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Abstract

The range of a trigonometric polynomial with complex coefficients can be interpreted as the image of the
unit circle under a Laurent polynomial. We show that this range is contained in a real algebraic subset of
the complex plane. Although the containment may be proper, the difference between the two sets is finite,
except for polynomials with a certain symmetry.
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1. Introduction

In 1976, Quine [6, Theorem 1] proved that the image of the unit circle T under an
algebraic polynomial p of degree n is contained in a real algebraic set, that is, a set
V = {(x, y) ∈ R2 : q(x, y) = 0}, where q is a polynomial of degree 2n. In general, p(T)
is a proper subset of V , but we will show that V \ p(T) is finite and that V = p(T)
whenever V is connected.

Consider a trigonometric polynomial P(t) =
∑n

k=−m akeikt, t ∈ R, with complex
coefficients ak. It is natural to require a−man , 0. The range of P is precisely the image
of the unit circle T under the Laurent polynomial p(z) =

∑n
k=−m akzk. This motivates

our investigation of p(T) for Laurent polynomials. Our main result, Theorem 2.1,
asserts that p(T) is contained in the zero set V of a polynomial of degree 2 max(m, n).
This matches Quine’s theorem in the case when p is an algebraic polynomial, that is,
m = 0. The difference V \ p(T) is finite when m , n, but may be infinite when m = n.

In Section 4, we investigate the exceptional case when V \ p(T) is infinite and we
relate it to the properties of the zero set of a certain harmonic rational function. The
structure of zero sets of such functions is a topic of current interest with applications
to gravitational lensing [1, 2].
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252 L. V. Kovalev and X. Yang [2]

Finally, in Section 5, we use the algebraic nature of the polynomial images of T to
estimate the number of intersections of two such images, that is, the number of shared
values of two trigonometric polynomials.

2. Algebraic nature of polynomial images of circles

A real algebraic subset of R2 is a set of the form {(x, y) ∈ R2 : q(x, y) = 0}, where
q ∈ R[x, y] is a polynomial in x, y. Consider a Laurent polynomial

p(z) =

n∑
k=−m

akzk for all z ∈ C \ {0}, (2.1)

where m ≥ 0, n ≥ 1 and a−man , 0. This includes the case of algebraic polynomials
(m = 0) because the condition a0 , 0 can be ensured by adding a constant to p, which
does not affect the algebraic nature of p(T). Since we are interested in the image of the
unit circle, which is invariant under the substitution of z−1 for z, it suffices to consider
the case m ≤ n.

Theorem 2.1. Let p be the Laurent polynomial (2.1) with m ≤ n.

(a) The image of T under p is contained in the zero set V of some polynomial
h ∈ R[x, y] of degree 2n.

(b) If h is expressed as a polynomial hC ∈ C[w,w] via the substitution w = x + iy, the
degree of hC in each of the variables w and w separately is m + n.

(c) If m < n, then the set V \ p(T) is finite.
(d) In the case m = n the set V \ p(T) is finite if and only if V is bounded.

The proof of Theorem 2.1 involves two polynomials

g(z) = zm(p(z) − w) and g∗(z) = zn+mg(1/z̄) = zn(p(1/z̄) − w) (2.2)

which are the subject of the following lemma.

Lemma 2.2. The resultant hC = res(g, g∗) of the polynomials (2.2) is a polynomial in
C[w,w] of degree 2n. Moreover, hC has degree m + n in each of the variables w and w
separately. Finally, h(x, y) := hC(x + iy, x − iy) is a polynomial of degree 2n in R[x, y].

Proof. Both g and g∗ are polynomials of degree m + n in z, except for the case m = 0
and w = a0, which we ignore in this proof because considering a generic w is enough.
By definition, the resultant of g and g∗ is the determinant of the following matrix of
size 2(m + n).

R =



a−m · · · · · · a0 − w · · · an 0 0

0
. . .

. . .
. . . 0

0 0 a−m · · · · · · a0 − w · · · an

an · · · a0 − w · · · · · · a−m 0 0

0
. . .

. . .
. . . 0

0 0 an · · · a0 − w · · · · · · a−m


.
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All appearances of w or w in R are in the columns numbered m + 1 to m + 2n, which
are the middle 2n columns of the matrix R. Therefore hC is a polynomial of degree at
most 2n.

First, let us prove that hC has degree n + m in each variable separately. It obviously
cannot be greater than n + m, since each of w and w appears n + m times in the matrix.
The position of a0 − w in the top half of the matrix shows that the Leibniz formula for
det R contains the term ±an

ma−m
n(a0 − w)n+m and no other terms with the monomial

wn+m. Therefore the coefficient of wn+m in h is ±an
ma−m

n , 0. Similarly, the coefficient
of w2n in h is ±an

−mam
n , 0. This proves that hC has degree n + m in w and w separately.

When m = n, the preceding paragraph shows that hC has degree 2n in w and w
separately, which implies that deg h = 2n.

We proceed to prove that deg hC = 2n in the case m < n. Let R1 be the matrix
obtained from R by replacing all constant entries in the columns m + 1, . . . ,m + 2n
by 0. Since the cofactor of any of the entries we replaced is a polynomial of degree
less than 2n, the difference det R − det R1 has degree less than 2n. Thus, it suffices to
show that det R1 has degree 2n. When deriving a formula for det R1 we may assume
that w , a0. Let us focus on the columns of R1 numbered m + 1, . . . , 2m. The only
nonzero entries in these columns are:

• a0 − w at ( j − m, j) for m + 1 ≤ j ≤ 2m; and
• a0 − w at ( j + m, j) for n + 1 ≤ j ≤ 2m.

We can use column operations to eliminate all nonzero entries in the upper-left
m × m submatrix of R1. Since this submatrix is upper-triangular, the process only
involves adding some multiples of the jth column with m + 1 ≤ j ≤ 2m to columns
numbered k, where j − m ≤ k ≤ m. Such a column operation also affects the bottom
half of the matrix, where we add a multiple of the entry ( j + m, j) to the entry ( j + m, k).
Since ( j + m) − k ≤ j + m − ( j − m) = 2m < n + m, the affected entries of the bottom
half are strictly above the diagonal {(n + m + j, j) : 1 ≤ j ≤ m}, which is filled with
the value an. In conclusion, these column operations do not substantially affect the
upper-triangular submatrix formed by the entries (i, j) with n + m + 1 ≤ i ≤ n + 2m,
1 ≤ j ≤ m, in the sense that the submatrix remains upper-triangular and its diagonal
entries remain equal to an.

Similar column operations on the right-hand side of the matrix eliminate all nonzero
entries in the bottom right m × m submatrix of R1. Let R2 be the resulting matrix: that
is,

R2 =



0 · · · a0 − w · · · · · · 0 0 0

0
. . .

. . .
. . . 0

0 0 0 · · · a0 − w · · · · · · an

an · · · · · · a0 − w · · · 0 0 0

0
. . .

. . .
. . . 0

0 0 0 · · · · · · a0 − w · · · 0


.
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254 L. V. Kovalev and X. Yang [4]

We claim that det R2 = ±|an|
2m|a0 − w|2n. Indeed, the first m columns of R2 contain only

an upper-triangular submatrix with an on the diagonal; the last m columns contain only
a lower-triangular matrix with an on the diagonal. After these are accounted for, we
are left with a 2n × 2n submatrix in which every row has exactly one nonzero element,
either a0 − w or its conjugate. This completes the proof of deg hC = 2n.

Define h(x, y) = hC(x + iy, x − iy) for real x, y. We claim that h is real valued, and
thus has real coefficients. Recall (for example, [4, page 11]) that the resultant can be
expressed in terms of the roots of the polynomials g, g∗. Let z1, . . . , zn+m be the roots of
g listed with multiplicity. To simplify notation, we separate the cases m > 0 and m = 0.

Case 1: m > 0. We have
∏m+n

k=1 zk = (−1)n+ma−m/an; in particular, zk , 0 for all k. It
follows from (2.2) that g∗ has roots 1/zk for k = 1, . . . , n + m. The leading terms of g
and g∗ are an and a−m, respectively. Thus,

res(g, g∗) = (a−man)m+n
n+m∏
i, j=1

(zi − 1/z j) = (a−man)n+m
n+m∏
i, j=1

ziz j − 1
z j

= (a−man)n+m
(m+n∏

j=1

z j

)−(n+m) n+m∏
i, j=1

(ziz j − 1)

= (−1)n+m(a−man)m+n(an/a−m)n+m
n+m∏
i, j=1

(ziz j − 1)

= (−1)n+m|an|
2(m+n)

n+m∏
i, j=1

(ziz j − 1). (2.3)

The latter product is evidently real.

Case 2: m = 0. We have
∏m+n

k=1 zk = (−1)n(a0 − w)/an; in particular, zk , 0 for all k
provided that w , a0. The rest of the proof goes as in case m > 0, with a−m replaced
by a0 − w throughout. Since a−m cancels out at the end of (2.3), the conclusion that h
is real valued still holds. �

The following description of the local structure of the zero set of a complex-valued
harmonic function is due to Sheil–Small (unpublished) and appears in [10].

Theorem 2.3 [10, Theorem 3]. Let Ω ⊂ C be a domain and let f : Ω→ C be a harmonic
function. Suppose that the points {zk}

∞
k=1 are distinct zeros of f which converge to a

point z∗ ∈ Ω. Then z∗ is an interior point of a simple analytic arc γ which is contained
in f −1(0) and contains infinitely many of the points zk.

The fact that zk ∈ γ for infinitely many k is not stated in [10, Theorem 3] but is a
consequence of the proof.

Proof of Theorem 2.1. (a)–(b) Suppose that w ∈ p(T). Then the rational functions
p(z) − w and p(1/z̄) − w have a common zero, namely, any preimage of w that lies on
T. Consequently, the polynomials (2.2) have a common zero, which implies that their
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resultant hC = res(g, g∗) vanishes at w. Claims (a) and (b) follow from Lemma 2.2. For
future reference, note that the zero set of h can be written as

V = h−1(0) = p(E) where E = {z ∈ C \ {0} : p(z) = p(1/z̄)}. (2.4)

(c) In view of (2.4), to prove that V \ p(T) is finite it suffices to show that E \ T is
finite. Let q(z) = p(z) − p(1/z̄), which is a harmonic Laurent polynomial. Since m < n,
it follows that q(z) = p(z) + O(|z|m) = anzn + O(|z|n−1) as |z| → ∞. Thus E is a bounded
set. By symmetry, E is also bounded away from zero.

Suppose that E \ T is infinite. Then it contains a convergent sequence of distinct
points zk → z∗ , 0. By Theorem 2.3, there exists a simple analytic arc Γ such that
g|Γ = 0 and z∗ is an interior point of Γ. In the case z∗ ∈ T, the arc Γ is not a subarc of
T because it contains infinitely many of the points zk which are not on T. By virtue
of its analyticity, γ has finite intersection with T. By shrinking γ we can achieve that
γ ∩ T = {z∗} if z∗ ∈ T, and γ ∩ T = ∅ otherwise.

Since the endpoints of γ lie in E \ T, the process described above can be iterated
to extend γ further in both directions. This continuation process can be repeated
indefinitely. Since E is bounded, we conclude that E contains a simple closed analytic
curve Γ, as in the proof of [10, Theorem 4].

If Γ does not surround zero, then the maximum principle yields q ≡ 0 in the domain
enclosed by Γ, which is impossible since q is nonconstant. If Γ surrounds zero, then the
complement of Γ ∪ T has a connected component G such that 0 < G. The maximum
principle yields q ≡ 0 in G, which is a contradiction. The proof of (c) is complete.

(d) The proof of (c) used the assumption that m < n only to establish that the set
E in (2.4) is bounded. Thus the conclusion still holds if m = n and E is a bounded
set. Recalling that V = p(E) and |p(z)| → ∞ as |z| → ∞, we find that E is bounded
whenever V is bounded.

Finally, if V is an unbounded set, then V \ p(T) must be infinite because p(T) is
bounded. �

Since a real algebraic set has finitely many connected components [9, Theorem 3],
it follows from Theorem 2.1 that when V \ p(T) is finite, the set p(T) coincides with
one of the connected components of V and the other components of V are singletons.
The number of singleton components of V can be arbitrarily large, even when p is an
algebraic polynomial.

Remark 2.4. For every integer N, there exists a polynomial p such that the set V \ p(T)
described in Theorem 2.1 contains at least N points.

Proof. Let a1, . . . , aN be distinct complex numbers with 0 < |ak| < 1 for k = 1, . . . ,N.
Using Lagrange interpolation, we get a polynomial q of degree 2N − 1 such that
q(ak) = q(1/āk) = k for k = 1, . . . ,N. Let r be a polynomial of degree 2N with zeros at
the points ak and 1/āk, k = 1, . . . ,N. Since infT |r| > 0, for sufficiently large constant
M the polynomial p = q + Mr satisfies q(ak) = q(1/āk) = k for k = 1, . . . ,N as well as
|p(z)| > N for z ∈ T. It follows that the algebraic set V , as described by (2.4), contains
the points 1, . . . ,N, none of which lie on the curve p(T). �
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Figure 1. Nonalgebraic image of the circle.

3. Examples

First, we observe that p(T) need not be a real algebraic set, even for a quadratic
polynomial p.

Example 3.1. Let p(z) = z2 + 3z + 1. Then p(T) is not a real algebraic set.

Proof. Direct computation of the polynomial h in Theorem 2.1 yields

h(x, y) = det


1 − w 3 1 0

0 1 − w 3 1
1 3 1 − w 0
0 1 3 1 − w


= x4 + 2x2y2 + y4 − 4x3 − 4xy2 − 5x2 − 9y2,

where w = x + iy. By Theorem 2.1, the set h−1(0) contains p(T). Since p , 0 on T,
we have 0 ∈ h−1(0) \ p(T). If p(T) was an algebraic set, then V would be reducible.
However, h is an irreducible polynomial. Indeed, the fact that the zero set of h is
bounded implies that any nontrivial factorisation h = f g would have deg f = deg g = 2.
This means that V is the union of two conic sections, which it evidently is not, as p(T)
is not an ellipse (see Figure 1). �

According to Theorem 2.1, the set p(T) can be completed to a real algebraic set
by adding finitely many points, provided that p is either an algebraic polynomial or a
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Laurent polynomial with m < n. The following example shows that the case m = n is
indeed exceptional.

Example 3.2. Let p(z) = z + z−1. Then p(T) is the line segment [−2, 2]. The smallest
real algebraic set containing p(T) is the real line R.

The claimed properties of Example 3.2 are straightforward to verify. In addition,
the polynomial h from Theorem 2.1 can be computed as h(x, y) = −4y2, which shows
that h is not necessarily irreducible.

4. Zero set of harmonic Laurent polynomials

The relation (2.4) highlights the importance of the zero set of the harmonic Laurent
polynomial P(z) = p(z) − p(1/z̄), where p is a Laurent polynomial. It is not a trivial
task to determine whether a given harmonic Laurent polynomial has unbounded zero
set: for example, Khavinson and Neumann [2] remarked on the varied nature of zero
sets for rational harmonic functions in general. In this section, we develop a necessary
condition, in terms of the coefficients of p, for the function P to have an unbounded
zero set.

Suppose that p is a Laurent polynomial (2.1) such that the associated function
P(z) = p(z) − p(1/z̄) has unbounded zero set. Consider the algebraic part of P, namely,

q(z) =

n∑
k=1

akzk −

m∑
k=1

a−k z̄k. (4.1)

Then q is a harmonic polynomial such that lim infz→∞ |q(z)| is finite. In other words, q
is not a proper map of the complex plane.

One necessary condition is immediate: if m < n, then |q(z)| = an|z|n + o(|z|n) as
z→∞. Thus P can only have an unbounded zero set if m = n.

We now look for further conditions on a harmonic polynomial which will ensure
that it is a proper map of R2 to R2. More generally, given a polynomial map
F = (F1, . . . , Fn) : Rn → Rn, let us decompose each component Fk into homogeneous
polynomials and let H(Fk) be the homogeneous term of highest degree in Fk. Write
H(F) for (H(F1), . . . ,H(Fn)) so that H(F) is also a polynomial map of Rn. The
following result is from [7, Lemma 10.1.9].

Lemma 4.1 (L. Andrew Campbell). If H(F) does not vanish in Rn \ {0}, then the map
F : Rn → Rn is a proper map, that is, |F(x)| → ∞ as |x| → ∞.

Lemma 4.1 can be restated in a form adapted to harmonic polynomials in C.

Lemma 4.2. Consider a harmonic polynomial q(z) =
∑n

k=0(akzk + bk z̄k) of degree n ≥ 1
as a map from C to C.

(a) If |an| , |bn|, then q is proper.
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(b) If |an| = |bn|, let η ∈ T be such that ηan = ηbn. If ηak = ηbk for k = 1, . . . , n, then
q is not proper. Otherwise, let K be the largest value of k such that ηak , ηbk. If
there is no z , 0 such that

Re(ηanzn) = 0 = Im((ηaK − ηbK)zK),

then q is proper.

Proof. Part (a) follows from the reverse triangle inequality: that is,

|q(z)| ≥ ||an| − |bn|| |z|n + o(|z|n) as n→∞.

To prove part (b), observe that

Im(ηq(z)) =

n∑
k=0

Im((ηak − ηbkzk). (4.2)

If ηak = ηbk for k = 1, . . . ,n, then Im(ηq) is constant, which means that, up to a constant
term, ηq is a real-valued harmonic function. By Harnack’s inequality, a nonconstant
harmonic function h : C→ R must be unbounded from above and from below, and
therefore q−1(0) is an unbounded set. Since q is constant on an unbounded set, it is not
a proper map.

Finally, suppose that K, as defined in (b), exists. It follows from (4.2) that

H(Im(ηq(z))) = Im((ηaK − ηbK)zK).

Since also
H(Re(ηp(z))) = Re((ηan + ηbn)zn) = 2 Re(ηanzn),

the last statement in (b) follows by applying Lemma 4.1 to (Re(ηq), Im(ηq)) considered
as a map of R2 to R2. �

We are now ready to apply Lemma 4.2 to the special case P(z) = p(z) − p(1/z̄),
where p is a Laurent polynomial. Recall that, in view of Theorem 2.1 and the
relation (2.4), the following result describes when the image p(T) has infinite
complement in the real algebraic set V containing it.

Theorem 4.3. Suppose p(z) =
∑n

k=−n akzn is a Laurent polynomial with ana−n , 0. Let
P(z) = p(z) − p(1/z̄). If the zero set of P is unbounded, then one of the following holds.

(a) p(T) is contained in a line.
(b) There exists η ∈ T such that ηan + ηa−n = 0. Furthermore, there is an integer

k ∈ {1, . . . , n − 1} such that the harmonic polynomial Im((ηak + ηa−k)zk) is
nonconstant and shares a nonzero root with the harmonic polynomial Re(ηanzn).

As a partial converse, if (a) holds, then the zero set of P is unbounded.

Although part (b) of Theorem 4.3 is convoluted, it is not difficult to check, in
practice, because η is uniquely determined (up to irrelevant sign) and the zero sets of
both harmonic polynomials involved are simply unions of equally spaced lines through
the origin.
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Proof. We apply Lemma 4.2 to the polynomial q in (4.1), which means letting
bk = −a−k for k = 1, . . . , n. Since q is not proper, part (b) of the lemma provides two
possible scenarios, which are considered below.

One possibility is that there exists a unimodular constant η such that ηak = −ηa−k

for k = 1, . . . , n. Therefore, for z ∈ T,

Re(ηp(z)) = Re(a0) +

n∑
k=1

Re(ηakzk + ηa−kzk) = Re(a0),

which means that p(T) is contained in a line. The converse is true as well. If p(T)
is contained in a line, then there exists a unimodular constant η such that Re(ηp) is
constant on T. Considering the Fourier coefficients of Re(ηp), we find ηak + ηa−k = 0
for all 1 ≤ k ≤ n.

The other possibility described in Lemma 4.2(b) transforms into part (b) of
Theorem 4.3 with the substitution bk = −a−k. �

5. Intersection of polynomial images of the circle

As an application of Theorem 2.1, we establish an upper bound for the number of
intersections between two images of the unit circle T under Laurent polynomials. It
is necessary to exclude some pairs of polynomials from consideration because, for
example, the images of T under any two of the Laurent polynomials

pα(z) = z + z−1 + α for − 2 < α < 2,

have infinite intersection. This is detected by the computation of the polynomial h in
Theorem 2.1, according to which h(x, y) = −4y2 regardless of α.

Theorem 5.1. Consider two Laurent polynomials

p(z) =

n∑
k=−m

akzk and p̃(z) =

s∑
k=−r

bkzk,

where m, r ≥ 0, n, s ≥ 1 and a−manb−rbs , 0. Then the intersection p(T) ∩ p̃(T) consists
of at most 4ns − 2(n − m)(s − r) points unless the corresponding polynomials h and h̃
from Theorem 2.1 have a nontrivial common factor.

In the special case of algebraic polynomials, m = r = 0, the estimate in Theorem 5.1
simplifies to 2ns. In this case, the theorem is due to Quine [6, Theorem 3], where
the bound 2ns is shown to be sharp. A related problem of counting the self-
intersections of p(T) was addressed in [5] for algebraic polynomials and in [3] for
Laurent polynomials.

Proof. Let hC ∈ C[w, w] be the polynomial associated to p by Theorem 2.1(b).
Consider its homogenisation

H(w,w, ζ) = ζ2nhC(w/ζ,w/ζ).
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Since hC has degree m + n in the variable w, it follows that H has a zero of order at
least 2n − (m + n) = n − m at the point (1, 0, 0) of the projective space CP2. Similarly,
it has a zero of order at least n − m at the point (0, 1, 0).

The homogeneous polynomial H̃ associated with p̃ has zeros of order at least s − r
at the same two points. Therefore the projective curves H = 0 and H̃ = 0 intersect
with multiplicity at least (n − m)(s − r) at each of the points (1, 0, 0) and (0, 1, 0) [8,
Theorem 5.10, page 114].

Bezout’s theorem implies that, unless H and H̃ have a nontrivial common factor,
the projective curves H = 0 and H̃ = 0 have at most deg H deg H̃ = 4ns intersections in
CP2, counted with multiplicity. Subtracting the intersections at the two aforementioned
points, we are left with at most 4ns − 2(n −m)(s − r) points of intersection in the affine
plane. �
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