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We show that for any 2-computably enumerable Turing degree l, any computably

enumerable degree a and any Turing degree s, if l′ = 0′, l < a, s � 0′, and s is c.e. in a,

then there is a 2-computably enumerable degree x with the following properties:

(1) l < x < a; and

(2) x′ = s.

1. Introduction

Research into the topic of inverting the Turing jump in the Turing degrees began

in the 1950’s. Following the pioneering work in Kleene and Post (1954), Friedberg

(Friedberg 1957) provided a completeness criterion for the Turing degrees: given a Turing

degree b, b � 0′ if and only if there is a degree a such that a′ = a ∨ 0′ = b. This result

has played a fundamental role in the theory of the global Turing structure. For Turing

degrees s and d, we say that s is CEA in d if s is c.e. in d and s � d. The first ‘local’

result on jump inversion is due to Shoenfield (Shoenfield 1959), who showed that for

every degree s CEA in 0′, there is a degree x � 0′ such that x′ = s. Subsequently, Sacks

(Sacks 1963) improved this result by proving the Sacks Jump Theorem, which asserts that

given degrees s and c with s CEA in 0′, and c �= 0, then there exists a non-zero c.e. degree

x such that x′ = s and c �� x. It follows from this result that for every degree a � 0′

there is a c.e. degree x such that x′ = a′.

The substructure of the c.e. Turing degrees is particularly interesting because it is

completely different from the global structure of the Turing degrees. For instance, the

c.e. degrees are dense by the Sacks density theorem (Sacks 1964), while there are minimal

Turing degrees given in Spector (1956) and Sacks (1961).

Furthermore, Robinson (Robinson 1971) showed that Sacks’ Density Theorem and his

Jump Theorem can be combined (Robinson’s Interpolation Theorem): given c.e. degrees
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b < c, and a degree s, if s � b′, and s is c.e. in c, then there is a c.e. degree x such

that b < x < c and x′ = s (see Soare (1987, page 146) for a simplified proof). Robinson’s

Interpolation Theorem has played a major role in the study of the c.e. degrees.

It is natural to ask whether there exist analogues of the Robinson Interpolation Theorem

for degree structures other than the c.e. degrees. However, few examples of such structures

that are dense are known, so it seems necessary to consider results that have a weaker

form. For example, one may ask whether for every degree a � 0′ and every degree s � 0′

with s c.e. in a there is a degree x � a such that x′ = s. Here we get a negative answer

from known results: S. B. Cooper, R. Epstein, and L. Sasso (Sasso 1974) showed that

there is a minimal degree a < 0′ with a′ > 0′, and then by the Sacks Density Theorem

relative to a there is a degree s such that 0′ < s < a′ and s is c.e. in a. Clearly, no degree

x � a satisfies x′ = s. Thus, jump interpolation fails in the degrees � 0′ even for intervals

[b, c] with b = 0.

It seems reasonable to give up on jump interpolation for the degrees � 0′ and instead

concentrate on structures that are ‘closer’ to the c.e. degrees. In this paper we consider a

jump interpolation theorem for the d.c.e. degrees. A set A is called d.c.e. if it has the form

U − V , where U and V are c.e. Of course, A is d.c.e. if and only if A is 2-c.e., where the

n-c.e. sets are defined as follows.

We say that A is n-computably enumerable (n-c.e., for short), where n is a natural number,

if there is a computable function f such that for all x:

(a) f(x, 0) = 0,

(b) lims f(x, s) ↓= A(x), and

(c) |{s | f(x, s) �= f(x, s+ 1)}| � n.

This hierarchy was extended by Ershov into the transfinite so as to include all ∆0
2 sets

(Ershov 1968), but in this paper we consider only 2-c.e. sets.

It was observed by Lachlan that every non-zero d.c.e. degree bounds a non-zero

c.e. degree, and thus no d.c.e. degree is minimal in the d.c.e. degrees. This removes

one obstacle to proving some version of the Robinson Interpolation Theorem for the

d.c.e. degrees. However, it was shown in Cooper et al. (1991) that there is a d.c.e. degree

b < 0′ such that no d.c.e. degree c satisfies b < c < 0′. Thus the full analogue of the

Robinson Interpolation Theorem fails for the d.c.e. degrees (even for intervals with top

element 0′), and we instead consider weaker versions. One possible version to consider for

intervals with bottom element 0 is:

(∗) Let a be a d.c.e. degree, and suppose that s is a degree such that s � 0′ and s is c.e. in

a. Then there is a d.c.e. degree x such that x � a and x′ = s.

Whether statement (∗) holds remains an open question. In fact we conjecture that (∗)

is false, and will mention briefly an obstacle to proving (∗). This obstacle will suggest

proving a different result, which will in fact be our main theorem. We assume that readers

are familiar with the proof of previous jump theorems, such as the Sacks Jump Theorem.

Suppose that A is a given d.c.e. set of degree a, and we are constructing a d.c.e. set

X �T A such that X ′ ≡T S , where S is a set of degree s that is c.e. in A. Suppose that our
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highest priority requirement is that S can compute whether 0 ∈ X ′. The standard strategy

to meet such a requirement is to use a restraint on X to preserve computations showing

0 ∈ X ′[s], for any stage s. Then, because this requirement has highest priority, we can

argue that 0 ∈ X ′ if and only if there exists a stage s with 0 ∈ X ′[s], so 0′, and thus S , can

compute whether 0 ∈ X ′. However, to ensure that X �T A, we will also need to define a

Turing functional Φ with Φ(A) = X, and the axioms for Φ may require X to return to

a previous neighbourhood when A does so. Thus, changes in A can cause changes in X

that injure our requirement of highest priority. One would now seem to need an oracle

for A′ (which is not available), to compute whether 0 ∈ X ′. Note that this difficulty arises

even if we require X to be merely ∆0
2 rather than d.c.e., and in fact we conjecture that (∗)

is false even if the condition that x be d.c.e. is omitted.

The difficulty in the previous paragraph arises basically because we are constructing

a set that is computable relative to a d.c.e. set A. If we assume that A is instead c.e., it

cannot return to a previous neighbourhood, and the problem no longer arises. This in

itself is of no interest because we are then dealing only with a special case of the Robinson

Interpolation Theorem. However, it does suggest that we may be able to achieve jump

interpolation in intervals (l,a), where l is a low d.c.e. degree, l < a, and a is c.e. In fact,

that is what we do in our main theorem, which we now state.

Theorem 1.1. Given a d.c.e. degree l, a c.e. degree a and a Turing degree s, if l′ = 0′,

l < a, s � 0′ and s is c.e. in a, then there exists a d.c.e. degree x such that l < x < a, and

x′ = s.

Before proceeding to the proof, we mention some other open questions concerning

alternate forms of the result.

Open Question. Is the following true? Given a d.c.e. degree l, a c.e. degree a and a

Turing degree s, if l < a, s � 0′ and s is c.e. in a, there exists a d.c.e. degree x such

that l � x � a, and x′ = s. (Here we have dropped the hypothesis that l is low from the

above theorem and replaced the interval (l,a) by the interval [l,a].)

The answer to this question would be no if it could be shown that the result of Cooper

et al. (1991) could be improved to show that there is a non-high d.c.e. degree a such that

no d.c.e. degree lies strictly between a and 0′.

Open Question. Is the following true? Given a d.c.e. degree l, a d.c.e. degree a and a

Turing degree s, if l < a, s � 0′ and s is c.e. in a, there exists a d.c.e. degree x such that

l � x � a and x′ = s.

This is the same as the previous open question, but the degree a is now assumed to

be merely d.c.e. instead of c.e. A positive answer seems to be even more unlikely. This

question is also open if l is again required to be low.

The following fact will simplify the proof of our main result. By Arslanov et al. (2004),

for any d.c.e. degree l and any c.e. degree a, if l is low and l < a, there is a low

d.c.e. degree x such that l < x < a. So, in order to prove the theorem, we need only to

satisfy l � x < a, and x′ = s.
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We now turn to the proof of our main result. We organise the proof as follows. In

Section 2 we formulate the conditions of the theorem as requirements, and describe ideas

and strategies for satisfying the requirements. In Section 3 we describe a full construction

to build the objects. Finally, in Section 4 we verify that the construction satisfies the

requirements as desired.

Our notation and terminology are standard, and generally follow those of Soare (1987).

2. The requirements and strategies

First we formulate the conditions of the theorem as requirements.

2.1. The requirements

Let L be a d.c.e. set, A be a c.e. set and S be a set c.e. in A via some c.e. set W . Suppose

that L′ �T K and L <T A, where K is a fixed creative set. To prove the theorem, we

construct a d.c.e. set X satisfying the requirements

T : X �T A⊕ L

Ne : A = Ψe(X,L) → A �T L

Re : WA(e) = limy Γ(X,L; e, y)

Se : (X ⊕ L)
′
(e) = Ω(C,WA; e)

where: e ∈ ω; (X ⊕ L)
′
= {e | Φe(X,L; e) ↓}; L′

= {e | Φe(L; e) ↓}; {(Ψe,Φe) | e ∈ ω} is

an effective enumeration of all pairs (Ψ,Φ) of Turing functionals Ψ, Φ; C is an auxiliary

c.e. set built by us; Ω is a Turing functional built by us such that Ω(C,WA) is total;

and Γ is a Turing functional built by our construction such that for all e, y, Γ(X,L; e, y)

converges, and for all e, limy Γ(X,L; e, y) exists. Then the degree x of X ⊕ L has the

properties asserted in the theorem.

2.2. Overview of the proof

In this subsection we give an informal description of the ideas and strategies underlying

the proof of the theorem. To satisfy the T-requirement, we need a 2-c.e. permitting method,

which will be described as a c.e. set of axioms of the form (σ, τ, x, y). The formal definition

of the 2-c.e. permitting method will be given in Subsection 2.4, but the basic idea is as

follows.

A number x may enter X only when it is permitted to do so by the entry of a

sufficiently small number into A. A number x may be extracted from X only when this

action is permitted by the exit of a sufficiently small number from L. To satisfy an

N-requirement, Ψ(X,L) �= A, we will preserve computations Ψ(X,L; x) for some x by

imposing an X-restraint rX so that if Ψ(X,L) = A, then Ψ(X,L) is computable in L. We

will build a Turing functional, Λ say, to simulate the computations Ψ(X,L; x) that have

been preserved. However, we can preserve a computation Ψ(X,L; x)[v] for some v only if

we have passed a test of the L-correctness by a lowness approximation procedure given in
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Subsection 2.3. For a fixed x, we start a cycle, w say, to test the L-correctness below some

configuration, c say, that is greater than the use ψ(X,L; x) of the computation Ψ(X,L; x)[v]

for some stage v. For a fixed x, we ensure that if the configuration c[s] associated with

Ψ(X,L; x)[s] is unbounded, then so is ψ(X,L; x)[s]. During the testing, if there is an l � c

that leaves L since stage v, then the test finishes with no progress, otherwise, and there

is an l � c that has entered L since stage v, then we impose a conditional restraint, (c, r)

say, for r = ψ(X,L; x)[v]. To specify explicitly that a conditional restraint (c, r) is defined

at stage v, say, we also use (σ, r) for σ = Lv � (c + 1) to denote the conditional restraint

(c, r). (The notion of the conditional restraint was first used by Cooper and Li in Cooper

and Li (to appear) to deal with a complex permitting markers system). The role of the

configuration c is to guarantee that if there is no l � c that has left L since stage v, then

there is no y � ψ(X,L; x)[v] that leaves X after stage v. Therefore, if we reach a stage

s > v at which for any l � c, we have Lv(l) = Ls(l), then the conditional restraint (c, r)

ensures that for any such y, the L-permitting marker of y is greater than c, so we can

extract all the elements y � r that have been enumerated into X since stage v from X, and

now impose a restraint to be r, which is called an absolute restraint. The point is that the

absolute restraint r will be preserved forever, unless some l � c with l ∈ Lv leaves L. This

means that we have to preserve the history of the simulation, because an L-enumeration

may be proved false.

To satisfy an Re-requirement for some e, we define a Turing functional Γ and define

for all y, Γ(X,L; e, y).

Γ will be built as a c.e. set of axioms of the form (B, σ, e, y, z), where B is an interval

(u, 2u] of natural numbers for some u. For an axiom (B, σ, e, y, z) with |σ| = |B|, we say

that B is the use block of the axiom, and that σ is the L-use of the axiom.

We now define Γ(X,L; e, y) = z if and only if there is an axiom (B, σ, e, y, z) ∈ Γ such

that B ∩X = � and σ ⊂ L.

Γ will have the following properties. Let (B, σ, e, y, z) be an axiom enumerated into Γ at

stage v, and let s be a stage > v. Then, if B ∩Xs �= �, we say that the axiom (B, σ, e, y, z)

is invalid at stage s, otherwise we say it is valid at stage s.

Whenever we define Γ(X,L; e, y), we define the use block of this computation to be

fresh only if there is no previous computation Γ(X,L; e, y)[s′] with valid use block B for

any s′, otherwise, if there is a valid use block associated with some previous computation

Γ(X,L; e, y)[s′] for some s′, we define the use block to be the same as before. This will

guarantee that L-changes will never make Γ non-total, so that for every y, Γ(X,L; e, y)

will eventually be defined.

Whenever we enumerate an axiom (B, σ, e, y, z) into Γ, we always have |σ| = |B|. So

whenever we define Γ(X,L; e, y), we enumerate an axiom (B, σ, e, y, z) into Γ, which is

defined as follows. At stage s:

Case 1: If there is an axiom (B′, σ′, e, y, z′) ∈ Γ that is valid at the current stage, then for

the most recently enumerated axiom (B′, σ′, e, y, z′), let B = B′ and σ = L � (|B| + 1),

and enumerate (B, σ, e, y, z) into Γ, where z is the current value of WA(e).

Note that σ′ �⊆ Ls. If there is an l such that σ′(l) > Ls(l), the axiom (B′, σ′, e, y, z′)

cannot be the final axiom of Γ(X,L; e, y). If there is an l such that σ′(l) < Ls(l), then
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if σ′ ⊂ L holds eventually, σ �⊆ L holds permanently. So the definition in Case 1 above

will never give different values to Γ(X,L; e, y) for fixed e, y.

Case 2: Otherwise, let u be the least natural number that is greater than any number

mentioned so far, B = {u + 1, u + 2, · · · , 2u}, σ = L � (u + 1) and z be the current

approximation of WA(e). Then enumerate (B, σ, e, y, z) into Γ. In this case, we say that

the use block B is defined afresh.

For the given set W relative to A, we use wA(e) to denote the use of computation for

e ∈ WA. We assume that the enumeration of WA satisfies the usual hat trick. That is, if

e ∈ WA[s] and A changes below wA(e)[s] at stage s+ 1, then e leaves WA automatically.

This ensures that e ∈ WA if and only if for almost every s, e ∈ WA[s]. We define the

possible outcomes of an Re-strategy to be 0 and 1 with 0 <L 1, where 0 means that

e �∈ WA, and 1 means that e ∈ WA.

We will now analyse some typical problems of the R-strategies. Suppose that α is an

Re-strategy for some e. Then α will locate its computation Γ(X,L; e, y) and associated use

block B at αˆ〈i〉 if i is the current value of WA(e) approximated by α. Suppose that a use

block B with Γ(X,L; e, y)[s0] = 1 for some s0 is defined and then located at αˆ〈1〉. Then we

define the A-permitting marker of elements in B to be the current use wA(e). Then we wait

for an A-change below wA(e). If such an A-change occurs at a stage s1 > s0, we enumerate

the least unused element of B into X to invalidate the computation Γ(X,L; e, y). Suppose

that at a stage s2 > s1, we have α defines Γ(X,L; e, y) for the same y but located at

αˆ〈0〉, so that Γ(X,L; e, y)[s2] = 0. However, if there is a stage, s3 > s2 say, at which some

strategy extracts element of B∩X from X, then we have both axioms Γ(X,L; e, y)[s0] = 1

and Γ(X,L; e, y)[s2] = 0. The tree construction will ensure that in this case there is an N-

or S-strategy β ⊂ α such that:

(i) The enumeration of b ∈ B into X at stage s1 is injuring some conditional restraint

(c, r) of β that has been defined before stage s1.

(ii) The use block B′ of Γ(X,L; e, y)[s2] will be greater than c for any c in (i) above.

Therefore, by stage s3, there is an l � |B′| such that l ∈ Ls2 \ Ls3 , such that the axiom for

Γ(X,L; e, y)[s2] is proved permanently false.

Note that α enumerates infinitely many elements into X only if α has true outcome 0.

The reason α does not injure a node β ⊇ αˆ〈0〉 is that:

(a) α will not enumerate elements of use blocks located at αˆ〈0〉.
(b) At the stages at which β is visited, all use blocks located at αˆ〈1〉 have already been

destroyed. That is to say, any use block B located at αˆ〈1〉 has an element in X before

β is visited.

This idea is essential for us in designing N- and S-strategies below R-strategies.

All N- and S-strategies have a unique outcome, denoted by 1. Therefore, the true

path TP of the construction will be computable in K ⊕ WA, which is essential to the

satisfaction of the S-requirements. If A ��T L, then the true path TP exists, which entails

the satisfaction of the requirements. The point is that the function f assumed by the

recursion theorem in Subsection 2.3 is irrelevant to the assumption that A ��T L, so it

does exist.
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An Se-strategy, β say, for some e, will define Ω(C,WA; e) by enumerating some axiom

of the form (c, β, e, i) into Ω, where c is a fresh number and i is the current value of

(X ⊕ L)
′
(e). As with an N-strategy, we will start a cycle of L-testing to approximate the

L-correctness of a computation Φe(X,L; e) ↓.

We will now use this intuition as the basis for the design of our strategies.

2.3. The lowness approximation

Since L
′

�T K , we can choose a Turing functional Θ such that Θ(K) is total and

L
′
= Θ(K). To approximate the lowness condition of L, we build an auxiliary Turing

functional ∆. Suppose, by the recursion theorem with parameters, that f is a computable

function given in advance of the construction such that for all x, y, the following property

holds:

∆(L; x, y) = Φf(x)(L; y) .

The role of ∆ is to open access to the oracle L for some cycles of the L-correctness

testing of computations.

2.4. The T-strategy

To satisfy the T-requirement X �T A ⊕ L, we build a Turing functional Ξ such that

Ξ(A,L) = X.

Ξ will be built as a c.e. set of axioms of the form (σ, τ, x, y), where σ, τ ∈ 2<ω . Then

Ξ(A,L; x) ↓= y if and only if there is an axiom (σ, τ, x, y) ∈ Ξ such that both σ ⊂ A and

τ ⊂ L hold. To satisfy X �T A⊕ L, we require that Ξ has the following properties.

At stage s:

(i) Whenever we enumerate (σ, τ, x, y) into Ξ, we have y = X[s](x), σ ⊆ A[s] and τ ⊆ L[s].

(ii) We enumerate x into X only if for all axioms (σ, τ, x, 0) ∈ Ξ either σ �⊂ A or τ �⊂ L.

(iii) We extract x from X only if for any axiom (σ, τ, x, 1) ∈ Ξ either σ �⊂ A or there is an

l such that τ(l) > L(l).

(iv) For every x, there are only finitely many axioms of the form (σ, τ, x, y) ∈ Ξ.

(v) For every x, there is an axiom (σ, τ, x, y) ∈ Ξ such that σ ⊂ A and τ ⊂ L.

We call properties (i)–(v) Ξ-rules. Clearly, any construction satisfying the Ξ-rules satisfies

the T-requirement X �T A⊕ L.

2.5. An N-strategy

Suppose that we want to satisfy the following N-requirement:

N : A = Ψ(X,L) → A �T L.

To satisfy N, we will build a Turing functional Λ and show that if A = Ψ(X,L), we

have A = Λ(L). To realise this goal, we want to preserve the computation Ψ(X,L; k) once

Λ(L; k) is defined.
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The idea for preserving a computation Ψ(X,L; k) is as follows:

(1) Suppose that we are going to define Λ(L; k) with use function λ(k). Then we ensure

that if there is an x � ψ(k) that is in X and will leave X, then there is an l � λ(k)

that leaves L simultaneously.

(2) We allow an x � ψ(k) to be enumerated into X only if there is an l � λ(k) that has

entered L since the computation Ψ(X,L; k) was observed. In so doing, at the stage at

which L � (λ(k) + 1) returns back to its value when we observed Ψ(X,L; k), we can

extract all x � ψ(k) that have been enumerated into X since Ψ(X,L; k) was observed.

The definition of λ(k), which is actually the configuration of the computation at the

stage at which we observed it, will be carefully chosen so that both (1) and (2) above

hold. By (1), the computation Ψ(X,L; k) will not be injured by X-extraction, unless the

computation Λ(L; k) becomes invalid due to L-extraction below λ(k). Property (2) ensures

that any injury of Ψ(X,L; k) from X-enumeration will be recovered at the stage at which

L becomes correct below λ(k).

The N-strategy will have to guarantee that for each k, Λ(L; k) is (re)defined only

finitely many times. This will be realised by delaying the building of Λ so that Λ(L; k) is

redefined only if we have passed the test of a lowness condition of L. Then the lowness

of L ensures that Λ(L; k) is redefined only finitely many times for each k.

A cycle k of the N-strategy will define some conditional restraints. A conditional

restraint is a pair (c, r) of natural numbers c and r ( or a pair (σ, r) for some 0, 1-string σ).

Let v be a stage at which a conditional restraint (c, r) is created and s > v. We say that

the conditional restraint (c, r) (or σ, r)) is valid at stage s, if for any l � c, Lv(l) � Ls(l) (or

for any l, σ(l) � Ls(l)), and invalid at stage s otherwise.

Let (c, r) be a conditional restraint created at stage v, and s > v. Then for any x � r, x

is allowed to be enumerated into X at stage s only if there is an l � c such that l ∈ Ls \Lv ,
in which case, the L-permitting marker of x is defined to be greater than c so that once

Lv � (c+ 1) = L � (c+ 1) at some stage s′ > s, we are able to extract all the x’s from X.

Note that X is constructed below A ⊕ L. An X-extraction needs permanent A ⊕ L

changes below the permitting marker of the element of X.

The N-strategy will proceed as follows:

Cycle k – defining Λ(L; k):

1 Choose a witness w(k) as fresh.

2 Wait for a stage v at which:

(2a) Λ(L; k′) ↓= A(k′) for all k′ < k.

(2b) Λ(L; k) ↑.

(2c) Θ(K; f(w(k))) ↓= 0.

(2d) Ψ(X,L; k) ↓= A(k).

Then:

— Define the configuration of the computation Ψ(X,L; k) by

c = max{ψ(k), mL(x) | x � ψ(k), x ∈ X}
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where mL(x) is the L-permitting marker of x, which will be defined in Definition

3.4 below.

— Define ∆(L;w(k), f(w(k))) ↓= 0 with δ(w(k), f(w(k))) = c.

— Define a conditional restraint to be (c, ψ(k)), or (L � (c+ 1), ψ(k)).

The conditional restraint (c, r) means that if there is an l � c that has entered L since

stage v, then an element x � r is allowed to be enumerated into X, under the condition

that if at a stage s > v, Lv � (c + 1) = Ls � (c + 1) occurs, then all those x can be

extracted from X.

3 (Special attention) Wait for a stage s > v at which:

(3a) Θ(K; f(w(k))) ↓= 1, and

(3b) ∆(L;w(k), f(w(k))) ↓= 0.

Then:

— For any x, if x � ψ(k)[v] and x ∈ X −Xv , extract x from X.

— Define Λ(L; k) ↓= A(k) with λ(k) = δ(w(k), f(w(k))).

— Define the X-restraint rX to be the maximum of all r’s such that there are c with

which conditional restraints (c, r) that were created by the N-strategy and are still

valid at the current stage.

Remarks:

(i) The X-restraint rX is increased only by this special action of the N-strategy.

(ii) A conditional restraint (c, r) counted at this stage in rX will be excluded from

the restraint rX at the stage at which it becomes invalid. This means that we

may use set C to denote the collection of all conditional restraints observed at

this stage, so rX = max{r | (∃c)[(c, r) ∈ C]}. We will always define rX by using

C. However, if a conditional restraint (c, r) ∈ C becomes invalid at stage t > s,

it leaves C automatically.

— We say that the N-strategy receives special attention at stage s.

Now suppose that ∆(L;w(k), f(w(k)))[v] is created at stage v. Let s > v be a stage.

1 We say ∆(L;w(k), f(w(k)))[v] is valid at stage s if for any z � δ(w(k), f(w(k)))[v] we

have Lv(z) � Ls(z); otherwise it is invalid at stage s.

We say ∆(L;w(k), f(w(k)))[v] is correct at stage s if for every z � δ(w(k), f(w(k)))[v],

Lv(z) = Ls(z); otherwise it is incorrect at stage s.

2 We say Ψ(X,L; k)[v] is recoverable at stage s, if for any x � ψ(k)[v], Xv(x) � Xs(x);

otherwise it is non-recoverable at stage s.

The principle for satisfying N is that, for any k, v and s > v, if ∆(L;w(k), f(w(k)))[v]

is created at stage v and ∆(L;w(k), f(w(k)))[v] is valid at stage s, then Ψ(X,L; k)[v] is

recoverable at stage s.

For a fixed k, we define Λ(L; k) only in Step 3, in which case, Θ(K; f(w(k))) has changed

from 0 to 1. Since Θ(K) is total, Λ(L; k) is redefined only finitely many times. Suppose

that Λ(L) is built infinitely many times. Then for every k, Λ(L; k) ↓= A(k). Otherwise,

there is a k such that Ψ(X,L; k) ↓�= A(k) holds permanently. This also ensures that if

A ��T L, the N-strategy extracts numbers from X only finitely many times.

We use 1 to denote the unique outcome of the N-strategy.
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2.6. An R-strategy

Given e, an Re-strategy will define Γ(X,L; e, y) for all y ∈ ω. Recall that we have assumed

that for every e, e �∈ WA if and only if there are infinitely many stages s such that

e �∈ WA[s].

Whenever we define Γ(X,L; e, y) at a stage s, we define a use block B and enumerate an

axiom (B, σ, e, y, z) into Γ, and we locate the use block B at some node ξ of the priority

tree T .

Let B be the use block and (B, σ, e, y, z) be the axiom associated with Γ(X,L; e, y) that

is created at stage v, and let s > v be a stage. We say that Γ(X,L; e, y)[v] is invalid at

stage s if there is an element b ∈ B such that b ∈ X, and valid at stage s otherwise.

Suppose that α is an Re-strategy. Then α will proceed as follows:

1 If there is a stage v with s− < v � s such that e �∈ WA[v], where s− is the last stage at

which αˆ〈0〉 was visited, then let y be the least z such that Γ(X,L; e, z) ↑, and define

Γ(X,L; e, y) by one of the following cases:

Case 1a: If there is a previous Γ(X,L; e, y) that is valid at stage s, let (B, σ, e, y, z)

be the axiom corresponding to the most recently defined valid computation,

Γ(X,L; e, y)[v′] say, for some v′, let σ′ = Ls � (|σ|), enumerate (B, σ′, e, y, 0) into Γ

and locate the computation and its use block at the same node as before.

Case 1b: If there is no previous computation Γ(X,L; e, y) that is valid at this stage,

create a use block as follows: define u to be the least natural number greater than

any number mentioned so far, define B = {u+1, u+2, · · · , 2u} and σ = Ls � (u+1)

and enumerate the axiom (B, σ, e, y, 0) into Γ, and locate the use block at αˆ〈0〉.
2 Otherwise, let y be the least z such that Γ(X; e, z) ↑, and define Γ(X,L; e, y) by one of

the following cases:

Case 2a: If there is an axiom (B, σ, e, y, z′) ∈ Γ that is still valid at this stage, define

Γ(X,L; e, y) ↓= 1 with γ(e, y)-use block as in Case 1a.

Case 2b: If there is no previous Γ(X,L; e, y) axiom that is still valid at stage s,

define Γ(X,L; e, y) = 1 with γ(e, y)-use block as in Case 1b above, and locate the

computation and its γ(e, y)-use block B at αˆ〈1〉, and define the permitting marker

of B by

pB = wA(e) = (µu)[〈e, A � (u+ 1)〉 ∈ W ].

We also denote pB by pαˆ〈1〉.

The Re-strategy α will have two possible outcomes 0, 1 with 0 <L 1 to denote e �∈ WA

and e ∈ WA, respectively. Whenever we define Γ(X,L; e, y), we define a γ(e, y)-use block,

B say, and define the location loc (B) to be the node at which B is located. Note that

every use block has a location.

For every use block B, we define an A-permitting marker of B as follows:

p̂(B) = max{pξ′ | ξ′ � loc (B)}.

For every x, if x ∈ B for some use block B, define the A-permitting marker of x by

mA(x) = p̂(B).
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Note that if mA(x) is not defined as above, it is −1.

The enumeration of X will be determined by the A-permitting marker of the use blocks

and the X-restraints.

Enumerating X. If at stage s:

(i) There is an element a � p̂(B) which enters A at stage s,

(ii) B ∩X = �,

(iii) minB > max{rX(ξ) | ξ < loc (B)},

then:

— Enumerate the least unused element b ∈ B into X.

— Define the L-permitting marker of B, denoted by q̂(B), to be the maximal length of

strings σ with which some axiom of ∆ with use σ was created by some strategy

β < loc (B) which is still valid at stage s, and which has conditional restraint (c, r)

with r greater than minB.

If B ∩X �= �, then for every x ∈ B define the L-permitting marker mL(x) of x by

mL(x) = q̂(B)

where, if mL(x) is not defined as above, we regard it as −1.

The definition of the L-permitting marker mL(x) allows us to extract all elements of

B ∩X from X if there is a strategy with priority higher than loc (B) that receives special

attention via the existing axiom of ∆ with minB � r. The reason is that whenever we

define Ξ(A,L; x) for any x ∈ B, we define ξ(x) � q̂(B), so if a strategy < loc (B) receives

special attention, we get an l � q̂(B) that leaves L, giving a permanent L-permission for

all elements b ∈ B to be extracted from X. We then need to examine further the special

attention.

Special attention. We say that a node γ requires special attention at stage s via

∆(L;w(k), f(w(k)))[v], if:

(i) ∆(L;w(k), f(w(k))) was created at stage v by γ,

(ii) Θ(K; f(w(k)))[s] ↓= 1, and

(iii) σ ⊂ Ls, where σ is the initial segment of L used in the computation mentioned in

part (i).
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In this case, let (c, r) be the conditional restraint corresponding to ∆(L;w(k), f(w(k)))[v].

Let γ receive special attention as follows. For any computation Γ(X,L; e, y)[s′] with use

block B, if it is located at some node ξ ⊃ γ, then:

— If minB � r and B ∩ (X −Xv) �= �:

– Extract all elements b ∈ B ∩X from X.

– Redefine the location of both the computation and its use block B to be γ.

The role of this step is in the rectification of Γ(X,L; e, y)[s′], which will be decided by

the A-permitting markers and X-restraints defined by nodes � γ. The reason is that

all strategies below γ have been injured at this stage, we do not need to respect the

X-restraints defined by strategies strictly below γ, and the A-permission that occurred

before has been lost.

— Let C be the set of all valid conditional restraints of γ, and define the X-restraint of γ

to be the maximum of all r’s with some conditional restraint (c, r) ∈ C.

2.7. An S-strategy

Given e, an Se-strategy will define Ω(C,WA; e) such that Ω(C,WA; e) ↓= (X ⊕ L)
′
(e).

Suppose that β is an Se-strategy. Then β defines Ω(C,WA; e) by enumerating some axiom

of the form (c, β, e, i) into Ω, where c is a fresh number, denoted by ω(e), and i = 0, 1. We

can rectify Ω(C,WA; e) by enumerating ω(e) into C . The building of Ω ensures that if β

is on the true path, Ω(C,WA; e) will be defined by β. The construction of the priority tree

ensures that the true path TP is computable relative to K ⊕WA.

Initially, we define Ω(C,WA; e) = 0, while the Se-strategy will try to preserve a

computation Φe(X,L; e)[v] ↓ for some v that has passed the L-test through Θ(K) as the

same as a cycle of an N-strategy. Then we rectify Ω(C,WA; e) by enumerating ω(e) into

C , redefine Ω(C,WA; e) = 1, and preserve Φe(X,L; e)[v]. We now look at the instructions

of the Se-strategy β:

1 Define a witness w as fresh.

2 Define Ω(C,WA; e) ↓= 0 with ω(e) fresh.

3 Wait for a stage v at which:

(3a) Θ(K; f(w)) ↓= 0; and

(3b) Φe(X,L; e) ↓.

Then:

— Define ∆(L;w, f(w)) ↓= 0 with

δ(w, f(w)) = max{φe(e), mL(x) | x � φe(e), x ∈ X} .

— We say that c = δ(w, f(w)) is the configuration of the computation Φe(X,L; e).

— Define a conditional restraint to be (c, φe(e)[v]).

4 (Special attention) Wait for a stage s > v at which:

(4a) Θ(K; f(w)) ↓= 1; and

(4b) Ls � (δ(w, f(w))[v] + 1) = Lv � (δ(w, f(w))[v] + 1).
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Then:

— For any x � φe(e)[v], if x ∈ Xs −Xv , extract x from X.

— Redefine Ω(C,WA; e) ↓= 1.

— For any Γ(X,L; e′, y′) defined at stage s′ with use block B for some s′, if the

computation Γ(X,L; e′, y, )[s′] is at some node below β, re-locate Γ(X,L; e′, y′)[s′]

and its use block at β.

— Let C(β) be the set of all valid conditional restraints of β.

— Define the X-restraint rX(β) to be the maximum of all r’s with which there are c

such that (c, r) ∈ C(β).

— From now on we ensure that Ω(C,WA; e) ↓= 1 unless

L � (δ(w, f(w))[v] + 1) �= Lv � (δ(w, f(w))[v] + 1) .

The possible outcomes. Since Step 4 occurs only if Θ(K; f(w)) has changed from 0 to

1, Step 4 occurs only finitely many times. Therefore, Ω(C,WA; e) converges, and by the

building of Ω, we have Ω(C,WA; e) = (X ⊕ L)
′
(e).

Updating the A- and L-permitting markers. At the stage at which a use block, B say, is

(re)-located at a node, ξ say, we define the A-permitting marker of the use block B by

p̂(B) = max{pξ′ | ξ′ � ξ}.

If A changes below p̂(B), we are trying to enumerate an element b ∈ B into X, and set

p̂(B) to be undefined, and we define the L-permitting marker of B to be the conditional

restraints imposed by strategies higher than that of loc (B). That is, we define the

L-permitting marker of B to be the maximum of all c such that for some r � |B|, (c, r) is

a valid but incorrect conditional restraint imposed by a strategy of higher priority than

loc (B).

The L-permitting marker of a use block B is created at the stage at which some element

b ∈ B is enumerated into X, which may decrease due to some conditional restraint (c, r)

that was counted in the definition of the L-permitting marker becoming invalid, and

which will never increase due to new ∆-axioms created by the strategies of higher priority

than loc (B).

This completes the description of the strategies.

3. The construction

Before describing the construction, we define the priority tree of strategies.

Definition 3.1. We define:

(i) the priority ranking of the requirements by

N0 < R0 < S0 < N1 < R1 < S1 < · · · ;

(ii) the possible outcomes of an R-strategy by 0, 1 with 0 <L 1;

(iii) the unique possible outcome of an N- or an S-strategy by 1.
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Then the priority tree is defined as follows.

Definition 3.2. We arrange the requirements on the nodes of a tree level by level according

to the priority ranking of the requirements. Each level will have only one requirement. The

immediate successors of a node are the possible outcomes of the corresponding strategy.

The construction may be delayed if Θ(K; f(w)) �= L
′
(f(w)) for some witness w. So we

have the following definition.

Definition 3.3. We say that s is a progressive stage if for any witness w of a strategy,

Θ(K; f(w)) = L
′
(f(w)) holds during stage s.

By the assumption that Θ(K) = L
′
, there are infinitely many progressive stages.

During the course of the construction, we define some parameters associated with a

strategy. We describe them as follows:

(i) Given an N-strategy γ, we will have the following parameters:

(a) w(γ, k): the witness of cycle k of γ.

(b) Λγ: the Turing functional built by γ.

(c) rX(γ): the X-restraint of γ.

(d) u(γ): the ψ-use of γ.

(ii) Given an S-strategy β, we will have the following parameters:

(a) w(β): the witness of β.

(b) rX(β): the X-restraint of β.

(c) u(β): the φ-use of β.

(iii) Given an Re-strategy α, we use p(αˆ〈1〉) to denote the least u such that 〈e, A � (u+1)〉 ∈
W if e ∈ WA holds.

(iv) During the course of a computation, we may define certain use blocks:

(a) A use block B will be assigned a location, denoted by loc (B), which is the node

on which the use block B is placed.

(b) We use Pξ to denote the class of all use blocks B’s located at ξ.

Definition 3.4. Given a use block B:

(i) Define the A-permitting marker of B by

p̂(B) = max{p(ξ) | ξ � loc (B), and p(ξ) ↓}.

Then for every x ∈ B, we define mA(x) = p̂(B).

(ii) If B ∩ X �= �, we define the L-permitting marker of B, denoted by q̂(B), to be the

maximal length of σ with which there is some axiom for ∆ created by some strategy

β < loc (B), such that the ∆-axiom is both valid and incorrect, and |B| � r, where r is

the conditional restraint of the ∆-axiom.

In this case, for every x ∈ B, we define the L-permitting marker of x by

mL(x) = q̂(B).

The L-permitting marker of a use block B will be updated as follows. Given a stage

s at which B ∩ X �= �, let v be the greatest stage < s at which an element of B is
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enumerated into X. We use L[s] to denote the class of all conditional restraints (c, r)

that were imposed by some strategy of higher priority than loc (B)[v] such that (c, r) was

incorrect at stage v and is valid at stage s, and r � |B|. Then the L-permitting marker of

B at stage s is the maximum of all c such that for some r there are conditional restraints

(c, r) ∈ L[s].

This means that in the above situation, the L-permitting marker of the use block B is

independent of the ∆-axioms created after stage v, which is the last stage at which some

element of B is enumerated into X.

Note that the location loc (B) of a use block B may be updated during the course of

the construction.

Definition 3.5. Let β be an N- or S-strategy. We say that β requires special attention at

stage s, if there are v, w such that:

(i) β enumerated an axiom for ∆(L;w, f(w)) at stage v.

(ii) Θ(K; f(w)) = 1 holds during stage s.

(iii) Lv � (δ(w, f(w))[v] + 1) ⊆ Ls.

(iv) β has not received special attention via the axiom for ∆(L;w, f(w))[v].

In this case, let v0 be the least v, and w0 be the corresponding w with v0. We say that β

requires special attention at stage s via ∆(L,w0, f(w0))[v0].

During the construction, if an N-strategy γ is initialised, Λγ is set to be totally undefined,

w(γ, k) are all cancelled, rX(γ) is cancelled; and if an S-strategy β is initialised, w(β) and

rX(β) are both cancelled.

Given an N- or S-strategy β and a use block B, if loc (B) < β and an element of B

is either enumerated into X or extracted from X at a stage s, then β is initialised at stage

s simultaneously and automatically. Now we are ready to describe the construction.

Definition 3.6. The construction is defined stage by stage.

Stage s = 0: Set X = Γ = Ω = ∆ = Ξ = �, and initialise all strategies.

Stage s > 0: There are four cases.

Case 1 (Delayed action): If s is not a progressive stage, then go to stage s+ 1.

Case 2 (Special attention): If there is an N- or S-strategy β that requires special

attention at stage s, then let β0 be the <-least such β, and let v0, w0 be such that

β0 requires special attention at stage s via ∆(L;w0, f(w0))[v0]. Let β0 receive special

attention as follows:

— For any x, if x � u(β0)[v0] and x ∈ X −Xv0 , extract x from X.

— For any computation Γ(X,L; e′, y′)[s′] with use block B and defined at stage s′

for some s′, if loc (B) ⊃ β0, update loc (B) = β0.

— Initialise any strategy ξ �� β0.

— Let Cβ0
be the set of all valid conditional restraints of β0.

— Let rX(β0) be the maximum of all r’s with which there are c such that (c, r) ∈ Cβ0
.

— Go on to Case 3.
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Case 3 (Enumerating X): If there is a use block B such that:

(i) there is an element a � p̂(B) that has entered A since the construction reached

Case 3 for the last time, if any,

(ii) B ∩X = �, and

(iii) minB > max{rX(ξ) | ξ < loc (B)},
then:

— Let ξ0 be the <-least node on which there is a use block B satisfying all of

(i)–(iii) above, for any N- or S-strategy β, if ξ0 < β, then β is initialised.

— For every use block B satisfying (i)–(iii), enumerate the least unused element

b ∈ B into X, and

— Go to the Action Phase of Stage s.

Case 4 (The main body of the construction): We specify certain nodes to be eligible

to act at a substage t of stage s. At substage t of stage s, we allow some strategy

to be eligible to act at substage t, and then either close the current stage or specify

some strategy to be eligible to act at the next substage, that is, substage t + 1,

of stage s. First we allow the root node to be eligible to act at substage t = 0

of stage s.

Substage t. Let ξ be eligible to act at substage t. If t = s, initialise all ξ′ with ξ′ �� ξ,

and go to stage s+ 1. If t < s, there are three subcases:

Subcase 4A: ξ = γ is an N-strategy.

Execute the following program:

Program γ

1 Let k be the least x such that Λ(L; x) ↑.

2 If w(k) is undefined, define w(k) as fresh, initialise all ξ′ with ξ′ �� γ, and go

to stage s+ 1.

3 If:

(3a) Θ(K; f(w(k))) ↓= 0 and

(3b) Ψγ(X,L; k) ↓= A(k),

then:

— Define ∆(L;w(k), f(w(k))) ↓= 0 with use

δ(w(k), f(w(k))) =

max{ψγ(k), q̂(B) | |B| � ψγ(k), γ � loc B, B ∩X �= �} .

— Create a conditional restraint to be (σ, ψγ(k)), where

σ = Ls � (δ(w(k), f(w(k))) + 1) .

— Let γˆ〈1〉 be eligible to act next.

4 Otherwise, let γˆ〈1〉 be eligible to act next.

Subcase 4B: ξ = α is an Re-strategy for some e.
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Suppose that the enumeration of W relative to A satisfies the usual hat trick

so that for every e, we have e /∈ WA if and only if there are infinitely many

stages s at which e /∈ WA[s].

We say that s is α-expansionary, if there is a stage v such that s− < v � s and

e �∈ WA[v], where s− is the last stage at which αˆ〈0〉 was visited, if any. We

implement the following program:

Program α

1 If s is α-expansionary:

— Let y be the least z such that Γ(X,L; e, z) ↑.

— Define Γ(X,L; e, y) = 0 and define γ(e, y)-use block as follows:

If there is a use block B that was specified in a previous definition of

Γ(X,L; e, y) such that it is still valid at stage s, let σ = Ls � (|B| + 1),

enumerate (B, σ, e, y, 0) into Γ, and define the use block to be the same

B and locate it at old loc(B); otherwise, let u be the least number greater

than any number mentioned so far, let B = {u + 1, · · · , 2u}, let σ =

Ls � (u + 1), enumerate (B, σ, e, y, 0) into Γ, define the use block to be

B and locate both the computation Γ(X,L; e, y) and its use block B at

αˆ〈0〉.
— Let αˆ〈0〉 be eligible to act at the next substage.

2 Otherwise:

— Let y be the least z such that Γ(X,L; e, z) ↑.

— Define Γ(X,L; e, y) = 1, and define γ(e, y)-use block B as follows:

If there is a valid computation, Γ(X,L; e, y)[s′] say, define the use block B

and its location as the same as above; otherwise, let u be the least number

greater than any number mentioned so far, let B = {u+ 1, u+ 2, · · · , 2u},
let σ = Ls � (u + 1), enumerate (B, σ, e, y, 1) into Γ, define the use block

to be B and locate both the computation Γ(X,L; e, y) and its use block

at αˆ〈1〉.
— Define p(αˆ〈1〉) = (µu)[e ∈ WA�(u+1)[s]].

— Let αˆ〈1〉 be eligible to act next.

Subcase 4C: ξ = β is an Se-strategy for some e. Then implement the following

program.

Program β

1 If w(β) is not defined, define it as fresh, initialise all ξ′ with ξ′ �� β, and go

to stage s+ 1.

Suppose that w(β) ↓= w.

2 If Ω(C,WA; e) = 1 and Φe(X,L; e) ↑, enumerate ω(e) into C .

3 If Ω(C,WA; e) = 0 and there is a stage v � s such that β has received special

attention via ∆(L;w, f(w))[v], and Lv � (δ(w, f(w))[v] + 1) ⊂ Ls, then:

— Enumerate ω(e) into C .
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— Redefine Ω(C,WA; e) = 1 by enumerating an axiom (ω(e), β, e, 1) into Ω,

where ω(e) is fresh.

4 If Ω(C,WA; e) ↑:

— Let c be fresh.

— Enumerate (c, β, e, 0) into Ω.

5 If:

(5a) ∆(L;w(β), f(w(β))) ↑,

(5b) Θ(K; f(w(β))) = 0 and

(5c) Φe(X,L; e) ↓,

then:

— Define ∆(L;w(β), f(w(β))) = 0 with

δ(w(β), f(w(β))) =

max{φe(e), q̂(B) | minB � φe(e), β � loc B, B ∩X �= �}

where q̂(B) is the L-permitting marker of B defined in Definition 3.4.

— Create a conditional restraint to be (σ, φe(e)), where

σ = Ls � (δ(w, f(w)) + 1) .

In any of steps 2, 3, 4, and 5, let βˆ〈1〉 be eligible to act next.

Action Phase of Stage s . Let b = max{x ∈ B | B is a use block}. For every x � b, if

Ξ(A,L; x) ↑, define Ξ(A,L; x) ↓= X(x), and define ξ(x) as follows:

Case 1: x �∈ B for any use block B.

— Define ξ(x) = −1.

Let x ∈ B for some use block B.

Case 2: B ∩X = �.

— Define ξ(x) = p̂(B).

Case 3: B ∩X �= �.

— Define ξ(x) = q̂(B).

This completes the description of the construction.

4. The verification

In this section we verify that the construction satisfies all of the requirements. The

verification will consist of the following propositions.

Proposition 4.1. There are infinitely many progressive stages.

Proof. The proof is straightforward from the assumption of Θ(K) = L
′
.

We now investigate the basic properties of the use blocks.
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Proposition 4.2 (use blocks properties). Given a stage s:

(i) If a use block B is created at stage s, then |B| < min B, and if loc (B)[s] = ξ for

some ξ, then |ξ|, s < |B|.
(ii) If B is created at a stage v � s, then

loc (B)[v] ⊇ loc (B)[v + 1] ⊇ · · · ⊇ loc (B)[s].

We say that B meets X at stage s if there is an element b ∈ B that is enumerated into

X at stage s.

(iii) A use block B meets X at stage s if and only if all of (a)–(d) below hold:

(a) B ∩Xs−1 = �.

(b) Case 3 of the construction occurs at stage s.

(c) minB > max{rX(ξ)[s] | ξ � loc (B)[s]}.
(d) There is an element a � p̂(B) that has entered A since the construction last

reached Case 3 of the construction.

(iv) If B is a use block during stage s, then B ∩Xs contains at most one element.

(v) If an element b ∈ B is extracted from X at stage s, then loc (B)[s − 1] = ξ for some

ξ, and there is an N- or S-strategy β ⊂ ξ that receives special attention at stage s,

in which case B is relocated at β.

(vi) If an N- or S-strategy β receives special attention at stage s, and β extracts an

element b ∈ B ∩ X from X for some use block B, then β ⊂ loc (B) held at the

beginning of stage s.

Proof. The proposition follows from the construction.

Let β ⊂ β′ be N- or S-strategies, and let v′ < v < s′ < s. Suppose that β′ defined

some axiom for ∆ at stage v′ and extracted some numbers from X − Xv′ at stage s′. In

this case, if β created some axioms for ∆ at stage v, then β fails to restore its computation

back to stage v at stage s since the computation might have become non-recoverable at

stage s′. The crucial point is to make sure that this dangerous case will never occur in the

construction.

To see this, we first look at the idea behind the construction. Let B be a use block. The

L-permitting marker of B, q̂(B), records the possible extractions of L that will occur at the

stage at which we extract elements of B ∩X from X. In the above example, suppose also

that β creates a conditional restraint to be (σ, r) at stage v, and β′ created a conditional

restraint (σ′, r′) at stage v′. By the construction, Case 4 of the construction occurs at stage

v, so the σ′ is both valid and incorrect at stage v. By the definition of conditional restraint

(σ, r), if there is an x � r such that x � r′ that has been enumerated into X during stages

(v′, v], then |σ| � |σ′|. This ensures that if β′ extracts x from X at stage s′, then there is an

l such that σ(l) = 1 and l �∈ Ls′ , so the ∆ axiom created by β at stage v is no longer valid

at stage s′.

Proposition 4.3. Let s be a stage. Suppose that a conditional restraint (σ, r) was created

at stage v, and that v � s. If for every l < |σ|, σ(l) � Ls(l), in which case we say that the
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conditional restraint is valid at stage s, then

Xv � (r + 1) ⊆ Xs.

Proof. We use induction on stages s. Suppose by induction that the proposition

holds for all s′ < s. We verify the proposition at stage s by considering the following

cases:

Case 1: s is not progressive.

In this case, there is no action taken at stage s and the proposition at stage s follows

from the induction hypothesis.

Case 2: Case 2 of the construction occurs at stage s.

Let β′ be the strategy that receives special attention at stage s. Suppose that β′ receives

special attention at stage s via ∆(L;w′, f(w′)), that ∆(L;w′, f(w′)) was created at a stage

v′ � s, and that (σ′, r′) is the conditional restraint created by β′ at stage v′.

Let (σ, r) be the conditional restraint created by β at stage v. If Xv � (r + 1) �⊆ Xs,

there is an x � r in B for some use block B that has been extracted from X at stage s.

By the construction at stage s, we have v′ < v < s, x � r′ and that x was enumerated

into X at a stage s′ with v′ < s′ < v. We observe the construction at stage v. Clearly,

∆(L;w′, f(w′))[v′] is both valid and incorrect at stage s. We consider the following

subcases.

Subcase 2a: β ⊆ loc (B)[v], B ∩Xv �= � and |B| � r.

In this case, the length of σ is greater than or equal to the length of σ′, so

∆(L;w, f(w))[v] is no longer valid at the end of stage s.

Subcase 2b: β <L loc (B)[v].

Let γ be the longest strategy such that γ ⊂ β, γ ⊂ loc (B)[v]. Then at the stage at

which some element x ∈ B is extracted from X at stage s, then some node β0 ⊆ γ

receives special attention at stage s. So β is initialised at stage s.

Subcase 2c: Otherwise.

If either B ∩Xv = �, or |B| > r, the extraction of elements of B from X at stage s

does not injure the inclusion of the proposition. Otherwise, either loc (B)[v] <L β

or loc (B) [v] ⊂ β. In either case, since we extract elements of B from X at stage

s, β is initialised during stage s, so ∆(L;w, f(w)) is no longer valid at the end of

stage s.

Thus the proposition holds at stage s in Case 2.

Case 3: Otherwise.

The proposition at stage s follows from the induction hypothesis.

Proposition 4.3 then follows.
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Before proving the satisfaction of the T-requirement, we examine the locations of a

use block.

Definition 4.4. Let B be a use block created in the construction and s be a stage.

(i) We say that s is in a B-gap if B ∩Xs = �, and in a co-B-gap if B ∩Xs �= �.

Let v be the stage at which the use block B is created.

(ii) Suppose that v = v1 < v2 < v3 < · · · are all stages at which a B-gap is opened, and

that s1 < s2 < · · · are all stages at which the B-gaps opened at stages v1 < v2 < · · ·
are closed respectively.

We first look at the permitting markers of a use block B in either B-gaps or co-B-gaps.

Proposition 4.5. Let B be a use block. Assume the notations in Definition 4.4 for the use

block B. Then:

(i) For each n � 1 and each s ∈ [vn, sn), the A-permitting marker p̂(B)[s] ↓= p̂(B)[vn].

(ii) For each n � 1 and for all s ∈ [sn, vn+1), we have q̂(B)[s] is defined and non-increasing

in stages.

(iii) For each n � 1, all numbers in B get a permanent A-permission on p̂(B)[vn] at stage

sn.

(iv) For each n and for all numbers in B, we get a permanent L-permission on q̂(B) at

stage vn+1.

(v) For every n > 1, loc (B) is updated to some proper initial segment of the last location

of B at stage vn+1.

Proof. Suppose by induction that the proposition holds for all m < n. We examine each

part of the proposition for n.

(i), (iii), (iv) and (v) are straightforward from the construction. For (ii), by the definition

of ∆, at stage vn+1, for a conditional restraint (σ, r) that has been created during stages

(sn, vn+1), if there is an x � r that is extracted from X at stage vn+1, then either (σ, r) is no

longer valid at the end of stage vn+1, or the strategy that created the conditional restraint

(σ, r) is initialised, so (ii) follows.

The proposition then follows.

Proposition 4.6. X �T A⊕ L.

Proof. Given x, if x is not in any use block by the end of stage x, then x �∈ X.

Let x ∈ B for some use block B. By Proposition 4.5, Ξ(A,L; x) is defined eventually.

By the construction and by Proposition 4.5, whenever Ξ(A,L; x) becomes undefined,

we get a permanent A ⊕ L-permission below ξ(x). By the construction, whenever we

define Ξ(A,L; x), we define Ξ(A,L; x) = X(x). This establishes that Ξ(A,L) is total and

Ξ(A,L) = X. The proposition then follows.
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We now define the true path TP of the construction.

Definition 4.7. Given a stage s at which the main body of the construction is implemen-

ted:

(i) Let δs be the longest strategy that is visited during stage s.

(ii) Define the true path TP of the construction by

TP = lim inf
s

δs.

The true path TP has the usual property of tree constructions.

Proposition 4.8. Let A ��T L. Then for any α ∈ TP , there is a possible outcome a of α

with the following properties:

(i) αˆ〈a〉 ∈ TP .

(ii) αˆ〈a〉 is initialised only finitely many times.

(iii) αˆ〈a〉 is visited infinitely many times.

(iv) If α is either an N- or S-strategy, then α receives special attention only finitely many

times.

Proof. We use induction on the length of α. Suppose by induction that the proposition

holds for all α′ ⊂ α, and that α = α′ˆ〈a′〉 for some possible outcome a′ of α′. Let s0 be

minimal, after which α will not be initialised. We consider the following cases:

Case 1: α = γ is an N-strategy.

By the action of special attention, if there is a k such that Λγ(L; k) is created at a stage

greater than s0 and Λγ(L; k) ↓�= A(k) holds permanently, then for the least such k,

we have that Ψγ(X,L; k) ↓�= A(k) holds permanently. In this case, γ acts only finitely

many times, and αˆ〈1〉 is on the true path TP , and all of (ii), (iii) and (iv) hold for α.

This argument also follows from the fact that if Λγ(L) is built infinitely many times,

Λγ(L) is total and Λγ(L) =∗ A, contradicting the assumption that A ��T L.

Let k be the least argument for which Λγ(L) diverges, and let w = w(k) be the witness

of cycle k of γ. If ∆(L;w, f(w)) is redefined only finitely many times, then either

Ψγ(X,L; k) �= A(k) occurs infinitely many times or Θ(K; f(w)) �= 0. If f(w) ∈ L
′
, then

∆(L;w, f(w)) ↓, so γ receives special attention via ∆(L;w, f(w)), which is a permanent

computation, and we have defined Λγ(L; k), contradicting the choice of k. If f(w) �∈ L
′
,

and Θ(K; f(w)) �= 0, then Θ(K) �= L
′
, contradicting the assumption of Θ(K) = L

′
.

Therefore, if ∆(L;w, f(w)) is redefined only finitely many times, γˆ〈1〉 is initialised only

finitely many times, γˆ〈1〉 ∈ TP and it is visited infinitely many times, and, clearly,

γ receives special attention only finitely many times. Suppose that ∆(L;w, f(w)) is

redefined infinitely many times. By the construction, there are infinitely many stages

at which γ is visited, cycle k of γ defines an axiom for ∆(L;w, f(w)), and there are

only finitely many stages at which cycle k′ > k of γ acts during the course of the

construction. Therefore, γˆ〈1〉 ∈ TP , γˆ〈1〉 is initialised only finitely many times, γˆ〈1〉
is visited infinitely many times, and γ receives special attention only finitely many

times.

For the case when ∆γ(L;w, f(w)) is redefined infinitely many times, we are able to

prove that ψγ(k)[s] is unbounded over the course of the construction as follows. To
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show a contradiction, we assume that ψγ(k)[s] is bounded in the construction. Then

there are only finitely many use blocks B such that |B| � ψγ(k) occurred during the

course of the construction. By Proposition 4.5, for a fixed use block B, q̂(B)[s] is

bounded during the course of the construction. This ensures that the length of axioms

for ∆(L;w, f(w)) is bounded during the course of the construction, contradicting the

assumption that ∆(L;w, f(w)) is redefined infinitely many times.

Case 2: α is an Re-strategy for some e.

If there are infinitely many α-expansionary stages, αˆ〈0〉 ∈ TP . By the construction,

αˆ〈0〉 is initialised only finitely many times, and by program α in the main body of the

construction, αˆ〈0〉 is visited infinitely many times. Otherwise, clearly, αˆ〈1〉 is initialised

only finitely many times, αˆ〈1〉 ∈ TP , and it is visited infinitely many times. Therefore,

the proposition follows in this case.

Case 3: α = β is an Se-strategy for some e.

By the proof of Case 1, β receives special attention only finitely many times. Therefore,

βˆ〈1〉 is initialised only finitely many times. By the construction, βˆ〈1〉 ∈ TP and it is

visited infinitely many times.

Proposition 4.8 then follows.

We now verify that the construction satisfies the requirements.

Proposition 4.9. Every Ne is satisfied.

Proof. This follows from the proof of Case 1 in Proposition 4.8.

Proposition 4.10. Every Re is satisfied.

Proof. Let α be the Re-strategy on the true path. Let r0 be the limit of the maximum

of the X-restraints imposed by strategies β < α. The existence of r0 is guaranteed by

Proposition 4.8 (iv).

We claim that for any s, if α is visited at stage s, then for any γ(e, y)-use block B, if B

is located at some node ξ to the right of α, then either |B| � r0 or B ∩ Xs �= �. By the

choice of B and the assumption of loc B = ξ and α <L ξ, there is an R-strategy α′ such

that α′ˆ〈0〉 ⊆ α and α′ˆ〈1〉 ⊆ ξ. At the stage at which B was specified, e′ = e(α′) ∈ WA.

Therefore, at the stage at which A changed below the use function of e′ ∈ WA, all N- and

S-strategies β to the right of α′ˆ〈0〉 are cancelled, and an A-permission for enumeration

of elements of B into X occurred. So B ∩ X �= �. By the construction, the elements of

B ∩X can be extracted from X at a later stage only if some strategy ⊂ α′ receives special

attention.

Therefore, there are only finitely many γ(e, y)-use blocks B such that both B ∩X = �
and loc (B) > α hold permanently.

Suppose that there are infinitely many α-expansionary stages. Then, by the same

argument as in the proof of the above claim, there are only finitely many γ(e, y)-use

blocks B such that B ∩ X = � and loc (B) = αˆ〈1〉 hold permanently. By program α of

the construction, for almost every y, the permanent γ(e, y)-use block is located at αˆ〈0〉.
This ensures that limy Γ(X,L; e, y) = 0 and that e �∈ WA.
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If there are only finitely many α-expansionary stages, then, by the same argument as

above, we have that for almost every y, the permanent γ(e, y)-use block is defined and

located at αˆ〈1〉. It follows that limy Γ(X,L; e, y) = 1 = WA(e).

So, in any case, Γ(X,L; e, y) is defined for every y, and that limy Γ(X,L; e, y) = WA(e).

Re is satisfied.

Proposition 4.10 then follows.

Proposition 4.11. Every Se is satisfied.

Proof. Let β be the Se-strategy on the true path TP . By the proof of Proposition 4.9,

β receives special attention only finitely many times. Therefore, there are only finitely

many axioms of the form (c, β, e, i) that are enumerated into Ω during the course of

the construction. By the construction, (X ⊕ L)
′
(e) = i if and only if there is an axiom

(c, β, e, i) ∈ Ω such that c �∈ C .

To complete the proof of Proposition 4.11, we need the the following proposition.

Proposition 4.12. Let A ��T L. Then TP �T K ⊕WA.

Proof. We compute by induction on the length of α ∈ TP . For an N- or an S-strategy

β ∈ TP , β receives special attention only finitely many times, and we always have that

βˆ〈1〉 ∈ TP . For an Re-strategy α, by the construction, for i = WA(e), αˆ〈i〉 ∈ TP . This

establishes that TP �T K ⊕WA. Proposition 4.12 then follows.

This completes the proof of Proposition 4.11.

This also completes the proof of the main theorem, Theorem 1.1.
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