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SUMMARY
Finding singular configurations (singularities) has an
important role during the design, trajectory planning,
and control stages of mechanisms because in these
configurations, the instantaneous kinematics is locally
undetermined. In this paper, a systematic method is presented
to obtain singular configurations of spherical mechanisms
with input and output links. The method extends the use
of instantaneous poles to singularity analysis of spherical
mechanisms and offers geometric conditions for any type of
singularities occurring in these mechanisms.
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1. Introduction
Study of parallel mechanisms highlighted the importance
of identifying singular configurations (singularities). In
these configurations, degree of freedom (dof) of the
mechanism changes and the mechanism will become scarcely
controllable, so these configurations must be found and
avoided.

Different approaches have been adopted in dealing with
singularity analysis; considering a mechanism as an input–
output device, Gosselin and Angeles1 identified three types
of singularities:

Type (I) singularities: singularities where the inverse
instantaneous kinematic problem (IIKP) is unsolvable. This
type of singularities occurs when at least one out of the
input-variable rates can be different from zero even though
all the output-variable rates are zero. In one-dof mechanisms,
such singularities occur when the output link reaches a dead
center, i.e., when an output variable reaches a border of its
range.

Type (II) singularities: singularities where the forward
instantaneous kinematic problem (FIKP) is unsolvable. This
type of singularities occurs when at least one out of the
output-variable rates can be different from zero even though
all the input-variable rates are zero. These singularities may
be present only in mechanisms with closed loops and fall
inside the output-variables range (workspace). In one-dof
mechanisms, such configurations occur when the input link
reaches a dead center.
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Type (III) singularities: singularities where both the
IIKP and the FIKP are unsolvable, i.e., when two
previous singularities occur simultaneously; in this type
of singularities, the input–output instantaneous relationship
holds no longer and the mechanism behavior may change. In
one-dof mechanisms, these singularities lead to one or more
additional uncontrollable dofs.

From different point of view, Hunt2 identified two classes
of singular configurations: (a) stationary configurations
where one joint variable is instantaneously inactive and
(b) uncertainty configurations where the mechanism locally
gains transitory mobility.

One of the geometrical devices to deal with instantaneous
kinematics of planar mechanisms is instant centers.3–11

For instance, they can be used for singularity analysis of
planar mechanisms;7–11 Daniali9 introduced a fast method
to find singular configurations of three-dof planar parallel
manipulators, based on the properties of instant centers.
Di Gregorio12 presented an algorithm that computes the
instant centers in all single-dof planar mechanisms, and
an exhaustive analytical and geometrical study10 about the
singularity analysis of single-dof planar mechanisms. He
classified the single-dof planar mechanisms into four groups
and derived the explicit expression of the input–output
instantaneous relationship for each group through the concept
of instant centers. Using the obtained relationships, he found
the conditions corresponding to each type of singularities of
these mechanisms. He also found11 singular configurations
of n-dof planar mechanisms by considering them as the union
of n one-dof mechanisms.

All of the above mentioned works could be done
for spherical mechanisms using instantaneous poles. For
example, Deducing from his previous work,12 Di Gregorio
presented an exhaustive algorithm13 to determine the
instantaneous poles’ positions of single-dof spherical
mechanisms.

There exist some papers that addressed singularity analysis
of spherical mechanisms, but the literature is so limited
and most of the works are analytical.14–17 However,
Zarkandi et al.18 have recently presented a work in which
singularity analysis of single-dof spherical mechanisms was
implemented geometrically using the concepts of mechanical
advantage and instantaneous poles.

Here, the author extends the methodology presented
by Di Gregorio10,11 to singularity analysis of spherical
mechanisms by exploiting the properties of instantaneous
poles. This work can be considered as a counterpart of Di
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Gregorio’s mentioned works for the spherical mechanisms.
In contrast to the previous work,18 the presented method
can be used to study the singularities of single- and
multi-dof spherical mechanisms having input and output
links.

2. Spherical Motion and Instantaneous Poles
In this section, the concepts of spherical motion and
instantaneous poles are reviewed based on the work presented
by Chiang.19 Spherical motion is defined as the motion of a
rigid body, a unique point of which is permanently fixed in
space. Let this point be denoted by O. Because the distance
between any point in the body, say A, and the fixed point
O is not changeable, the point A can only move within
a spherical surface. The point O then becomes the center
of the spherical surface. Position of the rigid body will be
completely determined if the positions of any two points A
and B in the body are determined, provided that O, A, and B
are not collinear. In other words, if A and B are on the same
spherical surface, the position of the whole body can be fully
represented by the positions of A and B. It follows that, as far
as kinematics of a rigid body is concerned, it is sufficient to
consider the motion of two distinct points of the body, both
lying on the same spherical surface. It is also sufficient, in
the case of multiply moving bodies with a common sphere
center, to consider only the motion of such points of these
bodies that lie on a unique spherical surface. Without loss
of generality, the radius of this unique sphere may be taken
as unity and the sphere is called the reference sphere. Each
body, however, may be considered as a spherical shell of
negligible thickness, extending over the whole surface of
the reference sphere. Corresponding to the straight line on
a plane, the shortest line on a curved surface connecting
two points is called a geodetic line. The geodetic line on a
spherical surface between two points is part of a great circle.
The great circle is the intersection of the spherical surface
with a plane passing through these two points and the sphere
center. It is well known that, in plane kinematics, a rigid
body can be represented by a straight line passing through
two points of the body. Similarly, in spherical kinematics, a
rigid body can also be represented by a segment of a great
circle passing through two points of the body, on the surface
of the reference sphere.

Let us consider the motion of a spherically moving body
AB, represented by a piece of a spherical shell as shown in
Fig. 1. Assume that the directions of the velocities vA and
vB of the points A and B are known. vA must be normal
to OA. If we draw a great circle m passing through A and
normal to the direction of vA; then, by the definition of a
rigid body, the direction of the velocity of any point on the
great circle m must be parallel to vA. Similarly, the direction
of the velocity of any point on the great circle n passing
through B and normal to vB must be parallel to vB . Let the
intersection point of the two great circles m and n be denoted
by P. If there exists a linear velocity vP of the point P on the
moving body, it must be parallel to both vA and vB . Since this
is not possible, vp must vanish identically. P is thus called
the velocity pole or pole of the moving body and the body
is rotating about the pole axis OP. Thus, we see that any
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Fig. 1. Pole of a spherical shell moving on surface of the reference
sphere and velocity of two point of it.19

PGC 

DGC 

Reference 
sphere 

x 

z 

C 

 

IGC 

D 

z′

y ′

Reference 
plane

ε
ε

Fig. 2. Reference sphere, reference plane, and Cartesian reference
system fixed to the frame: IGC = infinity great circle, PGC =
primary great circle, DGC = declination great circle.

spherical motion is a rotation, i.e., an angular motion. OP
can be either a fixed or an instantaneous axis of rotation.

The pole of a spherically moving body, as defined above,
may be generalized for two cospherically moving shells.
There exist between such two shells two instantaneously
coincident points, each belonging to the respective shell, the
linear velocities of which are identical. This common point
is called instantaneous pole of the two shells. In fact, for two
shells moving about a common sphere center, there are two
instantaneous poles located diametrically opposite to each
other on the reference sphere, and the two shells are said to
rotate instantly relative to each other about an instantaneous
pole Axis that passes through two instantaneous poles and
the sphere center.

3. Notations
Spherical mechanisms can be studied by projecting them
through the spherical-motion center onto a sphere (reference
sphere) with center at the spherical-motion center, Fig. 2.
So doing, instantaneous poles, henceforth referred as the
instant poles, become points of the reference sphere and links
become spherical shells that move on the reference sphere.

With reference to a Cartesian system (Fig. 2) whose origin
is at the spherical motion center, intersections between the
reference sphere and xy plane, yz plane, and zx plane will
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be called primary great circle (PGC), infinity great circle
(IGC), and declination great circle (DGC), respectively.13

The IGC cuts the reference sphere into two hemispheres: the
one (positive hemisphere) whose points have a positive x-
coordinate and the other (negative hemisphere) whose points
have a negative x-coordinate. Two great circles with different
slopes have only one intersection in the positive (negative)
hemisphere, whereas two great circles with the same slope
(i.e., that belong to the same pencil of meridians) do not
intersect each other in the positive (negative) hemisphere.
An instantaneous pole axis that does not lie on the yz plane
intersects the reference sphere at two diametrically opposite
points: one lying on the positive hemisphere and the other
lying on the negative hemisphere. An instantaneous pole axis
that lies on the yz plane cuts the IGC into two diametrically
opposite points: one either with positive y-coordinate, or
with zero y-coordinate and positive z-coordinate, and the
other either with negative y-coordinate, or with zero y-
coordinate and negative z-coordinate. Therefore, the points of
the positive (negative) hemisphere plus the points of the IGC
either with positive (negative) y-coordinate or with zero y-
coordinate and positive (negative) z-coordinate are sufficient
to identify all the possible instant pole. This set of points,
which is a subset of the reference sphere, will be called
positive (negative) shell.13

Since instant poles’ positions are sufficient to fully
describe first-order kinematics of spherical mechanisms, the
first-order kinematics of the spherical mechanisms can be
studied by using only one (either positive or negative) shell
of the reference sphere. Hereafter, the positive shell will be
used.

A bijective mapping can be defined13 between points of
the positive hemisphere and those of the reference plane
x = 1, which is tangent to reference sphere at point C (1,
0, 0) (see Fig. 2). Moreover, by projecting a straight line
with the certain slope passing through point of tangency
between the reference plane and reference sphere on the yz
plane, a line with the same slope is obtained that can be
used to uniquely locate the corresponding IGC point, D, of
the positive hemisphere as shown in Fig. 2. Therefore, the
first-order kinematics of spherical mechanisms can be fully
described by using only points of the reference plane.

As a consequence of the above discussion, any theorem,
considering instantaneous kinematics of planar mechanisms,
can have a spherical counterpart. For instance, Aronhold–
Kennedy theorem in plane kinematics can be adapted for
spherical kinematics and stated as follows:

Theorem 1 (Aronhold–Kennedy theorem). Three instant
poles of the three cospherically moving links lie on a unique
great circle.

Considering a one-dof spherical mechanism as an input–
output system, any input–output instantaneous relationship
can be written by using only the instant poles among four
links: input link (i), output link (o), reference link (f) used to
evaluate the rate of input variable, and reference link (k) used
to evaluate the rates of all output variables. The input (output)
variable is a motion characteristic of the relative motion
“if” (“ok”) and is a rotation angle about the correspondent
instantaneous pole axis; moreover, it is taken positive if

Pkf

Pif

Poi

Pok

Pof

Pik

Fig. 3. Great circles that the six instant poles lie on.

counterclockwise with respect to the positive side1 of the
axis.

For the four bodies of a spherical mechanism, “i,” “o,” “f,”
and “k,” there exist six different relative motions that will be
denoted “if,” “ok,” “ik,” “kf, ” “oi,” and “of” (the second letter
indicates the link from which motion of the link, correspond
to the first letter, is observed). Instant poles of these six
motions will be denoted Pmn, where mn ∈ {if, ok, ik, kf, oi,
of}. Pmn will indicate the position vector that locates the
instant pole Pmn (it is meant that all the position vectors are
defined in a unique reference system fixed to the center of the
unit sphere). According to the Aronhold–Kennedy theorem,
these instant poles must lie on the great circles shown in
Fig. 3.

Velocity of Pmn, as a point of link “t” and evaluated in a
reference system fixed to link “r,” where r, t ∈ {i, o, f, k},
will be denoted rvmn|t . Angular velocity vector of the relative
motion “mn” will be denoted ωmn. With these notations and
conventions, the following relationship holds:

rvmn|t = ωtr × (Pmn − Ptr ). (1)

In the following sections, without loosing generality, a
single-input–single-output system (SISO system) will be
considered. A mechanism2 with n output variables (i.e., a
single-input–multiple-output system (SIMO system)) can be
considered as n independent SISO systems that work in
parallel.

4. Input–Output Instantaneous Relationship
An input–output instantaneous relationship of a one-dof
spherical mechanism with only one output variable is linear
and can be generally written as follows:

a × (eifθ̇if) = b × (eokθ̇ok), (2)

where eif (eok) is a unit vector directed along the positive
side of instantaneous pole axis of the input (output) link and

1 Positive side of an instantaneous pole axis is defined as the side
that has intersection with the positive hemisphere.
2 In this paper, if it is not differently specified, the mechanisms that
are considered are spherical mechanisms.
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Fig. 4. Type (I) singularities: (a) condition (8a) is matched and (b) condition (8b) is matched.

the reference link f (k); θ̇if(θ̇ok) is the rate of input (output)
variable, i.e., θ if (θok); Therefore, θ̇if(θ̇ok) is equal to angular
velocity of relative motion between the input (output) link
and the reference link f (k). In other words,

eifθ̇if = ωif,

eokθ̇ok = ωok.

Additionally, a and b are coefficients that depend only on
the mechanism configuration and are obtained as follows.
In view of properties of instant poles, the following
relationships can be written:

f voi|i = f voi|o , (3a)

kvoi|i = kvoi|o . (3b)

Moreover, the following relationship holds:

ωif + ωok = ωof + ωik. (4)

Introduction of Eq. (1) into Eq. (3) leads to

(Poi − Pif) × ωif = (Poi − Pof ) × ωof (5a)

(Poi − Pik) × ωik = (Poi − Pok) × ωok (5b)

Finally, introduction of Eqs. (5) into Eq. (4) and doing
some algebraic manipulation (see Appendix) results in the
following input–output instantaneous relationship:

(Pof − Pif) × (Poi − Pik) × ωif = (Pok − Pik)

× (Poi − Pof ) × ωok. (6)

Thus, the following expressions are obtained for a and b:

a = (Pof − Pif) × (Poi − Pik), (7a)

b = (Pok − Pik) × (Poi − Pof ). (7b)

5. Singularity Analysis of Single-Dof Spherical
Mechanisms
Equation (2) is the general form of an input–output
instantaneous relationship of a one-dof spherical mechanism
with only one output variable (SISO system). With reference
to Eq. (2) and considering the physical meanings of the three
types of singularities identified by Gosselin and Angeles
(see Section 2), type (I) singularities (inverse kinematic
singularities) occur when the vector a is equal to zero then
the IIKP admits an infinite number of solutions for the rate
θ̇if (i.e., the rate θ̇if is undetermined); type (II) singularities
(direct kinematic singularities) occur when the vector b is
equal to zero then the FIKP results in an infinite number of
solutions for the rate θ̇ok (i.e., the rate θ̇ok is not determined);
finally, type (III) singularities occur when vectors a and b
are both equal to zero. In the following part of this section,
the above-deduced explicit relationship will be discussed and
conditions that identify the singularities will be given.

Analysis of Eq. (7a) reveals that an inverse problem
singularity occurs when at least one out of the following
geometric conditions is satisfied (Fig. 4):

Pof = Pif, (8a)

Poi = Pik. (8b)

On the other side, Eq. (7b) shows that a direct problem
singularity occurs when at least one out of the following
geometric conditions is matched (Fig. 5):

Pok = Pik, (9a)

Poi = Pof . (9b)

Finally, type (III) singularities occur when at least one out
of Eqs. (8) together with at least one out of Eqs. (9) are
satisfied simultaneously.

In the following subsection, an example will illustrate how
the presented procedure can be implemented.

5.1. Singularity analysis of spherical Shaper mechanism
In this subsection, the above procedure will be applied to
study a six-bar linkage called spherical-shaper mechanism.
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Fig. 5. Type (II) singularities: (a) condition (9a) is matched and (b) condition (9b) is matched.
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Fig. 6. (a) A spherical-shaper mechanism at a generic configuration and (b) the mechanism with its instant poles.

Figure 6(a) shows a spherical-shaper mechanism together
with the notations that will be used. Link 1 is the input link;
link 5 is the output link; link 0 is the reference link used to
evaluate the rate both of the input variable and the output
variable. Therefore, “i” = 1, “o” = 5, “f” = “k” = 0. θ10 is
the input variable. Arbitrary point A is fixed to link 0. θ50 is
considered as the output variable and is defined as the convex
central angle formed by two radius vectors that pass through
the point A and a specific point on output link 5. Instant poles
of the mechanism are shown in Fig. 6(b).

Please not that due to the structure of the mechanism
the singularity conditions (8a) or (9a) can not be satisfied.
Singularity conditions (8b) and (9b) bring to the conclusion
that type (I) singularities occur when P51 coincides with
P10. Considering Fig. 6(b), one can see that coincidence of
these two instant poles occurs when the great circle, passing
through link 1, is perpendicular to the great circle passing
through link 3, which is the geometric condition identifying
dead-center positions of link 5 in the mechanism (see Fig. 7).

On the other hand, type (II) singularities occur when P51

coincides with P50. Coincidence of P51 with P50 (i.e., type (II)
singularity) occurs when the great circle, passing through link
4, is perpendicular to the curves of correspondent slipping
joint of link 5; Fig. 8 shows a configuration of mechanism at
this type of singularity.

0 

P50 

P10, P31, P41, P51 

P54 
5 

4 

1 2
P21 

3 
P43 

P30 

Fig. 7. The spherical-shaper mechanism at a type (I) singularity.

Type (III) singularities are mechanism configurations
in which two previous singularities occur simultaneously.
Considering Eqs. (8) and (9), one can conclude that at this
type of singularity, P51 must coincide with P10 and P50

simultaneously. This condition is satisfied when P51 is not
determined. Figure 9 shows the mechanism in this type
of singularity in which P41 and consequently P51 are not
determined.
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Fig. 8. The spherical-shaper mechanism at a type (II) singularity.
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Fig. 9. The spherical-shaper mechanism at a type (III) singularity.

6. Singularity Analysis of Spherical Mechanisms with
More Than One Degree of Freedom
As it was said in Section 3, any theorem or result considering
instantaneous kinematics of planar mechanisms can have
a spherical counterpart. Some results, which are deduced
from a work presented by Di Gregorio,11 are adapted for
spherical mechanisms and stated through three statements in
the following.

Considering an n-dof spherical mechanism as the union of
n single-dof mechanisms where the ith single-dof mechanism
is generated from the n-dof mechanism by locking all inputs
but the ith one, then for the ith single-dof mechanism, the
following relationship holds:

ai × (
ei

ifθ̇
i
if

) = bi × (
ei
okθ̇

i
ok

)
, (10)

where ai , bi , ei
u, θ̇ i

u, u ∈ {if, ok} are equivalent to the a, b, eu,
θ̇u, u ∈ {if, ok} for the ith single-dof mechanism, respectively.

Statement 1. Type (I) singularities of the n-dof spherical
mechanisms can be collected into two classes:

(a) Configurations that are singular for at least one single-
dof mechanism generated from the n-dof mechanism and
occur if the coefficient ai , i ∈ {1, 2,. . . . ., n} is equal to 0.

(b) Singularities, occurring in the mechanisms with n ≥
3, that are not singularities of any single-dof mechanism
generated from that n-dof mechanism and occur, if and only
if, three instant poles pi i ∈ {1, 2, 3} locate on the same
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20 
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Fig. 10. A 5R spherical mechanism.

great circle and all of the ai and bi coefficients are different
from 0

Where point Pi is the instant pole of the instantaneous
motion that the output link would perform with respect to
reference link (o) if it was guided by the ith single-dof
mechanism generated from the n-dof mechanism.

Statement 2. Type (II) singularities of the n-dof spherical
mechanisms occur if the coefficient bi , i ∈ {1, 2,. . . . ., n} is
equal to 0.

Statement 3. Coincidence of all the Pi instant poles
i ∈ {1, 2,. . . . ., n} identifies a particular type (II) singularity
of an n-dof spherical mechanism.

In the following subsections, the presented procedure will
be applied on two spherical mechanisms: (1) a spherical 5R
mechanism and (2) a three-dof 3-RRP spherical fully parallel
mechanism in which each of the legs begins with two revolute
joint and ends with a slipping joint.

6.1. Singularity analysis of the 5R spherical mechanism
The 5R spherical mechanism is a two-dof mechanism.
Figure 10 shows the mechanism at a generic configuration.
Links 1 and 2 are the input links; link 4 is chosen as output
link and link 0 (reference sphere) is the reference link for
both input and output variables. θ i0, i = 1, 2 are the input
variables. Two single-dof mechanisms generated from the
5R mechanism are depicted in Fig. 11. P1 is equivalent to
the instant pole P40 in the first single-dof mechanism that is
the one generated by locking θ20, whereas P2 is the instant
pole P40 in the second single-dof mechanism that is the one
generated by locking θ10. Both the single-dof mechanisms
generated from the 5R mechanism are four-bar linkages. In
the ith single-dof mechanism, the output link motion is a
rotation around the correspondent instantaneous pole axis,
which allows the angle φ4 to be chosen as output variable.
Additionally, H is the instant pole P41 in the first single-dof
mechanism (see Fig. 10).

For the ith single-dof mechanism, we have

o = 4, i = i, f = k = 0;
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Fig. 11. Two single-dof mechanisms generated from the spherical 5R mechanism: (a) mechanism generated by locking θ20 and (b)
mechanism generated by locking θ10.
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Fig. 12. Example of type (I) singularity in the 5R spherical
mechanism, where links 1 and 3 are aligned.

With reference to Eqs. (7a) and (7b), the following
expressions are obtained for ai and bi :

ai = (Pi − Pi0) × (P4i − Pi0);

bi = (Pi − Pi0) × (P4i − Pi), i = 1, 2. (11)

Type (I) singularities (i.e., ai = 0, i = 1, 2) occur when at
least one of the following conditions is satisfied:

Pi = Pi0, (12a)

P4i = Pi0. (12b)

Type (II) singularities (i.e., bi = 0, i = 1, 2) occur when
at least one out of the following geometric conditions is
verified:

Pi = Pi0, (13a)

P4i − Pi . (13b)

Conditions (12a) or (13a) do not lead to any singular
configuration and will not be considered in singularity
analysis of the mechanism. Therefore, type (I) singularities
occur when P41 coincides with P10 or P42 coincides with P20

H, P1, P2 
A 

D 

4 3 

1 

0 

2 

C 

B 

Fig. 13. Example of type (II) singularity in the 5R spherical
mechanism, where links 3 and 4 are aligned.

for the first and second single-dof mechanism, respectively.
Considering Figs. 11(a) and (b), this type of singularity
occurs when P41 coincides with P10 (see Fig. 12). So in this
type of singularity, the great circles, passing through links 1
and 3, are coincident and θ10 does not produce any motion
in the output link, link 4.

Moreover, type (II) singularities occur when P41 coincides
with P1 or P42 coincides with P2 for the first and second
single-dof mechanisms, respectively. These two conditions
lead to a unit configuration as it is shown in Fig. 13.

So in this type of singularity, the great circles, passing
through links 3 and 4, are coincident and the output link, link
4, can have finite motion even if all inputs are locked and the
mechanism gains one additional dof.

Eventually, type (III) singularities occur when both
previous singularities occur simultaneously; so in this case,
P41 must coincide with P10 and P1 simultaneously; this
condition is satisfied when the position of P41 is not
determined. An example of this type of singularity is depicted
in Fig. 14.

6.2. Singularity analysis of the 3-RRP spherical mechanism
The 3-RRP spherical mechanism is a three-dof mechanism.
Figure 15 shows the mechanism at a generic configuration.

https://doi.org/10.1017/S0263574711000385 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574711000385


1090 A new geometric method for singularity analysis of spherical mechanisms

B 

P1, P2 

A 

D 

4 

3 

1 

0 

2 

C 

Fig. 14. Example of type (III) singularity in the 5R spherical
mechanism, where links 1, 3, and 4 are aligned.
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Fig. 15. A spherical 3-RRP mechanism.

With reference to Fig. 15, θ i0 for i = 1, 2, 3 are input
variables. Links 1, 2, and 3 are input links. Link 7 is the output
link. Link 0 (reference sphere) is chosen as the reference link.
In the ith single-dof mechanism, the output link motion is a
rotation around the instant pole Pi , so angle φ7 can be chosen
as the output variable. As an example, the first single-dof
mechanism, i.e., the one generated by locking all the inputs
but θ10 in the 3-RRP mechanism, is depicted in Fig. 16; Pi

for i = 1, 2, 3 is the instant pole of the output link in the
ith single-dof mechanism; in other words, Pi is equal to P70

for the ith single-dof mechanism. Moreover, Hi denotes the
instant pole P7i in the ith single-dof mechanism.

For the ith single-dof mechanism, we have

o = 7, i = i, f = k = 0.

Considering Eqs. (7a) and (7b), following expressions are
obtained for ai and bi :

ai = (Pi − Pi0) × (P7i − Pi0);

bi = (Pi − Pi0) × (P7i − Pi), i = 1, 2, 3. (14)

So type (I) singularities of the ith single-dof mechanism
(i.e., ai = 0) occur when the following geometric condition
is verified: P7i coincides with Pi0. Moreover, the analysis of
Fig. 15 reveals that the three instant poles Pi , i = 1, 2, 3

P1 

5 

0 

P60

P41

P50

6 0 

1

4 

P12

0

7

10

30

20

7

H1 

θ

θ

θ

φ

Fig. 16. The first single-dof mechanism generated from the 3-RRP
spherical mechanism by locking all inputs but θ10.

P1

5 

3
B3

B2

6 

2 

7 

A1, H1  

B1

4 

1 

0

A2

A3

Fig. 17. Example of configuration of the spherical 3-RRP
mechanism, where the great circle, passing through link 1, is
perpendicular to the curve of slipping joint of the correspondent
leg (type (I) singularity).

locate on the same great circle if and only if they coincide at
a common point, which is a geometric condition identifying a
particular type (II) singularity (see statement 3). In this case,
type (I) singularities of the 3-RRP mechanism that verify
conditions of the part (b) of Statement 1 are not present, and
the set of the type (I) singularities of the 3-RRP mechanism is
the union of three sets of type (I) singularities due to the three
single-dof mechanisms. Therefore, first type of singularity
in 3-RRP mechanism occurs when the great circle, passing
through link i for i = 1 or 2 or 3, is perpendicular to the
curves of slipping joint of the correspondent leg. Figure 17
shows an example of this type of singularities where P71 (or
H1) is coincident with P10.

Regarding Eq. (12), Type-(II) singularities (i.e., bi = 0)
occur when P7i coincides with Pi . Analysis of Fig. 15 reveals
that such a geometric condition occurs when three instant
poles Pi (and Hi) for i = 1, 2, 3 coincide at a common
point. A general configuration of mechanism in this type
of singularity is illustrated in Fig. 18.

So in the second type of singularity of 3-RRP spherical
mechanism, output link can rotate freely about a point even if
all inputs are locked and the mechanism gains one additional
dof. This point is the intersection of three great circles that
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3 

Pi, Hi, i=1,2,3

B3 

6 
7 
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0

B2 

A3

B1

A2 

A1

5 

2 

Fig. 18. Example of configuration of the spherical 3-RRP
mechanism, where the three instant poles Pi for i = 1, 2, 3 coincide
at a common point (type (II) singularity).
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B3
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B2
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B1

P1, P2, P3 

A3 

A2

Fig. 19. Example of configuration of the spherical 3-RRP
mechanism, where two previous singularities occur simultaneously
(type (III) singularity).

are spherically perpendicular to the curves of slipping joint
of the legs and pass through the correspondent median joint.

Again, please note that the condition correspondent to
coincidence of instant poles Pi with Pi0, which is obtained
from the common factor (Pi − Pi0) in ai and bi , does not
give any singular configuration, so it is not considered in
singularity analysis of the mechanism.

Eventually, type (III) singularities occur when both
previous singularities occur simultaneously. With reference
to Eq. (12), in this type of singularity, P7i must coincides
with Pi0 and Pi simultaneously; this condition is satisfied
when P7i (Hi) is not determined. Figure 19 shows a general
configuration of this type of singularity.

7. Conclusion
A systematic analysis of singularities occurring in one-
dof spherical mechanisms has been presented. In particular,
explicit expressions of the input–output instantaneous
relationships have been deduced, using the properties of
instant poles. Moreover, geometric conditions that identify
singularities of this type of mechanisms have been given.

Then, all singular configurations of multi-dof spherical
mechanisms have been found by using instant poles of

the single-dof mechanisms generated from the multi-dof
spherical mechanisms.

In contrast to the analytical methods that can be used
only for particular types of the spherical mechanisms, the
presented method is a novel and can be used to study the
singularities of all types of spherical mechanisms, which have
input and output links. However, when we have output point
instead of the output link, the method can not be applied. For
instance, it can not be used in singularity analysis of the 5R
mechanism of Section 6.1 if the position of point B is chosen
as the output variable.14

Appendix
Multiplying both sides of Eq. (4) in (Poi − Pof ) leads to

(Poi − Pof ) × ωif + (Poi − Pof ) × ωok = (Poi − Pof ) × ωof

+ (Poi − Pof ) × ωik. (A1)

According to Eq. (5a), the term (Poi − Pof ) × ωof can be
replaced by (Poi − Pif) × ωif in Eq. (A1); In this case, we
have

(Poi − Pof ) × ωif + (Poi − Pof ) × ωok = (Poi − Pif) × ωif

+ (Poi − Pof ) × ωik. (A2)

Now, we multiply both sides of Eq. (A2) with (Poi − Pik);
doing this along with some manipulation results in

(Poi − Pof ) × (Poi − Pik) × ωif + (Poi − Pof ) × (Poi − Pik)

× ωok = (Poi − Pif) × (Poi − Pik) × ωif

+ (Poi − Pof ) × (Poi − Pik) × ωik. (A3)

Considering Eq. (5b), we can substitute the terms (Poi −
Pik) × ωik for (Poi − Pok) × ωok in Eq. (A3)

(Poi − Pof ) × (Poi − Pik) × ωif + (Poi − Pof ) × (Poi − Pik)

× ωok = (Poi − Pif) × (Poi − Pik) × ωif

+ (Poi − Pof ) × (Poi − Pok) × ωok. (A4)

Finally, rearranging the Eq. (A4) leads to the Eq. (6).
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