cattaneo et al. (2003). Our
results suggest that this value represents the approximate asymptote for the energy ratio
when Pm = 5, and that the asymptote is Pm-dependent.

The magnetic energy is plotted versus Rayleigh number in figure 7(a). The Emag ∼ Ra
scaling is shown for reference. The magnetic energy increases relatively rapidly with Ra
beyond the onset of dynamo action, but appears to flatten and approaches Emag ∼ Ra
at large values of Ra/Rad. Note that, since the energy ratio (Emag/Ekin) saturates at
large Ra/Rad, we expect that the magnitude of the magnetic energy must grow with
Ra/Rad at the same rate as the flow speed squared. The compensated magnetic energy
(Emag/(Ra Pm2/3)) versus the rescaled Rayleigh number Ra/Rad is shown in figure 7(b).
The Pm2/3 dependence is purely an ad hoc fit to the data and is only meant to provide a
rough scaling with Pm in the asymptotic regime The curves become relatively flat at large
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Rayleigh numbers, suggesting that the Emag ∼ Ra scaling might be an asymptotic result
for high-Rm RBC dynamos.

3.4. Length scales
The characteristic length scales are computed for all simulations. Two length scales
are computed: (i) the Taylor microscale; and (ii) the integral length scale. The Taylor
microscale is the length scale at which the influence of viscous or ohmic dissipation
becomes important, and can thus provide an estimate for the dissipation length scales.
In contrast, the integral scale is the correlation length scale for the corresponding field.
The magnetic Taylor microscale λB and the velocity Taylor microscale λu are defined by,
respectively,

λB =
√

〈B2〉
〈(∇ × B)2〉 (3.4)

and

λu =
√

〈u2〉
〈(∇ × u)2〉 . (3.5)

Note that these length scales are computed over the entire fluid layer, including the
boundary layers. Some tests were done in which the boundary layers were excluded from
the calculation, and showed that their influence was negligible. We therefore only present
calculations that included the entire fluid layer.

The velocity and magnetic Taylor microscales are plotted versus the Rayleigh number
in figure 8(a), which shows in detail how these length scales are modified by Pm. The
velocity Taylor microscale λu shows very little change with increasing Pm. Some of
the data points show a small increase in λu with increasing Pm; this effect can be
understood by the fact that the dynamo converts kinetic energy into magnetic energy
and therefore results in a slight decrease of the Reynolds number for a given value
of Ra. However, there is no appreciable difference in the scaling behaviour of λu
with Ra for the various values of Pm used here: curve fits to the data yield λu ∼
(Ra−0.153, Ra−0.171, Ra−0.170, Ra−0.167, Ra−0.169) for Pm = (0.8, 1, 3, 5, 7), respectively.
The scaling of λB is noticeably steeper than the scaling for λu; the corresponding curve
fits are λB ∼ (Ra−0.235, Ra−0.242, Ra−0.245, Ra−0.251, Ra−0.245) for Pm = (0.8, 1, 3, 5, 7),
respectively. We emphasize that for all of our simulations we use Pm = O(1).

Figures 8(b,c) show the velocity and magnetic Taylor microscales versus Reynolds
number and magnetic Reynolds number. We observe that Pm has an influence only on
the magnitude of λu and λB; however, the scaling behaviour of these length scales remains
basically the same for all Pm. The scaling λB ∼ Rm−1/2 is also plotted in figure 8(c) for
reference. Previous studies of mechanically forced isothermal dynamos suggested that λB
scales as Rm−1/2 for fixed Re at moderate Rm (Brummell et al. 2001). Both results have a
∼ Rm−1/2 dependence; however, we note that they are in a relatively low-Re and low-Rm
regime, and they assume that λB does not depend on Re and that the magnetic length scale
is determined by the balance between advection and diffusion in the induction equation.
Our result suggests that λB cannot be purely determined by Rm. As we will show in a
later section, there does exist a subdominant balance in the induction equation between
induction and diffusion for our cases. Of course, given the very different forcing and
boundary conditions between our investigation and that of Brummell et al. (2001), one
might expect differences in the scaling behaviour.
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Figure 8. Scaling behaviour of the magnetic Taylor microscale λB (filled symbols) and velocity Taylor
microscale λu (empty symbols). (a) Taylor microscale plotted against Rayleigh number. (b) Taylor microscale
plotted against Reynolds number. (c) Taylor microscale plotted against magnetic Reynolds number. (d) The
rescaled magnetic Taylor microscale (λBPm0.30) versus Rayleigh number. (e) The rescaled magnetic Taylor
microscale (λBPm0.35) (filled symbols) and the velocity Taylor microscale (λu) (empty symbols) versus the
Reynolds number.

As shown in figure 8(d), the magnetic Taylor microscale collapses when rescaled with
Pm; a best fit yields λBPm0.30 = 1.29Ra−0.25. Since Re scales with Ra, we also plot
the magnetic Taylor microscale as a function of Re in figure 8(e), where a scaling law
λBPm0.35 = 1.1Re−0.56 is found. Figure 8(e) shows that the velocity Taylor microscale
collapses very well when plotted against Re, which suggests that the influence of Pm on
the velocity length scale is very weak, and that the magnetic field has a small effect. Curve
fits for all dynamo cases as well as RBC cases yield λu = 0.97Re−0.39. For Kolmogorov
turbulence, a scaling law of λu ∼ Re−1/2 is obtained (Pope 2000). However, dynamos in
the RBC geometry cannot be characterized by homogeneous isotropic turbulence, so it is
reasonable to expect a modified scaling here. The absence of Pm in this scaling law is also
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expected, as the viscous dissipation appears to be independent of Pm within our accessible
parameter range.

It is commonly hypothesized that the ohmic dissipation length scale will occur within
the inertial range of the turbulence when Pm � 1 (Re � Rm) (e.g. Rincon 2019; Tobias
2019). Such a regime requires, at a minimum, that λB � λu. Though the simulations in
the present study are obviously limited with respect to the accessible parameter range,
especially in the restriction to Pm = O(1), we observe λu > λB in all cases. Moreover, the
results (especially the Pm = 0.8 cases) shown in figure 8 indicate that the scaling slope
(as a function of Ra, Re and Rm) for the ohmic dissipation length scale is always steeper
than the corresponding slope for the viscous dissipation length scale, and that this slope
remains mostly independent of Pm. The case Pm = 0.8 was chosen to allow Pm < 1,
while retaining a sufficiently large Rm; while this particular case is certainly not a small
magnetic Prandtl number, we do not observe a change in the scaling slope with this case
relative to Pm � 1. Thus, at least for the limited parameter range of the present study,
there is no indication that the slopes change drastically either with increasing Ra or with
decreasing Pm. However, the Pm we explored here are Pm ∼ O(1), so it remains unclear
whether there would be a change in the scaling slope for ohmic dissipation scale when
Pm � 1. In that case, we might expect a larger ohmic dissipation scale than the viscous
scale.

The depth-dependent integral scales for the magnetic field and velocity field are defined,
respectively, by (e.g. Meneguzzi & Pouquet 1989)

B =

∫
k−1Êmag(k) dk∫

Êmag(k) dk
, u =

∫
k−1Êkin(k) dk∫

Êkin(k) dk
, (3.6a,b)

where Êmag(k) and Êkin(k) are the magnetic and kinetic energy spectra, k = (kx, ky) is

the horizontal wavenumber vector and k =
√

k2
x + k2

y . The corresponding depth-dependent
Taylor microscales can be computed with the definitions

λ′B =

⎛
⎜⎜⎝

∫
Êmag(k) dk∫

k2Êmag(k) dk

⎞
⎟⎟⎠

1/2

, λ′u =

⎛
⎜⎜⎝

∫
Êkin(k) dk∫

k2Êkin(k) dk

⎞
⎟⎟⎠

1/2

. (3.7a,b)

We observe a weak dependence on the depth for all of the computed length scales defined
above, and therefore only report the depth-averaged values.

The time-averaged values of the spectra-based length scales are calculated for many
of the Pm = 5 cases. As shown in figure 9, we find nearly identical scaling behaviour
between both λ′B and λB, and λ′u and λu. As expected, a divergence between the velocity
Taylor microscale and the velocity integral scale occurs as the Reynolds number (Rayleigh
number) increases. However, figure 9 also shows that the scale separation for the magnetic
field is relatively weak, since the scaling slopes for the two magnetic length scales are
close to one another. The integral scale for the velocity appears to be sensitive to the
change of aspect ratio (e.g. Stevens et al. 2018). As a result, some velocity integral-scale
data do appear to follow a clear scaling trend. We should note that the magnetic integral
scale appears to have a slope very close to the velocity Taylor microscale, which indicates
that there is correlation between the viscous force and the Lorentz force (or magnetic
induction).
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Figure 9. Depth-averaged length scales for Pm = 5: the velocity Taylor microscale (λu) calculated from
energy and dissipation, the velocity Taylor microscale (λ′u) calculated from energy spectra, and the velocity
integral scale (u) plotted versus Rayleigh number. The corresponding magnetic length scales are also shown.

3.5. Energy spectra
Figures 10(a,b) show how the kinetic and saturated magnetic energy spectra change with
Rayleigh number for Pm = 5 dynamos. The Êkin(k) ∼ k−5/3 scaling (typically found in the
Kolmogorov inertial subrange) is also plotted for reference in figure 10(a), which shows the
development of an inertial subrange. The magnetic energy spectra appear to flatten over a
large range of wavenumber as Ra is increased. For a fixed Rayleigh number, kinetic energy
dominates over magnetic energy at large scales. However, for all our (Pm ∼ O(1)) cases,
magnetic energy spectra exceed kinetic energy spectra for large wavenumbers. As shown in
figure 10(c), the magnetic energy becomes slightly larger than the kinetic energy at small
scales, even for the Pm = 0.8 cases. A k1/3 scaling behaviour for the magnetic energy
spectra at large scales has been observed in the previous hydromagnetic turbulence study
of Haugen et al. (2004); they also found a k−5/3 subrange after the peak of the magnetic
energy spectra. These two slopes are plotted in figure 10(b) only for reference, since we
do not expect the scalings to be the same for the two different systems. We note that
the change in magnetic energy spectra occurs at the wavenumber where the magnitudes
of magnetic energy and kinetic energy are comparable. The kinetic energy spectra for
RBC (and the k−5/3 slope) are also plotted in figure 10(d) for reference. We observe that,
when compared with the RBC cases, dynamo action reduces the amplitude of the peak
of the kinetic energy spectra and makes the spectra tail less steep. The reduction in the
peak amplitude is the result of transferring kinetic energy to magnetic energy by dynamo
actions, while the slight increase in the spectra at high wavenumber is due to the Lorentz
force driving motion at small scales as Pm > 1.

3.6. Forces
In this section we analyse the force balance in the momentum equation to understand
the role of the Lorentz force. For the vertical component of the momentum equation, we
remove the hydrostatic part by decomposing the flow variables into a horizontal average
and a fluctuation. For instance, u = Ū + u′, b = B̄ + b′ and Θ = Θ̄ + θ ′, where Ū , B̄
and Θ̄ are the horizontal mean components, u′, b′ and θ ′ are the fluctuating components,
and p′ is the reduced pressure. Under the present circumstances, we find that the mean
components Ū and B̄ are much smaller than the corresponding fluctuating components
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Ê
(k

)

Ê
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Figure 10. Energy spectra: (a) kinetic energy spectra for Pm = 5 dynamos; (b) magnetic energy spectra for
Pm = 5 dynamos; (c) energy spectra at Ra = 1 × 107 for Pm = 0.8 (Rm = 742) and Pm = 5 (Rm = 3948);
and (d) kinetic energy spectra for RBC. The spectral slopes of k1/3 and k−5/3 are plotted for reference only.

u′ and b′. The fluctuating vertical component of the momentum equation is found by
subtracting the mean (hydrostatic) balance to give

∂tw′︸︷︷︸
Ft

= Pm∇2w′︸ ︷︷ ︸
Fv

+ (−u′ · ∇w′ + ∂zw′2)︸ ︷︷ ︸
Fa

+ Pm(b′ · ∇b′
z − ∂zb′2

z )︸ ︷︷ ︸
Fl

+ Ra Pm2

Pr
θ ′︸ ︷︷ ︸

Fb

− ∂zp′︸︷︷︸
Fp

.

(3.8)
We use the same symbols for denoting the various terms in the horizontal components of
the momentum equation.

The time-averaged root-mean-squared (r.m.s.) values of the different terms in the
momentum equation are calculated at the midplane (z = 0.5) and shown in figure 11(a,b).
The vertical dependence of the forces was also analysed using vertical profiles as in Yan
et al. (2019), and it was found that the data shown in figure 11(a,b) were representative
of all depths. The Lorentz force initially grows rapidly with increasing Ra, then slows
once it becomes comparable in magnitude with the viscous force. We note that, even
for the largest value of Ra, the Lorentz and viscous forces are approximately the same
magnitude. We observe that the time derivative term (inertia) grows at the fastest rate with
increasing Ra among all terms in the horizontal components of the momentum equation.
The corresponding forces for RBC (without magnetic field) are plotted in figure 11(c,d)
for comparison. We observe that the scaling of the buoyancy force is basically the same for
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Figure 11. Time-averaged r.m.s. values of forces in the momentum equation at the midplane (z = 0.5) for
(a,b) dynamos with Pm = 5 and (c,d) RBC. (a,c) Forces in the horizontal direction versus Rayleigh number.
(b,d) Forces in the vertical direction versus Rayleigh number. Advection and the Lorentz, viscous, buoyancy,
pressure gradient and inertia forces are denoted by Fa, Fl, Fv , Fb, Fp and Ft, respectively.

both the dynamo and RBC, whereas the scaling slopes for all other forces in the dynamos
are reduced relative to RBC.

Horizontal spectra are computed for all forces in the momentum equation at the
midplane, and are shown in figure 12(a) for Pm = 5 dynamo and in figure 12(b) for
RBC at Ra = 6 × 105. A convective free-fall balance in which the pressure gradient
force, buoyancy force and advection are comparable is present at the largest spatial scales
(smallest wavenumbers) for both cases. For the dynamo, the Lorentz force is subdominant
at large spatial scales (k � 70), and is in a near-perfect balance with the viscous force
at small spatial scales (k � 40). The spectra of the sum of the Lorentz force and the
viscous force are calculated and plotted as the dashed line. At small scales, the sum of
the two forces is one order of magnitude smaller than both Lorentz force and viscous
force, suggesting that there is an almost exact balance between Lorentz force and viscous
force locally. Part of the velocity driven by the Lorentz force is dissipated by viscosity
locally and almost instantaneously. This result suggests that the viscous length scale might
be controlling the magnetic field length scales, which explains the similar scaling slopes
for the velocity Taylor microscale and the magnetic integral scale. A similar argument for
the balance between the viscous force and the Lorentz force was also discussed in previous
studies (Brummell et al. 2001; Schekochihin et al. 2002c), and our spectral result serves as
direct evidence for this local balance. Note that the spectra we show here are for Pm = 5
cases. For small Pm, it is possible that the Lorentz force might behave quite differently at
small scale, though in all of our cases we find that the Lorentz force is driving the flow
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Figure 12. Horizontal spectra of the various forces in (a) dynamo with Pm = 5 and (b) RBC. For both cases
Ra = 6 × 105. (c) Lorentz force and viscous force spectra for Pm = 5 dynamos.

at small scale. When compared with the RBC case of figure 12(b), broader spectra are
observed for the dynamo case; advection, viscous and inertia forces are slightly reduced at
large scales and larger in magnitude at small scales, which suggests that the Lorentz force
is consuming kinetic energy at large scales while driving the flow at small scales.

Figure 12(c) shows the Lorentz force and viscous force spectra for Pm = 5 dynamos
at Ra = (4 × 104, 2 × 105, 6 × 105, 1 × 106). Initially (Ra ∼ 4 × 104), the Lorentz force
is weaker than the viscous force at large scales, and is in balance with the viscous
force at small scales. When Ra increases, the Lorentz force exceeds the viscous force
at large scales; this result is also reflected in the relatively rapid initial growth of Fl in
figure 11(a,b). However, as Ra is increased further (Ra > 2 × 105), the growth of the
Lorentz force at large scales appears to slow down; both the Lorentz force and the viscous
force spectra appear to shift to larger wavenumber, and the length scale where the two
forces are balanced becomes smaller. We note that the spectra of the Lorentz force appear
to flatten and saturate at small wavenumber as Ra is increased. This result suggests that
the Lorentz force might be limited by the viscous force (at least at small length scales),
and the growth rate of the Lorentz force appears to saturate.

3.7. Induction equation balances
Analogous to the force balance analysis of the momentum equation in the previous
section, here the relative sizes of the different terms in the magnetic induction equation
are analysed in both physical and spectral space. Figures 13(a–d) show vertical profiles
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Figure 13. Instantaneous balances in the induction equation. Vertical profiles of the horizontal r.m.s. of each
term present in the vertical component (a,b) and in the horizontal component (c,d) of the induction equation and
the corresponding power spectra (of all three components) at the midplane (e, f ) are shown. The case Pm = 1
and Ra = 1 × 106 is shown in (a,c,e). The case Pm = 5 and Ra = 1 × 106 is shown in (b,d,f ). Magnetic
induction, diffusion, advection and time derivative are denoted by B · ∇u, −u · ∇B, ∇2B and ∂tB. Finally, w
and Bz represent the vertical component of u and B, while uh and Bh represent the vertical component.

of the instantaneous horizontal r.m.s. of each term in the induction equations, for two
typical cases, both with Ra = 106, and with Pm = 1 and Pm = 5, respectively; these
cases correspond to magnetic Reynolds numbers of Rm ≈ 310 and Rm ≈ 1340. Though
not shown, cases with different values of Pm and Ra show similar behaviour. Not
surprisingly, given that Rm � 1, the primary balance indicates that advection of magnetic
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field dominates,

∂tB + u · ∇B ≈ 0. (3.9)

In addition, a subdominant balance is observed between magnetic induction and magnetic
diffusion,

B · ∇u ∼ ∇2B. (3.10)

We also find that the magnitude of ∂tB + u · ∇B is of the same order as induction and
diffusion.

The depth dependence of the different terms is similar for the two different cases
shown. Interestingly, even though Rm is approximately an order of magnitude larger for
the Pm = 5 case, the relative difference in magnitude between the leading-order balance
and the subdominant balance changes only slightly; for instance, |u · ∇B|/|∇2B| ≈ 3 and
|u · ∇B|/|∇2B| ≈ 4 for Pm = 1 and Pm = 5, respectively. This result could be due to the
small-scale magnetic Reynolds number not changing appreciably.

The spectral space representation of the different terms in the induction equation is given
in figure 13(e,f ) for the same Ra = 106, Pm = 1 and Pm = 5 cases, respectively. Again,
the data are computed at one instant in time. Whereas ∂tB and u · ∇B are balanced at all
length scales, the stretching (B · ∇u) and diffusion (∇2B) terms are balanced at different
length scales. This scale-dependent balance can be understood by a simple scale analysis
of the subdominant balance. For instance, (3.10) yields

Rm
Lu

∼ 1
L2

B
, (3.11)

where the velocity has the non-dimensional units of magnetic Reynolds number, Lu is
a characteristic length scale for the velocity and LB is a characteristic length scale for
the magnetic field. Since the magnetic length scale is in the diffusion term (∇2B), it is
natural to assume that this length scale can be captured by the magnetic Taylor microscale
LB = λB. Thus we have

Rm ∼ Lu

λ2
B
. (3.12)

However, it is not obvious what Lu represents. We plug in the magnetic Taylor
microscale (λB) and test the velocity Taylor microscale (λv) as well as the velocity integral
scale (u); the results are shown in figure 14. We find that, when using the velocity Taylor
microscale (λv), the curve for the compensated magnetic Reynolds number Rm λ2

B/λu is
relatively flat; however, we can still see a systematic increase of Rm λ2

B/λu with increasing
Ra. When we apply the velocity integral scale u, the compensated magnetic Reynolds
number Rm λ2

B/u stays nearly constant over a large range of Ra, suggesting that the
velocity integral scale u can better characterize the length scale in the induction terms
than the Taylor microscale. This result implies that the magnetic diffusion length scale is
controlled by Rm and the velocity integral scale:

Rm ∼ u

λ2
B
. (3.13)
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Figure 14. Rescaled magnetic Reynolds number versus Rayleigh number for Pm = 5 cases. Both Rm λ2
B/λu

and Rm λ2
B/u results are shown.

4. Discussion

RBC-driven dynamos have been investigated numerically over a range of Rayleigh
numbers and magnetic Prandtl numbers. Heat transport in dynamos is reduced relative
to RBC, primarily because of the associated reduction in kinetic energy required for the
generation of magnetic energy. Simulations at the largest values of Ra suggest a heat
transport scaling with Ra that is similar to RBC, i.e. Nu ∼ Ra2/7 within our investigated
range of Ra. The scaling behaviour of the flow speeds with increasing Rayleigh number
is also similar to RBC (Re ∼ Ra1/2). An asymptotic scaling for the magnetic energy
Emag ∼ Ra is also observed at large Ra/Rad. Given a large enough value of Ra/Rad, the
ratio of magnetic energy to kinetic energy Emag/Ekin appears to saturate for individual Pm,
while the saturated level depends on Pm; we find reasonable collapse of the data using
Emag/Ekin ∼ Pm2/3. This result suggests that Pm is controlling the efficiency of dynamo
action.

Despite the similar scaling behaviour in Nu for both RBC and RBC-driven dynamos,
for a fixed value of Pm, the simulations show that ohmic dissipation becomes as equally
important as viscous dissipation as the Rayleigh number increases, as characterized
by an ohmic dissipation fraction fohm → 0.5. The scaling of the viscous dissipation in
the dynamos is observed as εu ∼ Re2.8, which is nearly identical to equivalent RBC
simulations (Grossmann & Lohse 2000). Moreover, the ohmic dissipation is observed
to approach the scaling εB ∼ Re2.8 as Ra is increased. The findings suggest that ohmic
dissipation is controlled by viscous dissipation.

The Taylor microscale is computed for both the velocity field and magnetic field,
thus providing a measure of the viscous and ohmic dissipation scales, respectively. The
ohmic dissipation scale is observed to be smaller than the viscous dissipation scale for
all simulations, even for the Pm = 0.8 cases. Furthermore, the ohmic dissipation length
scale decreases more rapidly with increasingly Rayleigh number (Reynolds number) in
comparison to the viscous dissipation length scale. Curve fits yield scalings of λB ∼
Re−0.56Pm−0.35 and λu ∼ Re−0.39 for velocity field and magnetic field Taylor microscale,
respectively. Unless a change in scaling occurs at higher Rayleigh numbers beyond those
accessible in the present study, this result suggests that the ohmic dissipation scale is
always less than the viscous dissipation scale, regardless of the value of the magnetic
Prandtl number for the values of Pm considered in this paper.

A numerical analysis of the forces in both physical and spectral space shows that the
viscous and Lorentz forces are in balance at small spatial scales. The viscous force in
dynamos is enhanced at these same scales relative to RBC. At large spatial scales, the
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Lorentz force dominates the viscous force, but it remains subdominant relative to buoyancy
and inertia. A two-dimensional (in the horizontal plane) spectral energy analysis suggests
that the Lorentz force is primarily dissipative at large spatial scales, but acts as a source
of kinetic energy at small spatial scales; this result might explain why the viscous force at
small spatial scales is enhanced in dynamos relative to RBC.

To leading order, the induction equation is characterized by a conservation of magnetic
flux. Stretching and diffusion act at higher order and are dominant at large and small
spatial scales, respectively. According to this balance, the magnetic diffusion length scale
is found to be related to the magnetic Reynolds number and velocity integral scale via
λB ∼ (u/Rm)1/2.

In light of the limited range in Rayleigh numbers accessible to DNS studies of dynamos,
several questions remain. Since the buoyancy force has a relatively smaller growth rate
with increasing Ra when compared to that of the Lorentz force, it remains unclear whether
the growth of the Lorentz force will slow down and approach the scaling of the buoyancy
force when Ra becomes large enough, or if the Lorentz force will eventually dominate over
the buoyancy force and change the dynamics fundamentally. Simulations with higher Ra
are also needed to verify the asymptotic convergence behaviour of flow speeds, magnetic
energy and dissipation. For planetary interiors and stars, the thermal Prandtl number is
less than unity, and the dependence of the magnetic energy to kinetic energy ratio and the
ohmic dissipation fraction on Pr remain unclear and might also need to be explored in
more detail.

We reiterate that all of the simulations presented here use Pm = O(1). In the small-Pm
regime in which Pm � 1, one might expect the stretching of the eddies to be balanced
by magnetic diffusion on the ohmic dissipation length scale (Rincon 2019; Tobias 2019).
Although the low-Pm regime is currently beyond the reach of DNS, our results (especially
the Pm = 0.8 and Pm = 1 cases) suggest that, instead of a sudden change at Pm = 1, the
transition to the low-Pm regime might be gradual, or occur sharply at much lower Pm.
This observation is consistent with calculations (Tobias, Cattaneo & Boldyrev 2012) that
suggest numerical resolutions of (104)3 modes are required to reach this large-Re regime.
Further investigation with smaller Pm will therefore be needed to explore the mechanisms
that drive the changes between the scalings.
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Appendix

The details of our numerical simulations are listed in tables 1–5.
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Scaling
behaviour

ofsm
all-scale

dynam
os

Ra Pr Pm Nx × Ny × Nz �t n Nu Re Rm Emag

1 × 106 1 0.8 432 × 432 × 192 4 × 10−6 2 13.38 ± 0.32 329.9 ± 6.8 263.9 ± 5.4 100 ± 20
2 × 106 1 0.8 576 × 576 × 216 1 × 10−6 2 15.91 ± 0.35 447.7 ± 11.1 358.1 ± 8.9 798 ± 47
4 × 106 1 0.8 576 × 576 × 288 4 × 10−7 2 19.49 ± 0.49 599.9 ± 13.0 479.9 ± 10.4 (5.25 ± 0.62) × 103

1 × 107 1 0.8 768 × 769 × 288 2 × 10−7 2 25.54 ± 0.65 927.5 ± 22.5 742.0 ± 18.0 (1.51 ± 0.11) × 104

1 × 104 1 1 144 × 144 × 64 1 × 10−4 5 3.66 ± 0.08 37.6 ± 0.6 37.6 ± 0.6
2 × 104 1 1 216 × 216 × 64 1 × 10−4 5 4.41 ± 0.08 53.9 ± 0.9 53.9 ± 0.9
4 × 104 1 1 384 × 384 × 72 1 × 10−4 5 5.34 ± 0.09 76.4 ± 1.1 76.4 ± 1.1
1 × 105 1 1 384 × 384 × 96 6 × 10−5 5 6.88 ± 0.12 115.9 ± 1.5 115.9 ± 1.5
2 × 105 1 1 384 × 384 × 96 4 × 10−5 5 8.44 ± 0.13 161.2 ± 1.6 161.2 ± 1.6
3 × 105 1 1 576 × 576 × 108 1 × 10−5 4 9.48 ± 0.19 192.3 ± 2.2 192.3 ± 2.2 30 ± 5
4 × 105 1 1 648 × 648 × 108 5 × 10−6 4 10.05 ± 0.14 212.2 ± 2.5 212.2 ± 2.5 233 ± 44
6 × 105 1 1 648 × 648 × 144 2 × 10−6 4 11.40 ± 0.16 257.9 ± 2.6 257.9 ± 2.6 507 ± 65
1 × 106 1 1 648 × 648 × 192 1 × 10−6 3 13.20 ± 0.22 314.6 ± 4.9 314.6 ± 4.9 (1.52 ± 0.19) × 103

2 × 106 1 1 576 × 576 × 216 6 × 10−7 2 15.68 ± 0.45 421.4 ± 13.6 421.4 ± 13.6 (3.96 ± 0.66) × 103

4 × 106 1 1 576 × 576 × 288 2 × 10−7 2 18.85 ± 0.51 568.4 ± 16.9 568.4 ± 16.9 (9.33 ± 0.73) × 103

1 × 107 1 1 864 × 864 × 432 1 × 10−7 2 24.46 ± 0.54 865.4 ± 23.9 865.4 ± 23.9 (2.02 ± 0.16) × 104

1 × 104 1 3 192 × 192 × 72 2 × 10−5 5 3.65 ± 0.06 37.3 ± 0.4 111.8 ± 1.3
1.5 × 104 1 3 192 × 192 × 72 2 × 10−5 3 4.14 ± 0.14 46.7 ± 1.5 140.0 ± 4.4 0.2 ± 0.1
2 × 104 1 3 384 × 384 × 72 1 × 10−5 3 4.44 ± 0.12 53.4 ± 0.8 160.1 ± 2.4 22 ± 8
3 × 104 1 3 384 × 384 × 96 1 × 10−5 3 4.97 ± 0.16 64.8 ± 1.8 194.4 ± 5.3 57 ± 20
4 × 104 1 3 384 × 384 × 96 1 × 10−5 3 5.32 ± 0.17 72.7 ± 2.0 218.0 ± 6.1 97 ± 33
6 × 104 1 3 384 × 384 × 96 4 × 10−6 3 5.92 ± 0.12 85.8 ± 1.4 257.4 ± 4.2 231 ± 39
1 × 105 1 3 432 × 432 × 108 2 × 10−6 3 6.77 ± 0.20 108 ± 2.5 325 ± 7.4 513 ± 79
2 × 105 1 3 576 × 576 × 144 1 × 10−6 3 8.15 ± 0.20 145.1 ± 3.3 435 ± 10 967 ± 68
4 × 105 1 3 648 × 648 × 192 6 × 10−7 3 9.85 ± 0.23 194.1 ± 3.3 582 ± 10 (2.05 ± 0.14) × 103

1 × 106 1 3 768 × 768 × 288 2 × 10−7 3 12.33 ± 0.25 290.2 ± 6.5 871 ± 20 (5.47 ± 0.38) × 103

Table 1. Details of the numerical simulations for Pr = 1 and Pm = (0.8, 1, 3) cases. The non-dimensional parameters are the Rayleigh number Ra, the Prandtl number Pr,
the magnetic Prandtl number Pm, the aspect ratio of the domain Γ = 2πn/kc, the Nusselt number Nu, the Reynolds number Re, the magnetic Reynolds number Rm and the
magnetic energy Emag. The spatial resolution is quoted in terms of the dealiased physical space grid points Nx × Ny × Nz, where (Nx, Ny) is the horizontal resolution and Nz is
the vertical resolution. The numerical time-step size is denoted by �t. The estimated critical Rayleigh numbers for dynamo action (Rad) are (4.9 × 105, 2.2 × 105, 1.6 × 104)

for Pm = (0.8, 1, 3), respectively.
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Ra Pr Pm Nx × Ny × Nz �t n Nu Re Rm Emag

2 × 103 1 5 96 × 96 × 48 5 × 10−4 5 2.13 ± 0.05 13.4 ± 0.3 67.1 ± 1.3
4 × 103 1 5 144 × 144 × 48 2 × 10−4 5 2.76 ± 0.06 22.1 ± 0.4 110.5 ± 1.8
5 × 103 1 5 384 × 384 × 96 2 × 10−4 5 2.96 ± 0.06 25.4 ± 0.4 126.8 ± 1.9
6 × 103 1 5 384 × 384 × 96 1 × 10−5 5 3.11 ± 0.05 27.8 ± 0.4 139.1 ± 1.9 5 ± 2
7 × 103 1 5 432 × 432 × 96 1 × 10−5 5 3.26 ± 0.06 30.5 ± 0.5 152.5 ± 2.7 9 ± 4
8 × 103 1 5 432 × 432 × 96 1 × 10−5 5 3.39 ± 0.06 32.8 ± 0.6 163 ± 2.8 15 ± 6
1 × 104 1 5 432 × 432 × 108 8 × 10−6 5 3.62 ± 0.07 36.6 ± 0.6 183.0 ± 3.0 23 ± 6
2 × 104 1 5 432 × 432 × 108 2 × 10−6 5 4.31 ± 0.06 51.1 ± 0.6 255.5 ± 3.0 97 ± 8
4 × 104 1 5 576 × 576 × 144 1 × 10−6 5 5.16 ± 0.07 70.1 ± 0.9 350.4 ± 4.5 262 ± 13
1 × 105 1 5 576 × 576 × 216 5 × 10−7 3 6.61 ± 0.21 103.3 ± 2.2 516.8 ± 11.0 744 ± 49
2 × 105 1 5 768 × 768 × 216 3 × 10−7 3 8.13 ± 0.18 137.8 ± 3.4 689.3 ± 16.9 (1.72 ± 0.08) × 103

4 × 105 1 5 648 × 648 × 288 1 × 10−7 2 9.77 ± 0.40 181.1 ± 3.5 905.7 ± 17.6 (3.04 ± 0.28) × 103

6 × 105 1 5 648 × 648 × 288 1 × 10−7 2 10.75 ± 0.42 224.2 ± 4.8 1122 ± 24 (4.86 ± 0.24) × 103

1 × 106 1 5 864 × 864 × 384 6 × 10−8 2 12.03 ± 0.42 267 ± 6.1 1338 ± 30 (6.51 ± 0.25) × 103

2 × 106 1 5 1152 × 1152 × 486 2 × 10−8 2 14.45 ± 0.47 373 ± 10.3 1869 ± 51 (1.34 ± 0.09) × 104

1 × 107 1 5 1536 × 1536 × 648 6 × 10−9 2 22.68 ± 0.67 790 ± 18.9 3948 ± 95 (5.35 ± 0.34) × 104

2 × 103 1 7 144 × 144 × 72 2 × 10−4 5 2.13 ± 0.05 13.4 ± 0.2 94.0 ± 1.7
3 × 103 1 7 144 × 144 × 72 2 × 10−4 5 2.50 ± 0.06 18.3 ± 0.3 128.2 ± 2.4
4 × 103 1 7 384 × 384 × 72 2 × 10−5 5 2.74 ± 0.05 21.9 ± 0.4 153.4 ± 3.54 3 ± 1
6 × 103 1 7 648 × 648 × 96 1 × 10−5 5 3.09 ± 0.05 27.4 ± 0.4 191.6 ± 3.1 15 ± 3
1 × 104 1 7 192 × 192 × 72 1 × 10−5 5 3.57 ± 0.06 36.1 ± 0.7 252.5 ± 4.6 53 ± 6
4 × 104 1 7 576 × 576 × 144 2 × 10−6 3 5.09 ± 0.17 66.4 ± 1.8 464.7 ± 12.5 350 ± 43
1 × 105 1 7 648 × 648 × 216 6 × 10−7 3 6.52 ± 0.22 98.6 ± 3.1 690.3 ± 21.6 968 ± 86
2 × 105 1 7 648 × 648 × 288 1 × 10−7 3 7.66 ± 0.20 132.9 ± 3.6 930.4 ± 25.5 (1.87 ± 0.09) × 103

4 × 105 1 7 768 × 768 × 384 6 × 10−8 3 9.27 ± 0.23 180.2 ± 5.1 1261.1 ± 36.0 (3.75 ± 0.16) × 103

Table 2. Details of the numerical simulations for Pr = 1 and Pm = (5, 7) cases. The estimated critical Rayleigh numbers for dynamo action (Rad) are
(5.2 × 103, 3.1 × 103) for Pm = (5, 7), respectively.
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Ra Pr Pm Nx × Ny × Nz �t n Nu Re Rm Emag

1 × 103 0.05 1 96 × 96 × 48 6 × 10−4 3 1.02 ± 0.01 23.4 ± 1.5 23.4 ± 1.5
2 × 103 0.05 1 96 × 96 × 48 2 × 10−4 3 1.16 ± 0.03 72.0 ± 5.0 72.0 ± 5.0
4 × 103 0.05 1 192 × 192 × 72 6 × 10−5 3 1.40 ± 0.04 133.8 ± 5.5 133.8 ± 5.5
6 × 103 0.05 1 192 × 192 × 96 1 × 10−5 3 1.59 ± 0.05 176.0 ± 7.2 176.0 ± 7.2 171 ± 50
1 × 104 0.05 1 288 × 288 × 144 4 × 10−6 3 1.84 ± 0.06 236.6.0 ± 7.7 236.6.0 ± 7.7 735 ± 134
2 × 104 0.05 1 288 × 288 × 192 1 × 10−6 2 2.28 ± 0.13 339.96 ± 22.3 339.96 ± 22.3 (2.91 ± 0.86) × 103

4 × 104 0.05 1 384 × 384 × 192 6 × 10−7 2 2.83 ± 0.10 500.5 ± 15.5 500.5 ± 15.5 (6.46 ± 0.40) × 103

1 × 105 0.05 1 768 × 768 × 288 4 × 10−7 2 3.74 ± 0.13 750.2 ± 17.2 750.2 ± 17.2 (2.32 ± 0.24) × 104

Table 3. Details of the numerical simulations for Pr = 0.05 and Pm = 1 cases. The estimated critical Rayleigh numbers for dynamo action (Rad) are
(2.9 × 103, 4.1 × 103) for Pm = 1, Pr = (0.01, 0.05), respectively.
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Ra Pr Nx × Ny × Nz �t n Nu Re

2 × 103 1 96 × 96 × 48 4 × 10−3 5 2.13 ± 0.05 13.4 ± 0.2
7 × 103 1 192 × 192 × 72 1 × 10−3 5 3.30 ± 0.05 31.0 ± 0.4
1 × 104 1 192 × 192 × 72 5 × 10−4 5 3.62 ± 0.06 37.5 ± 0.7
4 × 104 1 384 × 384 × 96 5 × 10−5 5 5.33 ± 0.07 75.6 ± 1.0
1 × 105 1 384 × 384 × 96 5 × 10−5 3 7.01 ± 0.17 119.2 ± 2.3
6 × 105 1 384 × 384 × 144 1 × 10−5 2 11.7 ± 0.36 261.0 ± 6.2
1 × 106 1 432 × 432 × 144 6 × 10−6 2 13.4 ± 0.34 324.4 ± 9.4
7 × 102 0.05 96 × 96 × 48 5 × 10−3 5 1.001 ± 0.000 5.0 ± 0.5
1 × 103 0.05 96 × 96 × 48 1 × 10−3 3 1.02 ± 0.00 23.4 ± 1.7
2 × 103 0.05 96 × 96 × 48 2 × 10−4 3 1.15 ± 0.03 70.6 ± 5.0
4 × 103 0.05 144 × 144 × 72 5 × 10−5 3 1.38 ± 0.04 131.3 ± 6.8
1 × 104 0.05 288 × 288 × 72 2 × 10−5 3 1.89 ± 0.07 247.5 ± 8.8
2 × 104 0.05 432 × 432 × 108 1 × 10−5 3 2.31 ± 0.09 360.3 ± 13.6
4 × 104 0.05 432 × 432 × 108 3 × 10−6 3 2.90 ± 0.12 509.4 ± 13.5

Table 4. Details of the RBC cases.

Ra Pr Pm Nx × Ny × Nz �t n Rm γ

4 × 105 1 0.8 384 × 384 × 96 3 × 10−5 4 176 −4.4
6 × 105 1 0.8 384 × 384 × 96 2 × 10−5 4 210 5.5
2 × 105 1 1 384 × 384 × 96 4 × 10−5 4 161 −1.1
2.5 × 105 1 1 384 × 384 × 96 2 × 10−5 4 177 1.7
1 × 104 1 3 192 × 192 × 72 2 × 10−5 3 112 −4.3
1.5 × 104 1 3 192 × 192 × 72 2 × 10−5 3 141 0.6
2 × 104 1 3 384 × 384 × 72 1 × 10−5 3 160 2.4
4 × 103 1 5 144 × 144 × 48 2 × 10−4 5 110 −2.2
6 × 103 1 5 384 × 384 × 96 1 × 10−5 5 141 1.4
2 × 103 1 7 144 × 144 × 72 2 × 10−4 5 94 −3.4
2.5 × 103 1 7 144 × 144 × 72 2 × 10−4 5 112 −2.6
3.5 × 103 1 7 384 × 384 × 72 2 × 10−5 5 142 1.2
4 × 103 1 7 384 × 384 × 72 2 × 10−5 5 152 3.5
3.5 × 103 0.05 1 192 × 192 × 72 4 × 10−5 3 122 −1.9
4.5 × 103 0.05 1 192 × 192 × 72 4 × 10−5 3 147 1.0
2 × 103 0.01 1 192 × 192 × 72 2 × 10−5 3 85 −5.8
2.7 × 103 0.01 1 192 × 192 × 72 2 × 10−5 3 125 −1.9
3 × 103 0.01 1 192 × 192 × 72 2 × 10−5 3 137 0.9
4 × 103 0.01 1 192 × 192 × 72 2 × 10−5 3 188 6.4

Table 5. Details of the numerical simulations used for the kinematic dynamo regime. The growth (or decay)
rate of magnetic energy is denoted by γ .
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