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Let G be an abelian group. For a subset A = G, denote by 2 A 4 the set of sums of two
different elements of A. A conjecture by Erdés and Heilbronn, first proved by Dias da Silva
and Hamidoune, states that, when G has prime order, |2 A A| = min(|G|, 2|A4| — 3).

We prove that, for abelian groups of odd order (respectively, cyclic groups), the inequality
|2 A 4] = min(|G|,3|A4|/2) holds when A is a generating set of G, 0 € A and |4| > 21
(respectively, |[A| = 33). The structure of the sets for which equality holds is also determined.

1. Introduction

Let p be a prime and let 4 be a subset of Z/pZ. It was conjectured by P. Erdés and
H. Heilbronn that |2 A A| = min(p,2|4| — 3). This conjecture was proved by J. Dias da
Silva and one of the authors in [2] using linear algebra. Another proof was obtained later
by N. Alon, M. B. Nathanson and I. Z. Ruzsa [1] using the polynomial method.

We obtain in this paper lower bounds for |2A A|, where A is a finite subset of an abelian
group. Clearly, |2 A 4] = |2 A (A — x)|, for every x € A. Therefore one may assume that
0 € A. Moreover, we can restrict ourselves to the group generated by 4. Therefore, one
can also assume without loss of generality that 4 generates G.

Let & denote the set of subsets of G that are of the form H U x + H, where H is a
subgroup of G. Then, for a set A € &, we have 2N 4 <« HUH + xU H + 2x. In particular
|2 N\ A| < 3]4]/2.

Our main result shows that |2 A 4| = min(|G|, 3]|4|/2), for any finite generating subset
A, provided |A4] is large enough. As a corollary we obtain the following result.
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Let G be a cyclic group (respectively, an abelian group of odd order), and let 4 be a
generating subset of G such that 0 € 4. If |4| = 21 (respectively, |4] = 33), then
[2 A A] = min(|G]|, 3]|A]|/2). (1.1)

Moreover, we prove that the above bound can only be achieved by members of & when
|A] = 33.

2. Preliminaries
We need the following well-known theorem of Kneser.

Theorem 2.1 (Kneser [5, 6]). Let A, B be finite nonempty subsets of an abelian group G.
Then there is a subgroup H such that A+B+H = A+B and |A+B| > |A+H|+|B+H|—|H|.

Corollary 2.2. Let A be a finite generating subset of an abelian group G such that 0 € A.
Then

24| = min(| G|, 3]4]/2). (2.1)
Assume moreover that |A| =9 and A & &. Then

|24| = min(|G|, (3|4] + 3)/2). (2.2)
Proof. Assume 24 # G. By Kneser’s theorem (Theorem 2.1), there is a subgroup H such

that 24 + H = 24 and 24| = 2|4 + H| — |H|. Since H # G, and A generates G, we have
|H + A| = 2|H]|. It follows that

|Al/2<|H+A|/2=|H+A|—|H+A|/2<|H+ A| — |H| < |24] — |A].

This proves inequality (2.1).
Assume now that 4 ¢ &.

Case 1. |4+ H| = 3|H]|. It follows that
21A1/3<2|H+A|/3=|H+A|—|H+A|/3<|H+A|— |H| < |24] —|A4].
Therefore [24| = 5|A|/3.
Case 2. |[A+ H|=2|H|. Since A ¢ &, we have |A| < |A + H| — 1. Therefore
|4l/2<(H+A4|-1)/2 = [H+A[—[H+A[/2—-1/2
[H+ Al —|H|—1/2 < 24| —|[A+H|—1/2.
Therefore [24] = 3(]A| + 1)/2. ]
Inequality (2.1) in the above corollary was proved by J. E. Olson [7] for not necessarily
abelian groups.

Let G be a finite abelian group and let S be a subset of G. For a pair of subsets A, B
of G, we shall write

Q5(4,B) ={(x,y) € AXB:yex+S}
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and wg(A4, B) = |Qs(A4, B)|. When A = B we shall write es(A) = ws(4,A). Note that eg is
invariant under translations: es(X) = es(X + a) for every a € G.
We shall also write

Qs(4,B) ={(x,y) €A x B :yex+(S\ {x})},

and wg(4, B) = |Q(4, B)|. We shall omit the subscript S when the context is clear.
We clearly have

w(4,B) = Y [(x+5)NB[=) [(x—S)NA| and (2.3)
xX€A XEB
w4(A,B) = o(4,B)—|ANS|. (2.4)

We need the following easy lemma.

Lemma 2.3. Let G be an abelian group and let S be a finite subset of G such that 0 & S.
Let o be an integer such that |S N —S| < o — 1. Put |S| = s. Then, for each finite X < G,
the following inequalities hold:

e(S) < s(s+ o2 —2)/2, (2.5)

and

o(X,S\ X)+ oS\ X,X) < (s +o—1—|X])X]. (2.6)

Proof. Clearly
ss—1) = Y IS\ x|

xes
= D ISNx+(G\0)
xes
> D ISN(x+(SU=S))
xes
= D SO+ FISN(x—8)—ISN(x+(SN(=S))

xes

2e(S) — s — 1).

\%

On the other hand, using (2.3) we have

oX, S\ X)+o(S\X,X) = Z\(erS)m(S\X)\+|(x—S)m(S\X)|
xeX
< D (x+EU=8)N(S\X)+[x+(SN=5))
xeX
< IXI0S\ X[+ —1). 0

https://doi.org/10.1017/5096354830000451X Published online by Cambridge University Press


https://doi.org/10.1017/S096354830000451X

516 Y. O. Hamidoune, A. S. Llado and O. Serra

3. The main result

Proposition 3.1. Let 0 € A be a finite generating subset of an abelian group G. Let o be
an integer such that o = |A N —A|, and let a = |A|. Then

a® — (8ot + 14)a — 50> + 9

2AAl = (Ba—1)/2+ Sa_1) , and (3.1)
a® — (8o + 26)a — 50> + 21

> . .

2AAl = (Ba+2)/2+ Sa_1) (3.2)

Proof. SetS = A\{0} and put s = a—1. By inequality (2.5), we have e(S) < s(s+o—2)/2.
Therefore there is an xo € S such that [(xo+S)NS| < (s+a—2)/2. Let Ko = (xo+S)\ S
and K = Ko — xo and |[K| = k. Notice that ¢(K) = ¢(K() and K = S. We have

o(S,Ko) < < > x— S|> — e(Kp) = sk — e(K). (3.3)
xeKy
In particular,
— 042
k = Kol = % (3.4)

We have
o(S,Ko) + o(S,G\ (S UKp)) + e(S) = 5%
Therefore, using (2.6) and (3.3), we have

o(S,(G \ (Ko US))))

> <ZIX+S|> —(S,S) — (S, Ko)

xes

s> — (K, S\ K)—o(S\K,K)—e(S\K)—e(K)— (S, K)
2 —(s—k)k+oa—1)—((s—k)(s —k +oa—2)/2 — e(Kp)) — sk + e(K)
(s—k)s—k—30+4)/2.

\%

Hence, by inequality (2.4), we get

@' (S\ {x0}, (G\ (Ko US))) = S\ {xo},(G\(KUS)))—s+1

> (s—k)(s—k—30+4)/2—s+ 1.
It follows that |2 A A)\ (Ko U S)| = ((s —k)(s —k — 30+ 4)/2 — s+ 1)/s, which implies
2AAl = [04+S[+[(xo+(S\ {xo})+(s—k)(s—k—300+4)/2s—1+1/s
= s+k—14+((s—k)(s—k—30+4)/2—5+1)/s.
The above expression is an increasing function of k. Hence, using (3.4),
R2AAl = s+(s—a+2)/2—-1
+((s—(—a+2)/2)(s—(s—a+2)/2—30+4)/2—5+1)/s

= Gsmayr o1y SHEHET DT EO)
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a® — (8ot + 14)a — 50> + 9

= (Ba—1)/2+ Sa—1)
a® — (8o 4 26)a — S50 + 21
= (3a+2)/2+ Sa—1) )
The proof is complete. ]

We are now ready to prove our main result. For a finite abelian group G, we shall write
wWG)=|{xe G :2x=0}|

Theorem 3.2. Let G be an abelian group and let u be an integer such that p = w(G). Let

A be a generating subset of G containing 0 such that |A| > 4+ 7 + /212 + 32u + 40.
Then

12 AN A| Z min(|G], 3|A]/2).
Moreover, if A ¢ & and |A| > 4u+ 13 + \/21/12 + 80w + 148, then

12 AN A = min(|G|, 3(]4] 4 1)/2).

Proof. Assume first that there is an x € 4 such that |(x — 4) N (—x + A4)| < p. Note that
A — x also generates G. Since |2 A A| = |2 A (4 — x)|, we may assume without loss of
generality that x = 0. Therefore |[4 N —A| < p. Put a = |4]. By (3.1),

@ — (80 + 26)a — 502 + 21

2AAl>(Ba—1)/2+ =T

It follows that
2N A| = 3a/2,
for a > 4u+ 7+ /2142 + 32u + 40. Similarly, using (3.2) we have
2NA|=3(a+1)/2,

for a > 4u+ 13 + /212 4 80u + 148.

Assume now that, for every x € A, we have |(x — 4) N (—x + A)| > p. Let us show that
24 = 2 N\ A. Assuming the contrary, we may choose y € A such that 2y ¢ 2 A A. Since the
equation 2x = 0 has at most u solutions in G, there exists z € (y —A)N(—y + A) such that
2z # 0. There exist aj,a; € 4 such that z = y —a; = —y +a,. It follows that 2y = a; + a,.
We have a; # ay, since otherwise 2z = 0. Therefore 2y ¢ 2 A A, a contradiction.

By Corollary 2.2, we have

2N\ A| = |24| = min(|G]|, 3]4]/2).
Moreover, if A ¢ &, then
|2 A Al = |24] = min(|G|, 3(]4] + 1)/2).

This completes the proof. Ul
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When G is an abelian group of odd order, then the equation 2x = 0 has only the trivial
solution in G. Similarly, if G is a cyclic group, then there is at most one nontrivial solution
of the equation. Therefore, the above theorem implies the following corollaries.

Corollary 3.3. Let A be a generating set of an abelian group G of odd order with 0 € A.
If |A| = 21 then

|2 A A| = min(|G]|, 3]|4]/2).
Moreover, if A ¢ & and |A| = 33 then

2N A] = min(|G|, 3(]4] 4+ 1)/2). 0

Corollary 3.4. Let A be a generating set of a finite cyclic group G with 0 € A. If |A] = 29,
then

|2 A A| = min(|G]|, 3]|4]/2).
Moreover, if A & & and |A| = 38, then

2 A Al = min(|G|, 3(1 4| + 1)/2). O

Let G be an abelian group and let 4 be a finite subset of G. Note that we trivially
have 2 A A| = |(A\ {x}) + x| = |4| — 1. Equality holds when A = G = Z5. The following
statement could hold.

Conjecture 3.5. Let A be a finite generating subset of an abelian group G with 0 € A. If
|A] = 6 then

2 A A = min(|G| — 1,3]4]/2).

If true, the inequality |A| > 6 is best possible, since for an arithmetic progression P
with |P| < 6, we have |2 A P| = 2|P| —3 < 3|P|/2.
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