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Let G be an abelian group. For a subset A ⊂ G, denote by 2 ∧ A the set of sums of two

different elements of A. A conjecture by Erdős and Heilbronn, first proved by Dias da Silva

and Hamidoune, states that, when G has prime order, |2 ∧ A| > min(|G|, 2|A| − 3).

We prove that, for abelian groups of odd order (respectively, cyclic groups), the inequality

|2 ∧ A| > min(|G|, 3|A|/2) holds when A is a generating set of G, 0 ∈ A and |A| > 21

(respectively, |A| > 33). The structure of the sets for which equality holds is also determined.

1. Introduction

Let p be a prime and let A be a subset of Z/pZ. It was conjectured by P. Erdős and

H. Heilbronn that |2 ∧ A| > min(p, 2|A| − 3). This conjecture was proved by J. Dias da

Silva and one of the authors in [2] using linear algebra. Another proof was obtained later

by N. Alon, M. B. Nathanson and I. Z. Ruzsa [1] using the polynomial method.

We obtain in this paper lower bounds for |2∧A|, where A is a finite subset of an abelian

group. Clearly, |2 ∧ A| = |2 ∧ (A − x)|, for every x ∈ A. Therefore one may assume that

0 ∈ A. Moreover, we can restrict ourselves to the group generated by A. Therefore, one

can also assume without loss of generality that A generates G.

Let E denote the set of subsets of G that are of the form H ∪ x + H , where H is a

subgroup of G. Then, for a set A ∈ E, we have 2∧A ⊂ H ∪H + x∪H + 2x. In particular

|2 ∧ A| 6 3|A|/2.

Our main result shows that |2 ∧ A| > min(|G|, 3|A|/2), for any finite generating subset

A, provided |A| is large enough. As a corollary we obtain the following result.
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Let G be a cyclic group (respectively, an abelian group of odd order), and let A be a

generating subset of G such that 0 ∈ A. If |A| > 21 (respectively, |A| > 33), then

|2 ∧ A| > min(|G|, 3|A|/2). (1.1)

Moreover, we prove that the above bound can only be achieved by members of E when

|A| > 33.

2. Preliminaries

We need the following well-known theorem of Kneser.

Theorem 2.1 (Kneser [5, 6]). Let A, B be finite nonempty subsets of an abelian group G.

Then there is a subgroup H such that A+B+H = A+B and |A+B| > |A+H |+|B+H |−|H |.

Corollary 2.2. Let A be a finite generating subset of an abelian group G such that 0 ∈ A.

Then

|2A| > min(|G|, 3|A|/2). (2.1)

Assume moreover that |A| > 9 and A /∈ E. Then

|2A| > min(|G|, (3|A|+ 3)/2). (2.2)

Proof. Assume 2A 6= G. By Kneser’s theorem (Theorem 2.1), there is a subgroup H such

that 2A+H = 2A and |2A| > 2|A+H | − |H |. Since H 6= G, and A generates G, we have

|H + A| > 2|H |. It follows that

|A|/2 6 |H + A|/2 = |H + A| − |H + A|/2 6 |H + A| − |H | 6 |2A| − |A|.
This proves inequality (2.1).

Assume now that A /∈ E.

Case 1. |A+H | > 3|H |. It follows that

2|A|/3 6 2|H + A|/3 = |H + A| − |H + A|/3 6 |H + A| − |H | 6 |2A| − |A|.
Therefore |2A| > 5|A|/3.
Case 2. |A+H | = 2|H |. Since A /∈ E, we have |A| 6 |A+H | − 1. Therefore

|A|/2 6 (|H + A| − 1)/2 = |H + A| − |H + A|/2− 1/2

= |H + A| − |H | − 1/2 6 |2A| − |A+H | − 1/2.

Therefore |2A| > 3(|A|+ 1)/2.

Inequality (2.1) in the above corollary was proved by J. E. Olson [7] for not necessarily

abelian groups.

Let G be a finite abelian group and let S be a subset of G. For a pair of subsets A,B

of G, we shall write

ΩS (A,B) = {(x, y) ∈ A× B : y ∈ x+ S},
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and ωS (A,B) = |ΩS (A,B)|. When A = B we shall write eS (A) = ωS (A,A). Note that eS is

invariant under translations: eS (X) = eS (X + a) for every a ∈ G.

We shall also write

Ω′S (A,B) = {(x, y) ∈ A× B : y ∈ x+ (S \ {x})},
and ω′S (A,B) = |Ω′S (A,B)|. We shall omit the subscript S when the context is clear.

We clearly have

ω(A,B) =
∑
x∈A
|(x+ S) ∩ B| = ∑

x∈B
|(x− S) ∩ A|, and (2.3)

ω′S (A,B) > ω(A,B)− |A ∩ S |. (2.4)

We need the following easy lemma.

Lemma 2.3. Let G be an abelian group and let S be a finite subset of G such that 0 /∈ S .

Let α be an integer such that |S ∩ −S | 6 α − 1. Put |S | = s. Then, for each finite X ⊂ G,

the following inequalities hold:

e(S) 6 s(s+ α− 2)/2, (2.5)

and

ω(X, S \X) + ω(S \X,X) 6 (s+ α− 1− |X|)|X|. (2.6)

Proof. Clearly

s(s− 1) =
∑
x∈S
|S \ x|

=
∑
x∈S
|S ∩ (x+ (G \ 0))|

>
∑
x∈S
|S ∩ (x+ (S ∪ −S))|

=
∑
x∈S
|S ∩ (x+ S)|+ |S ∩ (x− S)| − |S ∩ (x+ (S ∩ (−S))|

> 2e(S)− s(α− 1).

On the other hand, using (2.3) we have

ω(X, S \X) + ω(S \X,X) =
∑
x∈X
|(x+ S) ∩ (S \X)|+ |(x− S) ∩ (S \X)|

6
∑
x∈X

(|(x+ (S ∪ −S)) ∩ (S \X)|+ |x+ (S ∩ −S)|)

6 |X|(|S \X|+ α− 1).
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3. The main result

Proposition 3.1. Let 0 ∈ A be a finite generating subset of an abelian group G. Let α be

an integer such that α > |A ∩ −A|, and let a = |A|. Then

|2 ∧ A| > (3a− 1)/2 +
a2 − (8α+ 14)a− 5α2 + 9

8(a− 1)
, and (3.1)

|2 ∧ A| > (3a+ 2)/2 +
a2 − (8α+ 26)a− 5α2 + 21

8(a− 1)
. (3.2)

Proof. Set S = A\{0} and put s = a−1. By inequality (2.5), we have e(S) 6 s(s+α−2)/2.

Therefore there is an x0 ∈ S such that |(x0 + S)∩ S | 6 (s+ α− 2)/2. Let K0 = (x0 + S) \ S
and K = K0 − x0 and |K| = k. Notice that e(K) = e(K0) and K ⊂ S . We have

ω(S,K0) 6

(∑
x∈K0

|x− S |
)
− e(K0) = sk − e(K). (3.3)

In particular,

k = |K0| > s− α+ 2

2
. (3.4)

We have

ω(S,K0) + ω(S, G \ (S ∪K0)) + e(S) = s2.

Therefore, using (2.6) and (3.3), we have

ω(S, (G \ (K0 ∪ S))))

>

(∑
x∈S
|x+ S |

)
− ω(S, S)− ω(S,K0)

= s2 − ω(K, S \K)− ω(S \K,K)− e(S \K)− e(K)− ω(S,K0)

> s2 − (s− k)(k + α− 1)− ((s− k)(s− k + α− 2)/2− e(K0))− sk + e(K)

= (s− k)(s− k − 3α+ 4)/2.

Hence, by inequality (2.4), we get

ω′(S \ {x0}, (G \ (K0 ∪ S))) > ω(S \ {x0}, (G \ (K ∪ S))))− s+ 1

> (s− k)(s− k − 3α+ 4)/2− s+ 1.

It follows that |(2 ∧ A) \ (K0 ∪ S)| > ((s− k)(s− k − 3α+ 4)/2− s+ 1)/s, which implies

|2 ∧ A| > |0 + S |+ |(x0 + (S \ {x0}))|+ (s− k)(s− k − 3α+ 4)/2s− 1 + 1/s

= s+ k − 1 + ((s− k)(s− k − 3α+ 4)/2− s+ 1)/s.

The above expression is an increasing function of k. Hence, using (3.4),

|2 ∧ A| > s+ (s− α+ 2)/2− 1

+((s− (s− α+ 2)/2)(s− (s− α+ 2)/2− 3α+ 4)/2− s+ 1)/s

= (3s− α)/2− 1 +
8 + (s+ α− 2)(s− 5α+ 6)

8s
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= (3a− 1)/2 +
a2 − (8α+ 14)a− 5α2 + 9

8(a− 1)

= (3a+ 2)/2 +
a2 − (8α+ 26)a− 5α2 + 21

8(a− 1)
.

The proof is complete.

We are now ready to prove our main result. For a finite abelian group G, we shall write

µ(G) = |{x ∈ G : 2x = 0}|.

Theorem 3.2. Let G be an abelian group and let µ be an integer such that µ > µ(G). Let

A be a generating subset of G containing 0 such that |A| > 4µ + 7 +
√

21µ2 + 32µ+ 40.

Then

|2 ∧ A| > min(|G|, 3|A|/2).

Moreover, if A 6∈ E and |A| > 4µ+ 13 +
√

21µ2 + 80µ+ 148, then

|2 ∧ A| > min(|G|, 3(|A|+ 1)/2).

Proof. Assume first that there is an x ∈ A such that |(x− A) ∩ (−x+ A)| 6 µ. Note that

A − x also generates G. Since |2 ∧ A| = |2 ∧ (A − x)|, we may assume without loss of

generality that x = 0. Therefore |A ∩ −A| 6 µ. Put a = |A|. By (3.1),

|2 ∧ A| > (3a− 1)/2 +
a2 − (8α+ 26)a− 5α2 + 21

8(a− 1)
.

It follows that

|2 ∧ A| > 3a/2,

for a > 4µ+ 7 +
√

21µ2 + 32µ+ 40. Similarly, using (3.2) we have

|2 ∧ A| > 3(a+ 1)/2,

for a > 4µ+ 13 +
√

21µ2 + 80µ+ 148.

Assume now that, for every x ∈ A, we have |(x− A) ∩ (−x+ A)| > µ. Let us show that

2A = 2∧A. Assuming the contrary, we may choose y ∈ A such that 2y /∈ 2∧A. Since the

equation 2x = 0 has at most µ solutions in G, there exists z ∈ (y−A)∩ (−y+A) such that

2z 6= 0. There exist a1, a2 ∈ A such that z = y− a1 = −y+ a2. It follows that 2y = a1 + a2.

We have a1 6= a2, since otherwise 2z = 0. Therefore 2y /∈ 2 ∧ A, a contradiction.

By Corollary 2.2, we have

|2 ∧ A| = |2A| > min(|G|, 3|A|/2).

Moreover, if A 6∈ E, then

|2 ∧ A| = |2A| > min(|G|, 3(|A|+ 1)/2).

This completes the proof.
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When G is an abelian group of odd order, then the equation 2x = 0 has only the trivial

solution in G. Similarly, if G is a cyclic group, then there is at most one nontrivial solution

of the equation. Therefore, the above theorem implies the following corollaries.

Corollary 3.3. Let A be a generating set of an abelian group G of odd order with 0 ∈ A.

If |A| > 21 then

|2 ∧ A| > min(|G|, 3|A|/2).

Moreover, if A 6∈ E and |A| > 33 then

|2 ∧ A| > min(|G|, 3(|A|+ 1)/2).

Corollary 3.4. Let A be a generating set of a finite cyclic group G with 0 ∈ A. If |A| > 29,

then

|2 ∧ A| > min(|G|, 3|A|/2).

Moreover, if A 6∈ E and |A| > 38, then

|2 ∧ A| > min(|G|, 3(|A|+ 1)/2).

Let G be an abelian group and let A be a finite subset of G. Note that we trivially

have |2 ∧ A| > |(A \ {x}) + x| = |A| − 1. Equality holds when A = G = Zn
2. The following

statement could hold.

Conjecture 3.5. Let A be a finite generating subset of an abelian group G with 0 ∈ A. If

|A| > 6 then

|2 ∧ A| > min(|G| − 1, 3|A|/2).

If true, the inequality |A| > 6 is best possible, since for an arithmetic progression P

with |P | < 6, we have |2 ∧ P | = 2|P | − 3 < 3|P |/2.
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