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Abstract. Surface plasmons (SP) in a semi-bounded quantum plasma with degenerate
electrons (e.g. a metal) are considered, and some interesting consequences of electron
Pauli blocking for the SP dispersion and temporal attenuation are discussed. In
particular, it is demonstrated that a semi-bounded degenerate plasma with a sharp
boundary supports two types of SP with distinct frequencies and qualitatively
different temporal attenuation, in contrast to a non-degenerate hot plasma that only
supports one type of SP.

1. Introduction
Surface plasmons (SP) are a type of collective oscilla-
tions that are supported by bounded media, and propag-
ate along an interface of two media with different
signs of the real part of dielectric response function.
Their qualitative difference from the volume plasmons
(which can propagate in both unbounded and bounded
media) is that their field is localized near the interface
along which they propagate. They also have spectral
and attenuation properties different from volume plas-
mons (Alexandrov et al. 1984).

Surface plasmons have been studied extensively
since their theoretical prediction (Ritchie 1957)
and experimental detection (Powell and Swan 1959a,b;
Kretschmann and Raether 1968; Otto 1968) in the 1950s
and 1960s. There has been a significant advance in
theoretical and experimental investigations of surface
plasmons and their applications in various bounded
plasma structures, both in the field of plasma science
(see Vladimirov et al. 1994 and references therein) and
in the fields of condensed matter and surface science
(see e.g. a review by Pitarke et al. 2007). Currently,
there is a renewed interest in surface plasmons due
to their ability to concentrate light in sub-wavelength
structures, enabling the creation of surface plasmon-
based circuits that can couple photonics and electronics
at nanoscale. This offers a route to faster and smaller
devices, and opens up possibilities to new technologies
employing surface plasmons (Brongersma and Shalaev
2010). For example, one of the recent interesting ad-
vents in the new area of quantum nanoplasmonics is
the development of the concept of spaser (a surface
plasmon ‘laser’; Bergman and Stockman 2003), followed
by its further development into a lasing spaser (Zheludev
et al. 2008), and by an experimental demonstration of a

spaser-based nanolaser (Garcia-Vidal and Moreno 2009;
Noginov et al. 2009).

These developments require a solid understanding of
SP properties in various bounded metallic and semi-
conductor structures. The properties of surface plas-
mons in bounded structures are defined, among other
things, by the dielectric properties of the medium that
sustains them. The latter are often (e.g. in metals, for
which the electrons are strongly degenerate) significantly
affected by the quantum nature of the charge carriers
and their interaction in the medium. This can affect
the properties of SP in a non-trivial way, via modifica-
tion of analytic properties of the medium response. In
particular, quantum effects (due to Pauli blocking and
overlapping wave functions of free charge carriers in the
medium; Shukla and Eliasson 2011), when significant,
can modify the dispersion, damping (Tyshetskiy et al.
2012b) and spatial attenuation of SP (Vladimirov 1994)
supported by a bounded medium.

Recently, the properties of surface plasmons in a
semi-bounded degenerate plasma have been analyzed
using quantum hydrodynamical approach (Lazar et al.
2007) and a more rigorous kinetic approach (Tyshetskiy
et al. 2012b). In particular, the effects of quantum
recoil and quantum degeneracy of plasma electrons
on SP properties have been analyzed. In this paper,
we show another consequence of quantum degeneracy
of electrons on SP properties, exemplified by a simple
case of SP in a semi-bounded collisionless plasma with
degenerate electrons. In particular, we show that such a
system supports two types of SP, with different frequen-
cies and qualitatively different temporal attenuation, in
contrast to the case of a non-degenerate semi-bounded
plasma that only supports one type of SP (Guernsey
1969).
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2. Method
2.1. Model and assumptions

We consider a semi-bounded, non-relativistic collision-
less plasma with degenerate mobile electrons (Te�εF ,
where Te is the electron temperature in energy units,
εF = �2(3π2ne)

2/3/2me is the electron Fermi energy),
and immobile ions; the equilibrium number densities
of electrons and ions are equal, n0e = n0i = n0 (quasi-
neutrality). The plasma is assumed to be confined to a
region x < 0, with mirror reflection of plasma particles
at the boundary x = 0 separating the plasma from a
vacuum at x > 0.

We look at SPs in the non-retarded limit, when their
phase velocity is small compared with the speed of light.
In this limit, the SP field is purely electrostatic; hence,
we can restrain ourselves to considering only electro-
static oscillations in the considered system. Following
the discussion of Tyshetskiy et al. (2012b), we adopt
here the quasi-classical kinetic description of plasma
electrons in terms of the 1-particle distribution function
f(r, v, t) = f(x, r‖, vx, v‖, t) (Vladimirov and Tyshetskiy
2011) (where r‖ and v‖ are, respectively, the components
of r and v parallel to the boundary, and x and vx are the
components of r and v perpendicular to the boundary),
whose evolution is described by the Vlasov equation
coupled with the Poisson’s equation for the electrostatic
potential.

2.2. Initial-value problem

We introduce a small initial perturbation fp(x, r‖, vx, v‖,
t = 0) to the equilibrium electron distribution function
f0(v), |fp(x, r‖, vx, v‖, t = 0)|�f0(v), and use the kinetic
equation to study the resulting evolution of the system’s
charge density ρ(x, r‖, t) = e[

∫
f(x, r‖, v, t)d

3v − n0], and
hence of the electrostatic potential φ(x, r‖, t) defined by
the Poisson’s equation. Introducing the dimensionless
variables Ω = ω/ωp, K = kλF , V = v/vF , X = x/λF ,

R‖ = r‖/λF , λF = vF/
√

3ωp, vF = (2εF/me)
1/2, ωp =

(4πe2n0/me)
1/2, and following Guernsey (1969), the

solution of the formulated initial-value problem for
ρ(X,R‖, T ) with the specified boundary condition is

ρ(X,R‖, T ) = en0ρ̃(X,R‖, T ), (2.1)

where

ρ̃(X,R‖, T ) =
1

(2π)3

∫ +∞

−∞
dKx eiKxX

∫
d2K‖ eiK‖·R‖ ρ̃k(T ),

(2.2)

ρ̃K(T ) =
1

2π

∫ iσ+∞

iσ−∞
ρ̃(Ω,K) e−iΩT dΩ, with σ > 0. (2.3)

The integration in (2.3) is performed in the complex Ω

plane along the horizontal contour that lies in the upper
half-plane Im(Ω) = σ > 0 above all singularities of the
function ρ̃(Ω,K). The function ρ̃(Ω,K), defined as the

Laplace transform of ρ̃K(T ),

ρ̃(Ω,K) =

∫ ∞

0

ρ̃K(T ) eiΩT dT , (2.4)

is found to be

ρ̃(Ω,K) = i
I(Ω,K)

ε(Ω,K)
+

iK‖

2πζ(Ω,K‖)

[
1 − 1

ε(Ω,K)

]

×
∫ +∞

−∞

I(Ω,K′)

K ′2 ε(Ω,K ′)
dK ′

x, (2.5)

where the functions I(Ω,K) and I(Ω,K′) are fully defined
by the initial perturbation (Guernsey 1969), K‖ = |K‖|,
K = |K|, K = (Kx,K‖), K

′ = |K′|, and K′ = (K ′
x,K‖). The

functions ε(Ω,K) and ζ(Ω,K‖) in (2.5) are defined (for
Im(Ω) > 0) as follows:

ε(Ω,K) = 1 − 1√
3K2

∫
K · ∂f̃0(V)/∂V

Ω −
√

3K · V
d3V, (2.6)

ζ(Ω,K‖) =
1

2
+

K‖

2π

∫ +∞

−∞

dKx

K2 ε(Ω,K)
, (2.7)

with

f̃0(V) =
v3
F

n0
f0(V) =

v3
F

n0
f0(v)|v=vFV .

For fully degenerate electrons, the function ε(Ω,K) be-
comes (for Im(Ω) > 0) (Gol’dman 1947; Alexandrov
et al. 1984)

ε(Ω,K) = 1 +
1

K2

[
1 − Ω

2
√

3K
ln

(
Ω +

√
3K

Ω −
√

3K

)]
,

Im(Ω) > 0, (2.8)

where ln(z) is the principal branch of the complex
natural logarithm function.

Note that the solution (2.5) differs from the corres-
ponding solution of the transformed Vlasov–Poisson
system for infinite (unbounded) uniform plasma only
in the second term involving ζ(Ω,K‖); indeed, this term
appears due to the boundary at x = 0.

The definition (2.4) of the function ρ̃(Ω,K) of complex
Ω has a sense (i.e. the integral in (2.4) converges) only
for Im(Ω) > 0. Yet the long-time evolution of ρ̃k(T )
is obtained from (2.3) by displacing the contour of
integration in the complex Ω plane from the upper
half-plane Im(Ω) > 0 into the lower half-plane Im(Ω) �
0 (Landau 1946). This requires the definition of ρ̃(Ω,K)
to be extended to the lower half-plane, Im(Ω) � 0,
by analytic continuation of (2.5) from Im(Ω) > 0 to
Im(Ω) � 0. Hence, the functions I(Ω,K), ε(Ω,K) and
ζ(Ω,K‖) that make up the function ρ̃(Ω,K) must also
be analytically continued into the lower half-plane of
complex Ω, thus extending their definition to the whole
complex Ω plane. With thus continued functions, the
contributions to the inverse Laplace transform (2.3) are
of three sources (Guernsey 1969):

(a) Contributions from the singularities of I(Ω,K) in
the lower half of the complex Ω plane; with some
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Figure 1. (Colour online) A sketch of the deformed integration
path in (2.3) in the complex Ω plane, with contributions
of poles (solid circles) and branch cuts (dashed lines) of
1/ζ(Ω,K‖). The singularities due to 1/ε(Ω,K) are not shown,
but they also contribute to (2.3), yielding volume plasmons.

simplifying assumptions about the initial perturba-
tion (Guernsey 1969), these contributions are
damped in a few plasma periods and can be ignored.

(b) Contribution of singularities of 1/ε(Ω,K) in the
lower half of the complex Ω plane, of two types:
(i) residues at the poles of 1/ε(Ω,K), which give the
volume plasma oscillations (Guernsey 1969); and (ii)
integrals along branch cuts (if any) of 1/ε(Ω,K) in
the lower half-plane of complex Ω, which can lead to
non-exponential attenuation of the volume plasma
oscillations (Hudson 1962; Krivitskii and Vladimirov
1991).

(c) Contribution into (2.3) of singularities of 1/ζ(Ω,K‖)
in the lower half of the complex Ω plane, of two
types: (i) residues at the poles of 1/ζ(Ω,K‖), corres-
ponding to the surface wave solutions of the initial-
value problem in the considered system (Guernsey
1969; Tyshetskiy et al. 2012b); and (ii) integrals
along branch cuts (if any) of 1/ζ(Ω,K‖) in the lower
half-plane of complex Ω.

Below, we consider the latter contributions from poles
and branch cuts of 1/ζ(Ω,K‖) in the lower half-plane of
complex Ω, as illustrated in Fig. 1, and show that they
yield two types of electrostatic surface oscillations with
different frequencies and qualitatively different temporal
attenuation.

3. Two types of surface oscillations
3.1. Contribution of poles of 1/ζ(Ω,K‖)

The contribution of poles of 1/ζ(Ω,K‖) into (2.3) leads
to exponentially damped surface oscillations (Tyshetskiy
et al. 2012b)

ρ̃
(poles)
K (T ) ∝ e−|Γs|T cos(ΩsT ) , (3.1)

with frequency Ωs = ωs/ωp and damping rate Γs =
γs/ωp obtained from the dispersion equation ζ(Ω,K‖) =
0. The frequency asymptotes are

Ωs ≈ 1√
2
(1 + 0.95K‖), for K‖ << 1, (3.2)

Ωs ≈
√

3K‖
(
1 + 2 exp

[
− 2 − 4K2

‖
])
,

for K‖ >> 1 (zero sound). (3.3)

We see that at large K‖, the frequency of these surface
oscillations asymptotically approaches the frequency of
zero sound – an intrinsically quantum mode in a Fermi
gas (Lifshitz and Pitaevskii 1981).

The absolute value of the damping rate is a non-
monotonic function of K‖. At small K‖, it increases
linearly with K‖,∣∣Γs(K‖)

∣∣ ≈ 2.1
√

3 × 10−2K‖, (3.4)

reaches maximum |Γs| ≈ 6.2 × 10−3 at K‖ ≈ 0.4, and
then quickly decreases at K‖ > 0.4. Since the max-
imum growth rate is small, the surface oscillations due
to the poles of 1/ζ(Ω,K‖) are weakly damped at all
wavelengths (Tyshetskiy et al. 2012b).

3.2. Contribution of branch cuts of 1/ζ(Ω,K‖)

For degenerate plasma, the analytically continued func-
tion ζ(Ω,K‖) has two branching points on the real axis of
the complex Ω plane at Ω = ±Ωv(K‖), where Ωv(K‖) ∈ �
is the solution of equation

ε(Ω,K‖) = ε(Ω,K)|Kx=0 = 0, (3.5)

with the corresponding branch cuts going down into the
Im(Ω) < 0 part of the complex Ω plane, as schematically
shown in Fig. 1. Let us consider the contribution of
the integration along these branch cuts into the inverse
Laplace transform (2.3). The branching points lie above
the poles Ωs − i|Γs| of 1/ζ (since the latter lie below the
real axis of the Ω plane); therefore, we can expect the
contribution of the integration along the branch cuts
into (2.3) to be at least as important as the contribution
of the poles, if not to exceed it.

At large times T�1, the main contribution into the
integrals along the branch cuts comes from the small
vicinity of the branching points, so it suffices to approx-
imate the second term of (2.5) near the branching points
in the lower semi-plane of complex Ω. This can be done
in two steps:

(a) approximate ρ̃(Ω,K) defined by (2.5) in the upper
vicinities of the branching points, in terms of ele-
mentary functions; the approximate function should
have the same branching points as the original one;

(b) analytically continue these approximations into the
lower vicinities of the branching points, choosing the
branch cuts to go down.

Then, we can perform the integration of thus obtained
approximations along the branch cuts in the vicinity
of the branching points. This procedure of integration
along the branch cuts (the details of which will be
published elsewhere) yields an intrinsically quantum type
of surface oscillations, with

ρ̃
(cuts)
K (T ) ∝ cos (ΩvT )

T 3/2
+ O

(
T−5/2

)
, for Kx 
= 0, (3.6)
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ρ̃
(cuts)
K (T ) ∝ cos (ΩvT )

T 1/2
+ O

(
T−3/2

)
, for Kx → 0, (3.7)

ρ̃
(cuts)
K (T ) ∝ cos(ΩvT )

T
+ O

(
T−3/2

)
,

for Kx →
√
Ω2

v /3 − K2
‖ . (3.8)

The frequency of these oscillations is equal to the fre-
quency of volume plasma waves with the same
wavelength, K = K‖, and thus exceeds the frequency
Ωs of the surface oscillations (3.1) due to the poles
of 1/ζ. The temporal attenuation of ρ̃

(cuts)
K (T ) (power

law) is qualitatively different from that of ρ̃
(poles)
K (T )

(exponential).

4. Discussion
We thus see that our system supports two distinct types
of surface oscillations, with different frequencies and
temporal attenuation:

(a) exponentially damped surface oscillations (3.1) with
frequency Ωs(K‖), due to the poles of ρ̃(Ω,K) (Tysh-
etskiy et al. 2012b);

(b) power-law attenuated surface oscillations (3.6)–(3.8)
with frequency Ωv(K‖) > Ωs(K‖), due to the branch
cuts of ρ̃(Ω,K). Since the power-law attenuation
is slower than the exponential attenuation, these
oscillations should become dominant at large times,
and should become experimentally observable.

It is interesting to note that, as seen from (3.6)–
(3.8), different Kx components in the wave packet
making up the surface oscillation of this type are
attenuated at a different rate. Since T−1/2 decays
slower than T−1 or T−3/2, the small-Kx part of the
wave packet becomes dominant over the large-Kx

part at large times, which corresponds to the pen-
etration of the perturbation away from the surface
and deeper into plasma.

The present analysis relies on several assumptions
discussed in detail by Tyshetskiy et al. (2012b), of
which perhaps the most critical ones are the assump-
tions of collisionless plasma and of the sharp per-
fectly reflecting boundary confining the plasma. While
relaxing the former assumption does not change the
results qualitatively (Tyshetskiy et al. 2012a), relaxing

the latter assumption may somewhat change the results.
First, the smooth boundary leads to a new resonant
damping of surface oscillations, significantly increasing
the exponential damping rate |Γs| in (3.1) (Marklund
et al. 2008). Second, allowing for boundary smoothness
(with a simultaneous account for the quantum tunneling,
as they both have the same spatial scales) should change
the analytic properties of ρ̃(Ω,K) in the lower semi-plane
Im(Ω) < 0 of the complex Ω plane, and thus may change
its branch cuts and their contribution to (2.3).
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