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Weakly separated Bessel systems of
model spaces

Alberto Dayan

Abstract. We show that any weakly separated Bessel system of model spaces in the Hardy space
on the unit disc is a Riesz system and we highlight some applications to interpolating sequences of
matrices. This will be done without using the recent solution of the Feichtinger conjecture, whose
natural generalization to multidimensional model subspaces of H2 turns out to be false.

1 Introduction

Let H2 be the Hardy space on the unit disc D, that is, the reproducing kernel Hilbert
space of those power series centered at the origin with square-summable Taylor
coefficients. Its kernel s is the well-studied Szegö kernel

sw(z) ∶= 1
1 − wz

w , z ∈ D,

and its multiplier algebra can be identified isometrically with H∞, the algebra of
bounded holomorphic functions on D. A key role for the study of the function theory
and the hyperbolic geometry of the unit disc is played by inner functions, which are
those bounded analytic functions on the unit disc with an unimodular radial limit
almost everywhere on the unit circle. Given an inner function Θ, one can define the
associated model space

HΘ ∶= H2 ⊖ ΘH2

as the orthogonal complement in the Hardy space of all multiples of Θ in H2. A great
treatment of the main properties of model spaces, together with their interactions
with operator theory on spaces of analytic functions, can be found in [7].

Any function in H2 that vanishes with multiplicity m at a point λ in D is divisible
in H2 by a Blaschke factor, i.e., an inner function of the form bm

λ , where

bλ(z) ∶= λ − z
1 − λz

z ∈ D.
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724 A. Dayan

Therefore, the model space associated to bm
λ is m-dimensional and it is spanned by

the kernels at λ that represent up to m − 1 derivatives of any H2 function at λ, that is,

Hbm
λ
= span{sλ , ∂ sλ

∂w
, . . . , ∂m−1 sλ

∂wm−1 } .(1.1)

Since a model space is a subspace of H2 generated by an inner function, it comes
natural to ask whether function theoretical properties of a sequence of inner functions
(Θn)n∈N translate to Euclidean properties for the sequence (HΘn)n∈N. Out of the
many results that constitute such a valuable dictionary between operator theory and
function theory, one of the most significant for the purposes of this note can be found
in [11, Theorem 3.2.14]:

Theorem 1.1 Let (Θn)n∈N be a sequence of inner functions such that Θ ∶= ∏∞n=1 Θn
converges uniformly on any compact subset of D. The following are equivalent:
(i) For any bounded sequence (ϕn)n∈N in H∞, there exists a function ϕ in H∞ such

that

ϕ − ϕn ∈ ΘnH2 , n ∈ N;(1.2)

(ii) There exists a C ≥ 1 such that, for any sequence (hn)n∈N of unit vectors in H2 such
that hn belongs to HΘn for any n in N and for any (an)n∈N in l 2,

1
C2 ∑

n∈N
∣an ∣2 ≤ ∣∣∑

n∈N
an hn∣∣

2

≤ C2 ∑
n∈N

∣an ∣2;(1.3)

(iii) There exists a positive δ such that, for any z in D,

∣Θ(z)∣ ≥ δ inf
n∈N

∣Θn(z)∣.

Note that (1.2) is stated in [11, Theorem 3.2.14] as

ϕ − ϕn ∈ ΘnH∞, n ∈ N.

This is equivalent to (1.2), since H∞ is contained in H2 and since, if for any n there
exists a g in H2 such that

θn g = ϕ − ϕn ∈ H∞,

then the radial limit of ∣g∣ on the unit circle must be bounded by ∣ϕ − ϕn ∣, since Θn is
inner, and therefore, g is actually in H∞. A sequence of closed subspaces (Hn)n∈N of
a Hilbert space H that satisfies (ii) is called a Riesz system, and the least C for which
(1.3) holds is the Riesz bound of the sequence. If the least C such that the right-hand
side of (1.3) holds is finite then (Hn)n∈N is a Bessel systems with Bessel bound C. On
the other hand, condition (iii) is equivalent to

sup
n∈N

∏
j≠n

∣Θ j(z)∣ ≥ δ,(1.4)
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to hold uniformly in z. Indeed, condition (iii) above states that there exists a positive
δ such that, for any z in D and for any 0 < ε < δ there exists a n in N such that

∣Θn(z)∣ ≤ ∣Θ(z)∣
δ − ε

,

or, equivalently, such that

∏
j≠n

∣Θ j(z)∣ ≥ δ − ε,

which yields (1.4) (in case Θn(z) = 0, take a limit for w going to z and then use
continuity). Moreover, condition (iii) is related in [10, Lecture IX] to separation
conditions on the subspaces in (HΘn)n∈N, being equivalent to asserting that the sine
of the angle between any model space and the closure of the linear span of all the
others is uniformly bounded below:

inf
n∈N

sin(HΘn , span
j≠n

{HΘ j}) > 0.(1.5)

Here, the sine between two closed subspaces K1 and K2 of a Hilbert space H is the
least sine of the angle between two vectors chosen in K1 and K2 or, equivalently,

sin(K1 , K2) = ∣∣T ∣∣−1 ,

where
T ∶ span{K1 , K2} ↦ span{K1 , K2}

T∣K1 = IdK1 T∣K2 = 0.

If (1.5) holds, we say that (HΘn)n∈N is strongly separated, whereas weak separation
will correspond to an uniform bound from below for the angle between any pair of
distinct model spaces:

inf
n≠ j

sin(HΘn , HΘ j) > 0.(1.6)

Suppose now that Θn = bmn
λn

, for some sequence (λn)n∈N in the unit disc and some
sequence (mn)n∈N of positive integers. Condition (i) of Theorem 1.1 becomes then
an interpolation property: for any bounded sequence (ϕn)n∈N in H∞, there exists a
bounded analytic function ϕ that, for any n inN, agrees with ϕn at λn up to its mn − 1st

derivative. Theorem 1.1 is therefore a great example of how the deep interconnection
between operator theory and function theory greatly helps the studying and the
understanding of interpolating sequences.

Let Hk be a reproducing kernel Hilbert space of analytic functions on a domain
D of C

d , and let Mk be its multiplier algebra. A sequence Z = (zn)n∈N in D is
interpolating forMk if for any bounded sequence (wn)n∈N inC there exists a function
ϕ in Mk such that ϕ(zn) = wn for any n in N. Intuitively, an interpolating sequence is
a separated sequence, as we need to be able to specify the values of ϕ arbitrarily at the
nodes (zn)n∈N. It is also not surprising that the separation conditions we will look at
depend on the kernel k: Z is a weakly separated sequence if there exists a positive M
such that, for any n ≠ j in N, there exists a function ϕn , j whose norm in Mk does not
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726 A. Dayan

exceed M and that separates zn and z j , that is,

ϕn , j(zn) = 1 ϕn , j(z j) = 0.

A celebrated work of Carleson [4], characterized interpolating sequences for H∞:

Theorem 1.2 A sequence Λ = (λn)n∈N is interpolating for H∞ if and only if it is weakly
separated and the measure

μΛ ∶= ∑
n∈N

(1 − ∣λn ∣2)δλn

satisfies the embedding condition

∣∣ f ∣∣L2(D,μΛ) ≤ CΛ ∣∣ f ∣∣H2 f ∈ H2 .(1.7)

A measure μ on a domain D that embeds continuously a reproducing kernel
Hilbert space Hk on D into L2(D, μ) is called a Carleson measure for Hk . One
can find in [4] a characterization of Carleson measures for H2 that involves a one-
box condition, and hence the hyperbolic geometry of the unit disc. It turns out that
(1.7) holds if and only if the sequence of all lines through the kernels (sλn)n∈N (i.e.,
the sequence one-dimensional subspaces spanned by the kernels sλn ) is a Bessel
system [1, Proposition 9.5], highlighting once again a correspondence between the
hyperbolic geometry of the unit disc and the Euclidean geometry of the Hardy space.
Moreover, such a characterization of Carleson measures in terms of Bessel systems
allows to extend Theorem 1.2 to some multiplier algebra other than H∞. For example,
a class of multiplier algebras for which an analogous of Theorem 1.2 holds is the
one associated with complete Pick kernels. One of the most important properties that
connects interpolating sequence to the study of related Hilbert spaces is the fact that,
for any multiplier ϕ in Mk , any kernel function kz in Hk is an eigenfunction of the
adjoint of the multiplication operator Mϕ :

M∗ϕ(kz) = ϕ(z) kz z ∈ D,(1.8)

as a straightforward computation using the property of adjoints shows. In particular,
if Mϕ is a contraction and ϕ(zn) = wn for any n in N, then the linear map T from
SZ ∶= span

n∈N
{kzn} to itself given by

T(kzn) ∶= wn kzn n ∈ N(1.9)

is a contraction. A reproducing kernel Hilbert space is said to have the Pick property
if the existence of such a contraction T is also a sufficient condition for the existence
of a function ϕ in the unit ball ofMk such that ϕ(zn) = wn . In particular, this says that
M∗ϕ is an extension of T to Hk and ∣∣M∗ϕ ∣∣ = ∣∣T ∣∣, which implies that any two disjoint
sets of points Z1 and Z2 can be separated by a function in Mk of norm at most M if
and only if the angle between SZ1 and SZ2 in Hk is bounded below by 1/M:

sup{∣∣ϕ∣∣Mk ∣ ϕ∣Z1 = 1, ϕ∣Z2 = 0} = 1
sin(SZ1 , SZ2)

.(1.10)
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Moreover [1, Theorem 9.19], this implies that Z is interpolating if and only if the
sequence of lines through the kernels (kzn)n∈N is a Riesz system.

Since (1.9) being a contraction is equivalent to the infinite matrix

(1 − wnw j)kz j(zn) n, j ∈ N

being positive semi-definite (i.e., all its finite principal minors are positive semi-
definite), one can extend the Pick property to the case of matrix-valued functions
in Hk , by defining Hk to have the s × t Pick property if whenever z1 , . . . , zN are points
in D and W1 , . . . , WN are s × t matrices such that

(Id − W∗
n Wj)kz j(zn) ≥ 0,

then there exists a multiplier ϕ in the closed unit ball of

M(Hk ⊗C
t ,Hk ⊗C

s) ∶={ϕ = (ϕ l ,r) ∣ l = 1, . . . , s, r = 1, . . . t, sup
f≠0

∣∣ϕf ∣∣Hk⊗Cs

∣∣f ∣∣Hk⊗Ct
< ∞} ,

such that ϕ(z i) = Wi , for i = 1, . . . , N . We say thatHk has the complete Pick property
if it has the s × t Pick property for any positive integers s and t. The Hardy space H2

has the complete Pick property, as well as some of its natural generalizations, such as
the reproducing kernel Hilbert spaces Hs on D, −1 ≤ s ≤ 0, defined by the kernels

ks
w(z) ∶=

∞
∑
n=0

(n + 1)s(wz)n z, w ∈ D

and the Drury–Arveson space H2
d on the d-dimensional unit ball Bd defined by the

kernel

bw(z) ∶= 1
1 − ⟨z, w⟩ , z, w ∈ Bd .

For instance, see [1, Chapter 7]. In a recent work [2], Aleman et al. extended Theorem
1.2 by showing that any weakly separated sequence Z on a domain D such that the
sequence of lines through the kernels (kzn)n∈N is a Bessel system is an interpolating
sequence for Mk , provided that Hk has the complete Pick property. This is done
using the recent positive answer to the Feichtinger conjecture, which states that any
Bessel system of one-dimensional subspaces is the disjoint union of finitely many
Riesz systems. It has been shown in [5, 13 ] that the Feichtinger conjecture is equivalent
to many other conjectures in operator theory, including the Paving conjecture, who
had been proved by the well-known work of Marcus et al. [9].

In [6], the author asked whether the positive answer to the Feichtinger conjecture
can be extended to multi-dimensional model spaces of H2, that is, if any Bessel
system of model spaces is the disjoint union of finitely many Riesz systems. We show
in Section 3.2 that this is not the case, though any Bessel systems of model spaces
satisfying (1.6) is in fact a Riesz system:

Theorem 1.3 Any weakly separated Bessel system of model spaces in H2 is a Riesz
system.
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The motivation for Theorem 1.3 is the study of interpolating sequences of matrices
introduced by the author in [6]. As Section 3 explains in details, we say that a sequence
of square matrices A = (An)n∈N with eigenvalues in D is interpolating if, for any
bounded sequence (wn)n∈N in C, there exists a bounded holomophic function ϕ such
that

ϕ(An) = wn Id .

If Pn is, for any n in N, the minimal polynomial of An , then

Bn(z) ∶= Pn(z)
Pn ( 1

z )
z ∈ D(1.11)

is a Blaschke product with zeros at the eigenvalues of A, and any H2 function that
vanishes at An is a multiple of Bn . Let H = (Hn)n∈N be the sequence of model
spaces associated to (Bn)n∈N. The author extended in [6, Theorem 6.6] Theorem 1.2
to sequences of matrices of uniformly bounded dimensions, by showing that A is
interpolating if and only if H is a weakly separated Bessel system. Theorem 1.3 can
be rephrased to drop the extra assumption on the sizes of the matrices in A:

Theorem 1.4 A is interpolating if and only if the sequence H is a weakly separated
Bessel system.

Section 2 deals with the proof of Theorem 1.3. Section 3 provides a brief summary
of the content of [6] and gives an argument for Theorem 1.4, together with an
explicit example of an interpolating sequence of matrices. We also give in Section
3.2 an example of a sequence of matrices whose associated sequence of model spaces
(Hn)n∈N is a Bessel system which can not be written as the disjoint union of finitely
many Riesz systems, giving a negative answer to a question posed by the author in [6].

2 The Proof of the Main Result

The first main tool for the proof of Theorem 1.3 can be found in [10, Lecture IX], and
relates the sine of the angle between two model spaces HΘ1 and HΘ2 with the constant
in Carleson corona Theorem:

Theorem 2.1 There exists a constant c ≥ 1 such that, for any Θ1 and Θ2 inner functions
on D such that

inf
z∈D

max{∣Θ1(z)∣, ∣Θ2(z)∣} = δ ≥ 0

then
δ3

c
≤ sin(HΘ1 , HΘ2) ≤ cδ.

We are also going to use the following re-statement of the Bessel system condition:

Proposition 2.2 A sequence (Hn)n∈N of closed subspaces of a Hilbert space H is a
Bessel system with Bessel bound M if and only if, for any sequence (hn)n∈N of unit vectors
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such that hn belongs to Hn for any n in N,

sup
∣∣x ∣∣=1

∑
n∈N

∣ ⟨x , hn⟩ ∣2 = M2 .(2.1)

Proof. The idea of the proof comes from [1, Proposition 9.5]. Choose for any n in
N a unit vector hn in Hn , and suppose first that (2.1) holds. Then, for any finitely
supported (an)n∈N,

∣∣∑
n∈N

an hn∣∣
2

= sup
∣∣x ∣∣=1

∣ ⟨x , ∑
n∈N

an hn⟩ ∣
2

= sup
∣∣x ∣∣=1

∣∑
n∈N

⟨x , hn⟩ an∣
2

≤ M2 ∑
n∈N

∣an ∣2 ,

thanks to (2.1) and Cauchy–Schwartz’s inequality. The case of infinitely supported
sequences (an)n∈N in l 2 follows by considering the limit case of finitely supported
sequences.

Conversely, let M be the Bessel bound for the sequence (Hn)n∈N, and fix a unit
vector x in H. Then set an = ⟨x , hn⟩, and observe that

∑
n∈N

∣ ⟨x , hn⟩ ∣2 =⟨x , ∑
n∈N

an hn⟩

≤ ∣∣∑
n∈N

an hn∣∣

≤M (∑
n∈N

∣an ∣2)
1
2

=M (∑
n∈N

∣ ⟨x , hn⟩ ∣2)
1
2

.

By truncating the sum ∑
n∈N

∣ ⟨x , hn⟩ ∣2, one sees that this implies that (an)n∈N must be

square summable, and this concludes the proof. ∎

Remark 2.3 Fixed x in H, we can choose (hn)n∈N so that the sum in (2.1) attains its
maximum. We can actually maximizes each term of the sum, by setting hn to be the
orthogonal projection onto Hn of x, divided by its norm:

fn(x) ∶= PHn(x)
∣∣PHn(x)∣∣ .

Proposition 2.2 then says that (Hn)n∈N has a finite Bessel bound M if and only if

sup
∣∣x ∣∣=1

∑
n∈N

(1 − dist2
H2(x , Hn)) = sup

∣∣x ∣∣=1
∑
n∈N

∣ ⟨x , fn(x)⟩ ∣2 = M2 .(2.2)

https://doi.org/10.4153/S0008439521000850 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000850


730 A. Dayan

Lastly, we are going to use the one-dimensional case of [6, Theorem 5.1]. For any x
in a Hilbert space H let x̂ denote its normalization x/∣∣x∣∣.

Theorem 2.4 For any inner function Θ on D,

distH2(ŝz , HΘ) = ∣Θ(z)∣ z ∈ D.

Proof. Since the orthogonal projection onto ΘH2 = H2 ⊖ HΘ is MΘ M∗Θ one gets

distH2(ŝz , HΘ) = ∣∣MΘ M∗Θ(ŝz)∣∣ = ∣∣M∗Θ(ŝz)∣∣ = ∣Θ(z)∣. ∎

We are now ready to prove Theorem 1.3:

Proof of Theorem 1.3 Let (HΘn)n∈N be a weakly separated Bessel system. We will
show that (1.4) holds, and Theorem 1.1 will conclude the proof. Thanks to (2.2), for
any fixed z in D there exists a positive integer nz that minimizes the distance between
ŝz and Hn :

distH2(ŝz , Hnz) = min
n∈N

distH2(ŝz , Hn),

which thanks to Theorem 2.4 becomes

∣Θnz(z)∣ = min
n∈N

∣Θn(z)∣.

Therefore, by Theorem 2.1 and weak separation we have that

inf
z∈D

inf
n≠nz

∣Θn(z)∣ > 0,

which implies that

∏
n≠nz

∣Θn(z)∣ = sup
n∈N

∏
j≠n

∣Θ j(z)∣

is bounded below uniformly on z if and only if

∑
n≠nz

(1 − ∣Θn(z)∣2) = ∑
n≠nz

(1 − dist2
H2(ŝz , HΘn))

is uniformly bounded on z, which is true thanks to Remark 2.3. ∎

Observe that the proof of Theorem 1.3 used a weaker version of the Bessel system
condition, in which the sup in (2.1) is taken only on normalized kernel functions,
rather than on all unit vectors in H2. It remains open for us whether such a weaker
condition is enough to characterize Bessel systems of model spaces, and a positive
answer for the special case in which each Θn is a Blaschke product would be of great
interest for us, as this is the case that we consider when we apply Theorem 1.3 to
interpolating sequences of matrices, as we will see in Section 3:

Question 2.5 Is any sequence of model spaces (HΘn)n∈N in H2 satisfying

sup
z∈D

∑
n∈N

1 − ∣Θn(z)∣2 < ∞,(2.3)

a Bessel system? Is it true if Θn is, for any positive integer n, a Blaschke product?
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Remark 2.6 Question 2.5 has a positive answer whenever Θn = bλn is, for any
positive integer n, a degree-one Blaschke factor at a point λn , and therefore, whenever
HΘn is the line spanned by the Szegö kernel at λn [8, Chapter VI, Lemma 3.3].

3 Interpolating matrices

The motivation for Theorem 1.3 is the study of interpolating sequences of matrices.
The author asked in [6] whether some well-known characterizations for interpolating
sequences for H∞ such as Theorem 1.2 extend to sequences of square matrices A =
(An)n∈N, without assuming any restriction on the sequence of their dimensions.
The fact that a square matrix might have a non trivial algebraic structure invariant
under holomorphic functions (its eigenspaces, for example), makes an interpolation
problem using matrices a bit trickier than the classic one: given two points λ and w
in D there is no function ϕ in H∞ that maps

A = [λ 0
0 λ]

to

W = [w 1
0 w] ,

although both A and W are bounded in the operator norm and the constant function
w is a contraction in H∞ that sends the spectrum of A to the spectrum of W. Since
choosing bounded targets in the operator norm makes even a one-point interpolation
problem impossible to solve via bounded analytic functions, in order to define
interpolating matrices one has to identify a target with a bounded sequence in H∞
[6, Definition 1.1]:

Definition 3.1 (Interpolating Matrices) A sequence A = (An)n∈N of square matrices
with spectra in the open unit disc is interpolating for H∞ if for any bounded sequence
(ϕn)n∈N in H∞ there exists a ϕ in H∞ such that

ϕ(An) = ϕn(An), n ∈ N.

Equivalently [6, Theorem 4.1], one can choose diagonal targets, and define A to
be interpolating if for any bounded sequence (wn)n∈N in C, there exists a bounded
analytic function ϕ such that

ϕ(An) = wn Id , n ∈ N.

Here, an analytic function on the unit disc is applied to a square matrix via the Riesz-
Dunford functional calculus, hence the assumption on the spectra of the matrices in
A. In order to characterize interpolating sequences of matrices, a rather trivial yet
important observation is that, for any pair of similar matrices M and N with spectra
in D and for any holomorphic function f on the unit disc then f (M) and f (N) are
similar as well, and the matrix that performs both similarities is the same,

M = P−1NP "⇒ f (M) = P−1 f (N)P,
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as an elementary computation using the power series of f shows. As a consequence,
we can assume without loss of generality that each matrix of the sequence A is in its
Jordan canonical form: if, for any positive integer n, λn ,1 , . . . , λn ,kn are the eigenvalues
of An , then

An = diag(Jn ,1 , . . . , Jn ,kn),

where Jn , j is a Jordan block of size mn , j

Jn , j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λn , j 1 0 . . . 0
0 λn , j 1 . . . 0
⋮ ⋮ ⋮ ⋮ ⋮
0 0 . . . λn , j 1
0 0 0 0 λn , j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since, for any function f holomorphic in D,

f (An) = diag( f (Jn ,1), . . . , f (Jn ,kn)),

where

f (Jn , j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (λn , j) f ′(λn , j) f ′′(λn , j)
2 . . . f (mn , j−1)(λn , j)

(mn , j−1)!

0 f (λn , j) f ′(λn , j) . . . f (mn , j−2)(λn , j)
(mn , j−2)!

⋮ ⋮ ⋮ ⋮ ⋮
0 0 . . . f (λn , j) f ′(λn , j)
0 0 0 0 f (λn , j)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

one realizes that a holomorphic function vanishes at An if and only if it vanishes at its
eigenvalues with the right multiplicity. Specifically, the multiplicity of λn , j as a zero of
f must be the maximal size of a Jordan block of An associated to λn , j . In particular,
any function in H2 that vanishes at An is a multiple of the Blaschke product and the
function in (1.11) can be re-written as

Bn =
kn

∏
j=1

bmn , j
λn , j

.

Hence, for any n in N, the subspace

Hn ∶=H2 ⊖ { f ∈ H2 ∣ f (An) = 0}

=span{sλn , j ,
∂ sλn , j

∂w
, . . . ,

∂mn , j−1 sλn , j

∂wmn , j−1 ∣ j = 1, . . . , kn}
(3.1)

containing all the interpolation information of the matrix An is in fact a model space:

Hn = HBn n ∈ N.

Each Hn can be seen also as a kernel at the matrix An . More precisely, let M be a m × m
square matrix with eigenvalues in the unit disc, and let HM be the associated model
space in H2. Let us define, for any u and v in C

m , the H2 function

KM(u, v)(z) ∶= ∑
n∈N

⟨v , Mnu⟩Cm zn z ∈ D.
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Then, thanks to the definition of the inner product in H2,

⟨ f , KM(u, v)⟩H2 = ⟨ f (M)u, v⟩Cm f ∈ H2 .(3.2)

Equation (3.2) works as a reproducing property for the collection

XM ∶= {KM(u, v) ∣u, v ∈ Cm}.

In particular, since f (M) = 0 if and only if the right hand side of (3.2) vanishes for
any u and v, we have that XM coincides with the model space HM . Moreover, (3.2)
implies that the collection of function in XM is linear in v and conjugate-linear in u,
and that for any ϕ in H∞

M∗ϕ(KM(u, v)) = KM(u, ϕ(M)∗v) u, v ∈ Cm ,(3.3)

extending (1.8) to this matrix setting. Another analogy with the scalar case comes
from separation: thanks to (3.3) and the commutant lifting Theorem, [1, case s = 1of
Corollary 10.30], (1.10) extends by saying that A is weakly separated if the sequence
(Hn)n∈N is weakly separated or, equivalently, if there exists a positive M such that,
for any pair of distinct positive integers n and j, there exists a bounded analytic
function ϕn , j whose H∞ norm does not exceed M and that separates An and A j ,
that is,

ϕn , j(An) = Id ϕn , j(A j) = 0.

Following the same idea, if (Hn)n∈N is strongly separated we say that A is strongly
separated, and the commutant lifting Theorem, together with (3.3), makes it equiva-
lent to asserting the existence of a bounded sequence (ϕn)n∈N in H∞ that separates
each An with the rest of the sequence, i.e.,

ϕn(A j) = δn , j Id .

The scalar case has an even more geometric viewpoint on separation via bounded
analytic functions: given two points z and w in the unit disc, there exists a function
ϕ whose H∞ norm does not exceed M that separates z and w (and hence the sine of
the angle between sz and sw is bounded below by 1/M) if and only if their pseudo-
hyperbolic distance

ρ(z, w) ∶= ∣bw(z)∣

is bounded below by 1/M. This extends to the matrix case by looking at the action of
the adjoint of the multiplication by a Blaschke product on different model spaces:

Lemma 3.2 Let A1 and A2 be two square matrices corresponding to the Blaschke
products B1 and B2, and let H1 and H2 be the associated model spaces. Then the sine of
the angle between H1 and H2 is equal to δ > 0 if and only if the restriction of M∗B1

to H2
is bounded below by δ, that is,

inf
x∈H2

∣∣M∗B1
(x̂)∣∣ = sin(H1 , H2).
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Proof. Since the orthogonal projection onto B1H2 = H2 ⊖ H1 is MB1 M∗B1
, one gets

sin(H1 , H2) = inf
x∈H2∖{0}

∣∣MB1 M∗B1
(x̂)∣∣ = inf

x∈H2∖{0}
∣∣M∗B1

(x̂)∣∣,

since MB1 is an isometry. ∎

The author extended in [6] Carleson’s characterizations [3, 4 ] of interpolating
sequences to sequences of square matrices, together with the characterization of
interpolating sequences in terms of Riesz systems conditions from [12]. Nevertheless,
the analogous of Theorem 1.2 was proven with the additional assumption that the
dimensions of the matrices in A are uniformly bounded, and used the solution of the
Feichtinger conjecture:

Theorem 3.3 Let A = (An)n∈N be a sequence of matrices with spectra in the unit disc,
and let H = (Hn)n∈N be the associated sequence of model spaces defined in (3.1). The
following are equivalent:
(i) A is interpolating for H∞;
(ii) A is strongly separated; and
(iii) H is a Riesz system.
Moreover, if the dimensions of the matrices in A are uniformly bounded, (i) (and hence
also all the conditions above) is equivalent to
(iv) A is weakly separated and H is a Bessel system.

Thanks to equivalence between conditions (i)–(iii) in Theorem 3.3, Theorem 1.3
applied to the sequence of model spaces (Hn)n∈N says, together with Theorem 1.1
that the extra assumption on the dimensions of the matrices in A in condition (iv) of
Theorem 3.3 can be dropped. Therefore, Theorem 1.2 extends to sequences of matrices
of any sizes.

Theorem 3.4 A is interpolating if and only if it is weakly separated and H is a Bessel
system.

In particular, Theorem 1.4 follows from Theorem 1.3.
We present below two examples of sequences of matrices having equidistributed

eigenvalues. Section 3.1 gives an example of an interpolating sequence of matrices,
together with some useful tool to estimate the angle between model spaces arising
from Blaschke products. Section 3.2 uses a similar construction in order to exhibit a
Bessel system of model spaces which is not the disjoint union of finitely many weakly
separated sequences, and hence not the finite union of finitely many Riesz systems.
This will give a negative answer to a question posed by the author in [6], where it was
asked whether the positive answer to the Feichtinger conjecture can be extended to
multi-dimensional model subspaces of the Hardy space.
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3.1 Interpolating matrices with equidistributed eigenvalues

Let, for any positive integer n,

ωn ∶= e
2πi
2n

be a primitive 2n-root of unity, and let

Wn ∶= diag(1, ωn , . . . , ω2n−1
n )

be a 2n × 2n diagonal matrix having 2n equidistributed points on the unit circle as its
eigenvalues. Let (rn)n∈N be a sequence in (0, 1) that rescales the sequence (Wn)n∈N
so that its spectra belong to D:

An ∶= rn Wn , n ∈ N.(3.4)

We discuss here how fast must (rn)n∈N go to 1 in order for A ∶= (An)n∈N to be
interpolating. Thanks to Definition 3.1, if (An)n∈N is interpolating, then so is the
sequence of radii (rn)n∈N. Moreover, if A is interpolating it is trivially a zero sequence,
that is, there exists bounded analytic function on D that vanishes on A and that
does not vanish outside the spectra of the matrices in A. It turns out that those two
conditions are enough to characterize interpolating sequences of matrices that look
like (3.4):

Theorem 3.5 The sequence of matrices defined in (3.4) is interpolating if and only if
it is a zero sequence and (rn)n∈N is interpolating.

Remark 3.6 Since (rn)n∈N approaches the unit circle radially, asking that it is
interpolating is actually the same as asking that it is just weakly separated [10 , Lecture
X, Corollary 5] .

The proof of Theorem 3.5 requires that we are able to estimate (from below) the
angle between two model spaces arising from Blaschke products. Such a tool is the
content of Lemma 3.7. Let (Bn)n∈N be a sequence of Blaschke products such that
B = ∏n∈N Bn converges uniformly on any compact subset of D to a nonzero inner
function, and let (Hn)n∈N be the associated sequence of model spaces in H2. For any
subset σ of N, we will define, for the sake of brevity,

Hσ ∶= span
i∈σ

{H i}

and

Bσ = ∏
i∈σ

B i .

Lemma 3.7 Let σ and τ be two disjoint subsets of N, and suppose that (H i)i∈σ is a
Riesz system with Riesz bound γ. Then

sin(Hσ , Hτ) ≥
1

γ2 inf
i∈σ

sin(H i , Hτ).
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Proof. For any i in σ let δ i ∶= sin(H i , Hτ), and let δ ∶= inf i∈σ δ i . It suffices to show
that

T ∶Hσ∪τ → Hσ∪τ

such that

T∣Hσ = δ Id∣Hσ T∣Hτ = 0

is bounded by γ2. Let Ti be, for any i in σ , the restriction to H i of M∗Bτ
. Thanks to

Lemma 3.2, each Ti is bounded below by δ i . Fix then a vector x = u + v in Hσ∪τ ,
where u is in Hσ and v is in Hτ . There exists a sequence (h i)i∈σ of unit vectors such
that h i is in H i for any i in σ so that u can be written as a linear combination of (h i)i∈σ :

u = ∑
i∈σ

α i h i .

Since each Ti is a contraction and it is bounded below by δ, the sequence (Ti(h i))i∈N
is bounded above and below. Moreover, Ti(h i) belongs to H i , since each H i is
invariant under MBτ , and therefore,

∣∣T(x)∣∣2 = ∣∣T(u)∣∣2 = ∣∣∑
i∈σ

δα i h i ∣∣
2

≤ γ2δ2 ∑
i∈σ

∣α i ∣2 ≤ γ2 ∑
i∈σ

δ2
i ∣α i ∣2

≤ γ2 ∑
i∈σ

∣α i ∣2∣∣Ti(h i)∣∣2 ≤ γ4 ∣∣∑
i∈σ

α i Ti(h i)∣∣
2

= γ4∣∣M∗Bτ
(u)∣∣2 = γ4∣∣M∗Bτ

(x)∣∣2 .

Since M∗Bτ
is a contraction, this shows that the norm of T does not exceed γ2, as we

claimed. ∎

Remark 3.8 Suppose that also (H j) j∈τ is a Riesz system. Then a double application
of Lemma 3.7 implies that the distance between Hσ and Hτ is comparable with the
minimal distance attained by a model space labeled by an index in σ and one with
a label in τ. If the sequence (Hn)n∈N is weakly separated, this says roughly speaking
that the set of sparse subsequences of (Hn)n∈N is a separated set as well.

We are now ready to prove Theorem 3.5. Here, (Bn)n∈N and (Hn)n∈N arise from
the sequence of matrices A defined in (3.4). We need to show that A is interpolating,
provided that it is a zero sequence and that (rn)n∈N is weakly separated, thanks to
Remark 3.6.

Proof of Theorem 3.5 Let, for any positive integer n,

rn = 1 − αn2−n .(3.5)
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Since A is a zero sequence, then the spectra of the matrices in A form a zero sequence
and therefore

∑
n∈N

αn < ∞.

Let γn be the Riesz bound of the basis {ŝrn , . . . , ŝrn ω2n−1
n

} of Hn . Then (γn)n∈N is
uniformly bounded if and only if the strong separation constants

2n−1
∏
l=1

∣brn ω l
n
(rn)∣2

are uniformly bounded below. Let, for any j and n in N,

M j(n) ∶=
2 j

∑
l=1

∣ ⟨ŝr j ω l
j
, ŝrn ⟩ ∣2

=
2 j

∑
l=1

(1 − r2
n)(1 − r2

j )
∣1 − rnr jω l

j ∣2
.

(3.6)

Since (αn)n∈N is bounded, then the weak separation constant of the set
{rn , . . . , rn ω2n−1} is uniformly bounded below in n. Since also

∣bw(z)∣2 = 1 − ∣ ⟨ŝw , ŝz⟩ ∣2 w , z ∈ D,

then (γn)n∈N is bounded if and only if (Mn(n))n∈N is, which is the case, thanks to
Lemma 3.9, because (αn)n∈N is bounded. We want to show that (Hn)n∈N is strongly
separated:

inf
n∈N

sin(Hn , span
j≠n

{H j}) > 0.

Since (γn)n∈N is bounded, thanks to Lemma 3.7 the sine between Hn and span
j≠n

{H j}

is comparable to

sin(ŝrn , span
j≠n

{H j}) = ∏
j≠n

∣B j(rn)∣.

In fact, the sine between Hn and span
j≠n

{H j} is comparable to

min
l=0,. . . ,2n−1

sin(srn ω l
n
, span

j≠n
{H j}) = min

l=0,. . . ,2n−1
∣B j(rn ω l

n)∣.

Nevertheless, the minimum is attained at l = 0, since

B j(z) =
r2 j

j − z2 j

1 − r2 j
j z2 j = br2 j

j
(z2 j

)

and the point on the circle of radius rn which is closest (with respect the pseudo-
hyperbolic distance) to r2 j

j is precisely rn .

https://doi.org/10.4153/S0008439521000850 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439521000850


738 A. Dayan

We are then left to show that

inf
n∈N

∏
j≠n

∣B j(rn)∣ > 0.(3.7)

This is true if and only if each term on the product is uniformly bounded below and

sup
n∈N

∑
j∈N

M j(n) < ∞.

Such sum converges thanks to Lemma 3.9, since (αn)n∈N is summable. Moreover,
each term on the product in 3.7 is uniformly bounded below, since (rn)n∈N is weakly
separated and since, thanks to Lemma 3.7, the pseudo-hyperbolic distance between
rn and r j is, for any n ≠ j, comparable to sin(ŝrn , H j) = ∣B j(rn)∣. ∎

A technical tool for the proof of Theorem 3.5 is the following computation, which
relates the quantity M j(n) to the parameters (αn)n∈N defined in (3.5).

Lemma 3.9 Let

rn ∶= 1 − αn2−n n ∈ N

be a sequence in (0, 1) and let M j(n) be defined as in (3.6). Then, for any j and n positive
integers,

M j(n) ≃
αn α j

αn + α j2n− j − αn α j2− j .

Proof. Let, for any j in N and for any l = −2 j−1 , . . . , 2 j−1,

θ j
l ∶= arg ω l

j =
2πl
2 j .

Then

1 − cos(θ j
l ) ≃

(θ j
l )2

2
≃ l 2

22 j+1 l = −2 j−1 , . . . , 2 j−1

and therefore,

M j(n) ≃ (1 − r j)(1 − rn)
2 j−1

∑
l=−2 j−1

1
∣1 − rnr jω l

j ∣2

= (1 − r j)(1 − rn)
2 j−1

∑
l=−2 j−1

1
(1 − rnr j)2 + 2((1 − cos(θ j

l )))rnr j

≃
(1 − r j)(1 − rn)
(1 − r jrn)2

2 j−1

∑
l=1

1

1 + (
√rn r j

2 j(1−rn r j) l)
2

≃
(1 − r j)(1 − rn)
(1 − r jrn)2 ∫

2 j−1

1

1

1 + (
√rn r j

2 j(1−rn r j) x)
2 dx
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=
2 j(1 − r j)(1 − rn)
(1 − r jrn)

√r jrn
∫

√r j rn
(1−r j rn)
√r j rn

2 j(1−r j rn)

1
1 + x2 dx

≃
2 j(1 − r j)(1 − rn)

1 − r jrn

=
αn α j

αn + α j2n− j − αn α j2− j .
∎

3.2 Bessel systems of model spaces

Thanks to the positive answer to the Feichtinger conjecture, any Bessel system of lines
in a Hilbert space is the disjoint union of finitely many Riesz systems. We show here
that this is not the case for multi-dimensional model spaces in H2, as we will construct
a sequence of matrices A which cannot be written as the disjoint union of finitely many
weakly separated sequences and whose associated sequence of model spaces is a Bessel
system. This implies that [1, Theorem 9.11] does not extend to multi-dimensional
model spaces, and since any Riesz system is weakly separated it will show that the
positive answer to the Feichtinger conjecture does not extend to multi-dimensional
model spaces whose dimensions are not uniformly bounded.

Pick a divergent sequence (mn)n∈N, and let (rn)n∈N be a sequence of radii that
converges to 1, and whose rate of convergence will be determined later. For any such
a sequence, there exists a second sequence of radii (sn)n∈N such that

ρ(rn , sn) ≤
1

n + 1
n ∈ N.(3.8)

For each n in N, consider mn diagonal matrices, An ,1 , . . . , An ,mn , each one of size
mn − 1, and whose eigenvalues are placed as follows: if ωn is a (mn

2 )th primitive root
of unity, the set of all eigenvalues of An ,1 , . . . , An ,mn is

{rn , rn ωn , . . . , rn ω(
mn

2 )−1
n } ∪ {sn , sn ωn , . . . , sn ω(

mn
2 )−1

n } .(3.9)

We now need to assign each of those mn(mn − 1) eigenvalues to the matrices
An ,1 , . . . , An ,mn so that

sin (HAn , i , HAn , j) ≤
1

n + 1
i , j = 1, . . . , mn ,(3.10)

where Hn , i is the model space in H2 associated to the matrix An , i . Observe that this
would imply that the sequence

A ∶= {An , j ∣ n ∈ N, j = 1, . . . , mn}

cannot be written as the disjoint union of finitely many weakly separated subse-
quences, since (mn)n∈N is divergent. More importantly, this would hold for any choice
of (rn)n∈N. In order to achieve (3.10), we assign the eigenvalues in (3.9) to the matrices
An ,1 , . . . , An ,mn so that the set of nonordered pairs

{(rn ω l
n , sn ω l

n) ∣ l = 1, . . . , (mn

2
)}
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coincide with the set of non-ordered pairs

{(λ, γ) ∣ λ ∈ σ(An , i), γ ∈ σ(An , j), i ≠ j}.

Thus, (3.10) follows from the fact that, for any i ≠ j = 1, . . . , mn , there exists an
eigenvalue λ of An , i and an eigenvalue γ of An , j so that

ρ(λ, γ) ≤ 1
n + 1

,

thanks to (3.8).

Example 3.10 In order to have an explicit example in mind, let m1 = 4, and let then
ω1 be a primitive sixth root of unity. One can then choose

r1 ∈ σ(A1,1) s1 ∈ σ(A1,2),
r1ω ∈ σ(A1,1) s1ω ∈ σ(A1,3),

r1ω2 ∈ σ(A1,1) s1ω2 ∈ σ(A1,4),
r1ω3 ∈ σ(A1,2) s1ω3 ∈ σ(A1,3),
r1ω4 ∈ σ(A1,2) s1ω4 ∈ σ(A1,4),
r1ω5 ∈ σ(A1,3) s1ω5 ∈ σ(A1,4).

In general, the idea is to assign, for all n, the mn(mn − 1) points on the two very close
circle of radius rn and sn in a way so that the (mn

2 ) pairs of points very close to each
other correspond to the set of pairs {(An , i , An , j)}.

What is left now to show is that, if (rn)n∈N is chosen to be converging to 1
adequately fast, the sequence of model spaces associated with the sequence A is a
Bessel system. Let A′ = (z j) j∈N be the (scalar) sequence of all the eigenvalues of
the matrices in A. Observe that we can recursively choose the sequence (rn)n∈N to
approach 1 fast enough so that

sup
z∈D

∑
j∈N

1 − ∣bz j(z)∣2 < ∞.(3.11)

Indeed, one can use the same idea of [6 , Theorem 2.2] and add the contribution of
the eigenvalues in (3.9) once at a time in the sum in (3.11). More precisely, let A′n be
the set in (3.9), and let

Qn(z) ∶=
n
∑
j=1

∑
z l ∈A′j

1 − ∣bz l (z)∣2 .

Then, once we choose r1 , . . . , rn , there exists a radius tn such that

sup
tn≤∣z∣<1

Qn(z) ≤ 1
2n ,

and it suffices then to choose rn+1 so that

∑
z l ∈A′n+1

1 − ∣bz l (z)∣2 ≤ 1
2n ∣z∣ ≤ tn
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and so that the Riesz bound of the set of normalized kernels at the points in A′n+1 ∩
{∣z∣ = rn+1} is uniformly bounded (in fact, since mn+1 is fixed one can make such Riesz
bound arbitrarily close to 1, by choosing rn+1 close enough to 1).

Thanks to (3.11) and Remark 2.6 the sequence of lines spanned by the Szegö kernels
at the point of A′ is a Bessel system. This, together with an extra separation condition
on the eigenvalues of the matrices in A, implies that the model spaces associated with
the sequence A forms a Bessel system:

Lemma 3.11 Let (Hn)n∈N be a sequence of closed subspaces of a Hilbert space H, and
let, for any n in N, {x 1

n , . . . , xmn
n } be a basis of Hn made of unit vectors such that

mn

∑
l=1

∣c l ∣2 ≤ C2
n ∣∣

mn

∑
l=1

c l x l
n∣∣

2

, c1 , . . . , cmn ∈ C.(3.12)

If

C ∶= sup
n∈N

Cn < ∞(3.13)

and (x l
n) is a Bessel system with bound M, then (Hn)n∈N is a Bessel system with bound

CM.

Proof. Let (hn)n∈N be a sequence of unit vectors in H such that hn belongs to Hn
for any n in N, and let (an)n∈N be an l 2 sequence. Write hn = ∑mn

l=1 b l
n x l

n , and observe
that

∣∣∑
n∈N

an hn∣∣
2

= ∣∣∑
n∈N

mn

∑
l=1

anb l
n x l

n∣∣
2

≤M2 ∑
n∈N

∣an ∣2
mn

∑
l=1

∣b l
n ∣2

≤C2 M2 ∑
n∈N

∣an ∣2 ,

thanks to (3.12) and (3.13). ∎

Since the sequence (mn)n∈N is fixed, by eventually increasing the rate of conver-
gence of (rn)n∈N to 1, we can assume that the Reisz bound of the kernels basis of
each HAn is uniformly bounded in n, thus in particular condition (3.12) holds. Indeed,
although the eigenvalues of a given matrix An might belong to two circle very close to
each other, our construction ensures that their arguments are separated by at least
an angle of 2π

(mn
2 )

. Therefore, thanks to Lemma 3.11, the sequence of model spaces
associated to the sequence A is a Bessel system.
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