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Static surface shapes of a magnetic fluid volume between two plates in a non-uniform
magnetic field are investigated theoretically and experimentally. Abrupt changes and
hysteresis of the magnetic fluid surface shape are observed in the experiments
when the current in the coil increases and decreases quasi-statically. The necessary
and sufficient conditions for a local minimum of the energy functional are derived
theoretically. A method to find stable/unstable surface shapes is developed. The
ambiguity in the determination of the magnetic fluid surface shape at the same value
of the current is shown. It is found that the experimentally observed surface shapes
of the given magnetic fluid volume coincide with the shapes obtained numerically,
and practically all of them satisfy the derived necessary and sufficient conditions of
the minimum energy. The stability curves of the magnetic fluid bridge between the
plates are determined experimentally and theoretically.
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1. Introduction

The free surface of a magnetic fluid (MF) subjected to a magnetic field may have
interesting forms, peaking patterns and labyrinth structures (Rosensweig 1985; Abou,
Wesfreid & Roux 2000; Zahn 2001). In certain situations, rapid abrupt behaviour
and also hysteresis of the MF surface take place, even if the applied magnetic
field is changed slowly, in a quasi-static manner. This can be explained by the
ferrohydrodynamic instability of the volume shape caused by the magnetic field. In
general, hysteresis is a common phenomenon in physics, fluid mechanics, biology and
so on, which indicates dependence of the state of a nonlinear system on its history. In
this paper, two different types of hysteresis will be considered. First, the hysteresis of
an MF equilibrium surface shape between two solid plates due to the co-existence of
several stable solutions for fixed parameters of the system is investigated. And second,
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the contact angle hysteresis – that is, the difference of the advancing and receding
contact angles at the three-phase contact line, is considered. This effect is normally
attributed to surface roughness and influence of solutes in the fluid (e.g. surfactant of
the MF), which may deposit a thin film on the solid surface (de Gennes 1985).

To begin with, let us give some examples. The surface shape of an MF drop with
large magnetic permeability immersed in another liquid of the same density changes
its form abruptly for a certain threshold value of an increasing uniform magnetic
field (Bacri & Salin 1982; Afkhami et al. 2010). The drop jumps spontaneously from
a slightly elongated shape to a much more elongated shape due to the presence of
the competing capillary and magnetic stresses at the interface. When decreasing the
magnetic field, the inverse feature (shortening) occurs, but for a smaller threshold
value. This is related to the fact that in a certain field range two stable shapes of the
drop exist, and it depends on the initial conditions as to which solution is observed.
A similar hysteresis phenomenon of a semi-infinite MF layer on a horizontal plate in
a perpendicular uniform magnetic field is studied by Cowley & Rosensweig (1967),
Gailitis (1977), Richter & Lange (2009). In this classical problem, known as the
Rosensweig instability, the pattern-forming peaks occur on the free surface when a
critical value of the vertical magnetic field is exceeded.

In essence, an MF equilibrium shape under a magnetic field is accomplished by
the balance between capillary, hydrostatic and magnetic stresses. To get a qualitative
notion of the problem, consider a finite MF drop on a horizontal plate under the
influence of gravity and a vertical uniform magnetic field. The increase of the field
strength leads to the change of the drop surface that requires, obviously, energy
costs to lift up the fluid against gravity and to extend the surface area. Therefore,
both gravity and surface tension have a stabilising influence on the drop shape.
However, the deformed MF surface causes non-uniform distortion of the applied
uniform magnetic field inside the MF. The field-induced destabilisation results in a
loss of the magnetic energy due to the increased magnetisation of the fluid, and this
energy change is interrelated with the drop shape. So, the MF equilibrium surface
is formed, if the loss of energy because of the destabilising magnetic field balances
the gain of energy due to gravity and surface tension. This explains the appearance
of a conical peak with the sharp increase of the curvature at the upper point of the
drop (Arkhipenko, Barkov & Bashtovoi 1980). Note that when imbalance of these
energies occurs, the uniform magnetic field can lead to instability of the MF. It is
shown experimentally by Barkov & Berkovskii (1980) that when the field magnitude
surpasses a certain critical value, the drop splits spontaneously into two parts of
approximately equal volume in a direction perpendicular to the field.

The use of non-uniform magnetic fields of different configurations extends the class
of problems in which abrupt behaviour and hysteresis phenomena are observed. For
example, a number of publications are devoted to the problem of an MF volume near
a vertical line conductor for different particular cases (Rosensweig 1985; Bacri et al.
1988; John, Rannacher & Engel 2007; Naletova et al. 2008; Vinogradova et al. 2013).
The stepwise change of the thickness of a hydro-weightless MF drop surrounding the
conductor in response to a quasi-static increase in current is observed experimentally
by Bacri et al. (1988) for small magnetic fields, when the magnetic permeability of
the MF is constant. The theoretical analysis of this phenomenon is given by Naletova
et al. (2008), Vinogradova et al. (2013) for arbitrary magnetic fields, when the MF
magnetisation depends nonlinearly on the field strength. The free surface of an MF
that contains a cylindrical body made of a well magnetisable material in a uniform
magnetic field is investigated by Naletova et al. (2012). It is shown that at the same
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applied value within a certain field range, solutions of different type are realised. The
abrupt behaviour and hysteresis of the MF surface are experimentally revealed in the
presence of a cyclically changed magnetic field.

The equilibrium surface shape of a heavy MF in the non-uniform field of a
horizontal line conductor is studied theoretically in the non-inductive approximation
by Kiryushin & Bin (1980), Volkova & Naletova (2014). Spasmodic and hysteretic
changes of the MF shape with gradual change of the current are predicted. Volkova
& Naletova (2014) solved the problem considering a finite MF volume between two
limiting horizontal plates placed under the conductor accounting for surface tension.
It is shown that at a fixed current, several simply connected solutions of the MF
surface shape exist that are energetically favourable. In particular, there exists a
so-called magnetic fluid bridge (MFB) between the horizontal plates.

Generally, a fluid bridge (or liquid meniscus) is a specifically shaped volume of
fluid in contact with two solid surfaces in a short distance. It is formed during the
process of coalescence of two separate fluid volumes or from a single volume due
to capillary, inertia, gravity and other effects. In the moment of formation, before the
bridge comes to rest as well as right after its break-up, certain small oscillations of
fluid surface can be observed. The bridge is held mainly by intermolecular stresses at
the fluid–air (or fluid–fluid) interface and surface tension stresses at the three-phase
contact line. Static and dynamic properties of fluid bridges and, more particularly,
their surface shape have been studied since the nineteenth century (Plateau 1863;
Yildirim & Basaran 2001). At present, there are many applications involving fluid
bridges, e.g. printing, coating, heat transfer and conductivity measurements.

In applications based on MF such as liquid acoustic ducts, seals and valves, the
volume of the MFB provides a complete hermetic contact in the slot gap between
the moving surfaces of a device. The MFB is held and controlled by external sources
of a magnetic field, such as permanent or electromagnets. As was mentioned above,
the surface shape of the MFB may change gradually under an applied alternating
magnetic field. When the magnetic field reaches some critical threshold, the volume
may become unstable and disintegrate, thus disrupting the operability of a device.
Therefore, these effects must be considered in designing and controlling systems based
on MF.

Rothert & Richter (1999) carried out experiments on the break-up of an MFB
between non-magnetic horizontal plates in magnetic fields of two electromagnets and
a pair of Helmholtz coils. The evolution of the minimum neck diameter and the
dynamics of the satellite drop after the decay of the MFB are observed. Polevikov
& Tobiska (2005) studied numerically the behaviour of an MFB in a small gap
between two parallel plates subjected to a uniform magnetic field. It is shown that
two different types of instabilities arise as the intensity of the magnetic field increases.
For small contact angles, the MFB breaks along the capillary axis and spreads over
the capillary walls, whereas for large contact angles the MFB elongates in the central
part up to its separation from the walls.

From the point of view of technical applications, however, not the instability, but the
stability of an MF is of great importance. Therefore, in this work, we present methods,
which make it possible to determine the regions of stability of an MF equilibrium
surface, in particular of the MFB, which paves the way to the use of such fluids
in applications. The theoretical analysis will be based on the energy formulation of
the problem using variational methods. In the works by Bacri & Salin (1982), Bacri
et al. (1988), Rosensweig et al. (2005), John et al. (2007), equations of a static MF
surface shape are also derived from the balance between gravitational, surface and
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FIGURE 1. Schematic view of the experimental set-up: 1 – horizontal plate of the outer
vessel, 2 – horizontal plate of the inner vessel, 3 – electromagnetic coil, 4 – ferrite core,
5 – current source, 6 – MF volume V0.

magnetic energy terms with the condition that the total energy is stationary on the
solutions. But such formulation of the problem is incomplete, since the total energy
in the equilibrium state must be minimum. That means the sufficient conditions of
the energy minimum should be considered. An attempt to derive and apply these
conditions has been made in a previous paper by Volkova & Naletova (2014) for the
two-dimensional problem of the MF surface shape in the field of a horizontal line
conductor.

In the present paper, the static surface of a finite axisymmetric MF volume between
two horizontal plates is investigated theoretically and experimentally in a magnetic
field of an electromagnetic coil placed above the upper plate. This study continues
and expands the research initiated by Volkova, Naletova & Turkov (2013), where
preliminary investigations into the experimental techniques were made. Section 2
describes an experimental study which aims to obtain equilibrium surface shapes of
the MF volume and to observe their abrupt and hysteretic behaviour. The variational
formulation of the problem along with the necessary and sufficient conditions for the
minimum energy are presented in § 3. The stability of the static, simply connected
MF shapes relative to axisymmetric surface perturbations is investigated. Results
of the numerical calculations and their comparison with the experimental data are
discussed in § 4. In our opinion, the proposed stability analysis of MF surface shape
can serve as a tool for understanding the behaviour of these fluids.

2. Experimental investigations of an MF equilibrium shape
2.1. Experimental set-up and materials

The experimental set-up shown in figure 1 consists of an acrylic glass inner and outer
cuboidal vessels with the following dimensions: (L×W ×H) 7.3× 7.3× 9 cm3 and
8 × 8 × 8 cm3, respectively (Volkova et al. 2013). The thickness of the glass is
2.5 mm. The inner vessel is inserted vertically into the other up to the required
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Carrier liquid Water
Particle material Magnetite
Density, ρ1 1.1 g cm−3

Saturation magnetisation, M1S 12 G
Magnetic susceptibility, χ 0.03
Volume concentration, ϕ 0.02

TABLE 1. MF properties.

distance d between their horizontal plates. The distance d can be changed from 0
to 6 cm in steps of 1 mm. The cylindrical coordinates (r, φ, z) are introduced with
the origin in the middle of the upper plate. The z axis coincides with the axis of
symmetry of the coil, see figure 1.

The electromagnetic coil with the inserted ferrite core with soft magnetic properties
of low coercivity is fixed in the inner vessel, so that the axis of symmetry of the coil
is perpendicular to the upper horizontal plate through its centre. Parameters of the coil
are: height 4.6 cm, inner and outer radii 0.4 cm and 1 cm, respectively. The winding
of the coil is made of 270 turns of a copper wire with a diameter of 1.04 mm. The
ferrite core has a radius of 0.4 cm and a height of 12.5 cm, the relative permeability
of the material is 400. Its lower end extends out of the coil for 1 mm. The current
source provides a range of output currents in the coil i = 0–2.6 A. The distribution
of the magnetic field in the area between two horizontal plates is measured with
an analogue Hall sensor in the absence of the MF. The maximum magnitude of the
magnetic field strength H is up to 655 Oe for i= 2.6 A measured directly under the
upper plate.

An MF volume V0 is injected in the middle of the working area, which is the area
between the horizontal plates z= 0 and z=−d of the experimental set-up. In order to
reduce capillary and gravitational forces, the area was first filled with a non-magnetic
liquid (NML) with a density smaller than the MF.

Experimental results were carried out using a water-based MF and polymethylsili-
cone liquid as an NML. This combination is chosen due to the fact that these fluids
are immiscible, and the MF does not stain the walls of the vessel. The parameters
of the MF are listed in table 1. This low concentration fluid has a small value of
the saturation magnetisation and, therefore, the normal-field instability of the surface
in applied magnetic fields was not observed. The polymethylsilicone liquid has the
following parameters: the density is ρ2= 0.91 g cm−3, the kinematic viscosity 5.5 cSt.
The surface tension coefficient on the interface between these fluids is measured by
the pendant drop method: σ = 11.7 g s−2.

2.2. MF volume in a step-like increasing and decreasing magnetic field
The experimental results of the MF behaviour between the horizontal plates when
the current in the coil increases and decreases quasi-statically are presented. In each
experimental series, the distance between the plates is fixed to d = 1.2 cm. An MF
volume V0 is initially injected in the middle of the lower plate when the current in
the coil is turned off. Then the current is increased in steps of 0.001–0.01 A to a
maximal value of 2.6 A, and thereafter, it is decreased back to zero. Each current
value is held for 10–20 s until the MF takes its equilibrium shape. Thus, the process
of the MF transformation can be seen as quasi-static. The following values of V0 are
selected: 0.4 cm3, 0.8 cm3 and 2 cm3.
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FIGURE 2. (Colour online) Equilibrium surface shapes of an MF volume V0 = 0.4 cm3.
Panels (a–i) correspond to the increasing current i from 0 A to 2.6 A, whereas (i–l)
conform to the decreasing current i from 2.6 A to 0 A.
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FIGURE 3. Dependence of h0 on i for V0 = 0.4 cm3:@ – drop on the lower plate;A –
drop on the upper plate. Current values at which abrupt changes occur: ↑ ia = 0.84 A,
↑ ib = 1.2 A, ↑ ic = 1.64 A, ↑ id = 2.49 A and ↓ ie = 0.28 A.

During experimental series with various MF volumes, it is shown that three different
simply connected axisymmetric forms of the volume may exist, namely: a drop on the
lower plate, a drop retained on the upper plate beneath the coil or an MFB between
the plates. Their equilibrium surface shape may be described by a function z= h(r).
A set of solutions split into two disconnected parts of drops on the lower and upper
plates with the total MF volume is also possible.

As a characteristic parameter of the drops on the upper and lower plates, the
coordinate h0 = h(0), −d 6 h0 6 0, of the intersection point of the MF surface
z = h(r) with the z axis is chosen, see figure 2(a,c). The MFB is characterised by
the radius r0 > 0 of the contact spot of the MF with the upper plate: h(r0)= 0, see
figure 4(e). These coordinates are measured on the experimental photos and plotted
against the current.
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FIGURE 4. (Colour online) Equilibrium surface shapes of an MF volume V0 = 0.8 cm3.
Panels (a–h) correspond to the increasing current i from 0 A to 2.6 A, whereas (h–l)
conform to the decreasing current i from 2.6 A to 0 A.
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FIGURE 5. Dependencies of h0 (left axis) and r0 (right axis) on i for V0 = 0.8 cm3:@ –
h0 for the drop on the lower plate; A – h0 for the drop on the upper plate; E – r0 for
the MFB. Current values at which abrupt changes occur: ↑ ia = 0.74 A, ↑ ib = 0.85 A,
↑ ic = 1.16 A, ↓ id = 0.72 A and ↓ ie = 0.38 A.

For a MF volume of V0 = 0.4 cm3, several stepwise changes in the MF surface
shape take place when the current either increases or decreases quasi-statically from
0 A to 2.6 A, see figure 2. At four critical values of the increasing current i, namely
ia = 0.84 A, ib = 1.2 A, ic = 1.64 A and id = 2.49 A, the drop of the MF on the
lower plate becomes unstable, a part of it jumps suddenly up and initially forms,
and subsequently merges with, a drop on the upper plate. The first such transition
at ↑ ia= 0.84 A is shown in figure 2(b,c), the second one occurring at ↑ ib= 1.2 A in
figure 2(d,e), etc. This is because, when the current reaches these critical values, the
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FIGURE 6. (Colour online) Equilibrium surface shapes of an MF volume V0 = 2 cm3.
Panels (a–e) correspond to the increasing current i from 0 A to 2.6 A, whereas (e–j)
conform to the decreasing current i from 2.6 A to 0 A.
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FIGURE 7. (Colour online) Dependencies of h0 (left axis) and r0 (right axis) on i for
V0 = 2 cm3. Measured data:@ – h0 for the drop on the lower plate;A – h0 for the drop
on the upper plate;E – r0 for the MFB. Current values at which abrupt changes occur:
↑ ia = 0.69 A and ↓ ib = 0.37 A. Theoretical result is shown by the solid line.

imbalance between gravitational, surface and magnetic energies occurs for the present
volume of the drop on the lower plate. Note that, in general, the number of such
transitions depends on the pattern of the current change and the dynamics of the
process. However, in the described experiment, the current is changed in a quasi-static
manner, and so these four transitions and their critical currents are most likely stable
from the point of reproducibility. For each jump, the volume of the MF transferred
from one plate to the other can be approximated by image analysis of experimental
photos.

At imax = 2.6 A almost the whole initial volume gathers into a drop on the upper
plate, only a small droplet is left on the lower plate, see figure 2(i). When the current
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decreases, these two drops retain up to a value ↓ ie = 0.28 A, at which a part of the
upper drop separates and falls abruptly onto the lower plate. At the end of the process,
when i= 0 A, the initial simply connected MF volume consists of two separate drops,
see figure 2(a,l). It should be noted that no MFB of V0= 0.4 cm3 between the plates
was observed for any values of the increasing and decreasing current. The dependence
of h0 on i for V0 = 0.4 cm3 is shown in figure 3. Hereinafter, the white and grey
markers correspond to the increasing and decreasing current, respectively. This graphic
clearly shows that there is a hysteresis phenomenon of the MF surface shape.

Figure 4 shows equilibrium surface shapes of an MF volume V0= 0.8 cm3. In this
case, the formation of the MFB occurs both for the increasing and decreasing current.
As the current increases from i= 0 A, the initial volume on the lower plate rises and
becomes unstable at ↑ ia = 0.74 A as it divides into two drops, see figure 4(b,c). At
the next threshold value, ↑ ib= 0.85 A, the upper and lower drops gather into an MFB
(figure 4d,e), which at ↑ ic = 1.16 A breaks up into two drops (figure 4f,g). These
resulting drops remain with the increase in current to imax = 2.6 A and its further
decrease down to ↓ id = 0.72 A. At this critical value, the MFB between the plates
occurs again from the coalescence of the upper and lower drops, see figure 4(i,j).
It exists for the current from ↓ id = 0.72 A to ↓ ie = 0.38 A and then disintegrates
into two drops again. So, the MFB may occur in completely different ranges of the
increasing and decreasing current. The dependencies of the coordinates h0 and r0
of the observed surface shapes of V0 = 0.8 cm3 are plotted against the current i in
figure 5.

For the MF volume V0 = 2 cm3 equilibrium surface shapes are shown in figure 6.
With the increase in current from i= 0 A, the initial drop on the lower plate becomes
unstable at ↑ ia = 0.69 A and transforms abruptly to an MFB between the plates,
see figure 6(b,c). The resulting bridge between the plates exists up till the value
imax = 2.6 A. Then, for the decreasing current the MFB remains up to ↓ ib = 0.37 A
and disintegrates into two drops, as for all other described cases (figure 6h,i). The
dependencies of h0 and r0 on i are presented in figure 7.

To summarise, in the experimental series with various MF volumes and a fixed
distance between the plates, the abrupt behaviour and hysteresis of the surface shape
are studied as the current changes quasi-statically. The current values at which these
abrupt transformations take place are determined. Moreover, the wetting hysteresis
phenomenon is observed, that is the difference between the contact angle values
for the increasing and decreasing current. To take this effect into account in further
numerical calculations of an MF equilibrium shape, the contact angles θ0 on the
upper and lower plates are measured through image analysis of experimental photos.
In the case of V0= 2 cm3, these dependencies θ0(i) will be given in § 4.3. As a result,
the MF equilibrium shape exhibits two types of hysteresis when the current changes
cyclically. First, there is a bistability of simply connected shapes in certain ranges
of currents (e.g. figure 7 at i = 0.5 A), and it depends on the initial conditions and
pattern of the current change as to which one is observed. Second, due to the contact
angle hysteresis, the MF volume can have different surface forms, see figure 6(d, f )
at i= 1 A.

2.3. Disintegration of the MFB between the plates
The realisation of an MFB depends mainly on the current and the relation of the
MF volume to the distance between the plates. To determine ranges of parameters for
which the MFB exists, the following experiment has been carried out. At a certain
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FIGURE 8. (Colour online) Stability curves icr = icr(d) of the MFB of V0 = 0.6 cm3,
0.75 cm3 and 1 cm3. Surface shapes of the MFB for V0 = 0.75 cm3 and d = 1 cm: (a)
i= 0.5 A; (b) ↑ icr = 0.98 A; (c) ↓ icr = 0.25 A.

value of the current i> 0 A, an MF volume is injected so that it takes a form of the
axisymmetric MFB. The distance d between the horizontal plates is fixed. In the first
attempt, the current in the coil increases quasi-statically and decreases in the second
one. In both cases, critical current values icr= icr(d) at which the MFB breaks abruptly
into two drops are measured.

The experiments were carried out for three different MF volumes V0: 0.6 cm3,
0.75 cm3 and 1 cm3. The distance between the plates was changed in the range from
0.5 cm to 1.6 cm with a step size 1 mm. The dependencies of the critical current
icr = icr(d) are presented in figure 8. One can see that these lines have the same
qualitative character. For each value V0, the dependence icr = icr(d) is the so-called
stability curve of the MFB between the plates. Since the curve divides the plane
of parameters i and d into two parts, the region to the left of it corresponds to the
values, for which a stable MFB can exist, see figure 8(a). On the contrary, for the
values of i and d from the right part of the plane the MFB cannot be created and
does not exist at all.

3. Theoretical analysis of an MF equilibrium shape based on the variational
method

3.1. Formulation of the problem
Consider a heavy incompressible MF and a surrounding NML lying between
horizontal plates, which are fixed at a distance d from each other, in the presence of
a non-uniform magnetic field. In the axisymmetric case, all parameters are assumed
to depend on the cylindrical coordinates r and z, see figure 1. As shown in § 2.2, a
given MF volume V0 may take three different simply connected axisymmetric forms,
namely: a drop on the lower plate, a drop on the upper plate or an MFB. Consider
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that the curve z = h(r) determines the equilibrium surface shape of the interface
between the MF drop on the lower (or upper) plate and the NML. For the MFB
between the plates, it is convenient to describe its axisymmetric surface shape with a
function r= ζ (z).

For the theoretical considerations, the non-inductive approximation is assumed, that
is, the MF is weakly magnetisable so that it does not distort the strength H of an
applied magnetic field. The subscripts 1 and 2 denote the parameters of the MF and
the NML, respectively.

The energy of a finite MF volume surrounded by an NML consists of the surface
energy, the energy in the gravity field and the magnetostatic energy (Landau &
Lifshitz 1980):

F=
∫

S
σ ds+ (ρ1 − ρ2)g

∫
V
(z+ d) dv −

∫
V

∫ H(r,z)

0
M1(H) dH dv. (3.1)

Here, σ = const. is the surface tension coefficient, ds is the element of the interface
S, ρ1 and ρ2 are the densities of the MF and NML, wherein ρ1 >ρ2, g is the gravity
acceleration, dv is the element of the MF volume V and H(r, z) is the strength of the
axisymmetric magnetic field.

The magnetisation of the MF M1(H) with a small concentration of ferromagnetic
particles can be described by the Langevin formula

M1(ξ)=M1S

(
coth ξ −

1
ξ

)
, ξ =

mH
kT
, m=

M1S

n
. (3.2a−c)

Here, T = const. is the temperature of the fluids, k is the Boltzmann constant and
M1S is the MF saturation magnetisation, which is linked with the magnetic moment m
of a single ferromagnetic particle and the number of ferromagnetic particles n.

The MF energy F described by formula (3.1) is a nonlinear functional defined on
the class of continuously differentiable functions z= h(r) (or r = ζ (z) for the MFB)
with variable end points. In the static equilibrium state, the energy F must have
minimum for all surface shape variations satisfying the condition of the constant MF
volume:

V0 =

∫
V

dv = const. (3.3)

3.2. Variation of the energy functional
In what follows, without loss of generality, we will only consider the variation of the
functional F for the simply connected MF drop on the lower plate. For the drop on
the upper plate and the MFB, the analysis procedure is the same, with the differences
given in appendices A and B, respectively.

The energy functional F[h] of the drop on the lower plate with the surface z= h(r)
can be calculated by formula (3.1) accounting for (3.2)

F[h] = 2π

∫ r1

0

(
σ r
√

1+ h′2(r)− (σs2 − σs1)r+
1
2

rg(ρ1 − ρ2)(h(r)+ d)2

− nkT
∫ h(r)

−d
r ln

sinh(mH(r, z)/(kT))
mH(r, z)/(kT)

dz
)

dr. (3.4)
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Here, (r1, −d), r1 > 0, is the point of intersection of the surface z = h(r) with
the lower plate, a prime denotes the derivative with respect to r. The surface tension
forces σ = σ12, σs1 and σs2 act between the phases, where the subscripts 1, 2 and s
correspond to the MF, NML and the solid plate, respectively. In accordance with the
Young equation, they are linked by the relation σ cos θ0 = σs2 − σs1, where θ0 is the
contact angle, 0 6 θ0 6π.

According to the Euler theorem in the calculus of variations, to find the minimum
of the energy functional (3.4) the following auxiliary functional Ψ [h] is considered:

Ψ [h]=F[h]−p0V0[h]=2π

∫ r1

0
f (r,h,h′) dr, V0[h]=2π

∫ r1

0
r(h(r)+d) dr, (3.5a,b)

where p0 is a constant to be determined. The forms of Ψ in the case of the drop on
the upper plate and the MFB are given in appendices A and B, respectively.

The functional Ψ [h] is defined by (3.5) in the class of continuously differentiable
functions z= h(r) with variable end points (0, h0) and (r1,−d). Here, h0, −d< h0< 0,
and r1 > 0 are unknown coordinates to be determined.

Let u(r) be a certain variation of the drop surface shape z = h(r) in the plane
φ= const. End points of the variable curve h(r)+u(r) are denoted by (0,h0+ δh0) and
(r1 + δr1, d). The variation δΨ [u] of the functional Ψ [h] is defined as an expression,
which is linear in increments u(r), u′(r), δh0, δr1 and which differs from the total
increment Ψ [h+ u] −Ψ [h] by a quantity higher by more than an order of magnitude
as compared to the distance between the functions h(r) and h(r) + u(r) (Gelfand &
Fomin 2000):

1
2π
δΨ [u] =

∫ r1

0

(
f ′h −

d
dr

f ′h′
)

u(r) dr+ ( f − h′f ′h′)
∣∣∣∣

r=r1

δr1 − f ′h′ |r=0δh0, (3.6)

where the prime and the subscripts h and h′ denote partial derivatives with respect to
the corresponding arguments.

In order for the energy functional F[h] extremum to be reached on the curve h(r),
it is necessary that the variation δΨ [u] vanishes for z= h(r) and all admissible u(r)
(Gelfand & Fomin 2000). From the requirement that the integrand in (3.6) be equal
to zero, in view of (3.4) and (3.5), we have the following Euler–Lagrange equation

p0 − g(ρ1 − ρ2)(h(r)+ d)+ nkT ln
sinh(mH(r, h(r))/(kT))

mH(r, h(r))/(kT)

=−σ
h′′(r)+ h′3(r)/r+ h′(r)/r

(1+ h′2(r))3/2
. (3.7)

Since u(r) is an arbitrary function, the terms in front of the independent increments
δh0 and δr1 in (3.6) should be zero. Therefore, the following boundary conditions at
the variable end points of the admissible curve z= h(r) must be satisfied:

h(0)= h0, h′(0)= 0, for −d< h0 < 0,
h(r1)=−d, h′(r1)=− tan θ0, for r1 > 0.

}
(3.8)

Thus, to find the minimum of the functional F[h] on the curve z=h(r) with variable
end points, it is required first to solve the Euler–Lagrange equation (3.7). It is a
nonlinear second-order differential equation for the curve h(r), which determines the
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axisymmetric surface shape of the MF drop on the lower plane. Then, the values of
two arbitrary constants appearing in the general solution of (3.7), the constant p0, and
the coordinates h0 and r1 of the variable end points, are determined from the boundary
conditions (3.8) and the condition V0 = const.

It can be shown that (3.7) also determines the surface shape of the MF drop on the
upper plate with one correction, with the requirement of replacing the minus by a plus
on the right-hand side of the equation. Then, the boundary conditions at the variable
end points are: h(0) = h0, h′(0) = 0, and h(r1) = 0, h′(r1) = tan θ0 with −d < h0 < 0
and r1 > 0.

In order to determine the shape r= ζ (z) of the MFB between the plates, the Euler–
Lagrange equation f ′ζ − (d/dz)f ′ζ ′ = 0 should be solved with the corresponding form
of the function f (z, ζ , ζ ′) given in appendix B. In this case, the boundary conditions
are ζ (0)= r0, ζ ′(0)= cot θ0, and ζ (−d)= r1, ζ ′(−d)=− cot θ0, where r0, r1 > 0 are
variable coordinates to be determined.

It should be noted that the solutions of the Euler–Lagrange equation do not always
realise a local minimum or maximum of the MF energy since this equation gives only
a necessary condition for the functional to have an extremum.

3.3. Sufficient conditions of the minimum energy
To find sufficient conditions for a functional minimum, it is necessary to introduce
a new concept, namely, the second variation of a functional. Denote by δ2Ψ [u] the
terms of the second order relative to the end variations δh0 and δr1, the increment of
u(r) and its derivative, which are determined by the expansion of Ψ [h + u] − Ψ [h]
in a Taylor series. The expression δ2Ψ [u] is a quadratic functional and is called the
second variation of the functional Ψ [h].

In order that the minimum of the energy functional F[h] together with the subsidiary
condition of the constancy of the volume V0[h] be reached on the curve z= h(r), it is
necessary and sufficient that on the extremal z= h(r) the differential δΨ [u] be equal
to zero and the second variation δ2Ψ [u] be positive definite for all admissible surface
perturbations u(r):

δΨ [u] ≡ 0, δ2Ψ [u]> 0 for z= h(r). (3.9a,b)

Accounting for formula (3.4) and the boundary conditions (3.8) and f ′′hh′ = 0, the
expression for the second variation of the drop on the lower plate takes the following
form:

1
2π
δ2Ψ [u] = ( f ′r − h′f ′h)|r=r1δr

2
1 +

∫ r1

0
( f ′′h′h′u

′2
+ f ′′hhu2) dr. (3.10)

Notice that f ′′h′h′ = σ r(1+ h′2)−3/2 > 0 for r> 0.
Let us introduce two continuously differentiable functions ω1(r) and ω2(r), which

are the solutions of the following equation

f ′′h′h′( f ′′hh +ω
′(r))=ω2(r), (3.11)

and satisfy the respective boundary conditions

ω1(0)= 0 and ω2(r1)=

(
f ′r
h′2
−

f ′h
h′

)∣∣∣∣
r=r1

. (3.12a,b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.488


Surface shape stability of a magnetic fluid in a non-uniform magnetic field 339

The sufficient condition for the second variation δ2Ψ [u] to be positive definite for
all admissible variations u(r) is that the functions ω1(r) and ω2(r) fulfil the condition
ω2 −ω1 > 0 for any point of the segment [0, r1].

This is due to the fact that, in this case, the following transformation of δ2Ψ [u]
can be made. Divide the integral in (3.10) into two parts: from 0 to r∗ and from r∗
to r1, where 0 < r∗ < r1. Then, we add to and subtract from each integrand a term
of the form d(ωiu2), i = 1, 2. According to (3.11), the reformed integrands are both
perfect squares. In view of u(0) = δh0 and u(r1) = −h′(r1)δr1, the expression (3.10)
for δ2Ψ [u] is simplified to

1
2π
δ2Ψ [u] = ω1(0)δh2

0 + ( f ′r − h′f ′h −ω2h′2)|r=r1δr
2
1 + (ω2 −ω1)|r=r∗u

2(r∗)

+

∫ r∗

0
f ′′h′h′
(

u′ +
ω1

f ′′h′h′
u
)2

dr+
∫ r1

r∗

f ′′h′h′
(

u′ +
ω2

f ′′h′h′
u
)2

dr> 0. (3.13)

Since the first two terms are zero according to (3.12), it is obvious that if
ω2 − ω1 > 0 on [0, r1], the second variation δ2Ψ [u] will be positive definite for
all admissible u(r). This is the sufficient condition for the minimum of the energy
functional defined on the class of axisymmetric continuously differentiable functions
z= h(r) describing the MF equilibrium surface shape.

For the MF drop on the lower plate (3.11) and conditions (3.12) have the following
forms:

dω(r)
dr

=
(1+ h′2(r))3/2

σ r
ω2(r)− (ρ1 − ρ2)gr

+
nkTr

H(r, h(r))

(
∂H(r, z)
∂z

)∣∣∣∣
z=h(r)

(
mH(r, h(r))

kT
coth

(
mH(r, h(r))

kT

)
− 1
)
,

(3.14)

ω1(0)= 0, ω2(r1)= σ cos θ0 −
r1

tan θ0

(
p0 + nkT ln

sinh(mH(r1,−d)/(kT))
mH(r1,−d)/(kT)

)
(3.15a,b)

Equation (3.14) can be solved numerically taking into account that the shape of the
MF surface z= h(r) is determined by (3.7).

The analysis of the minimum energy problem for the MF drop on the upper
plate is similar to the case above. The characteristic ω functions are defined by the
same equation (3.11) with the boundary conditions (3.12) taking into account the
corresponding form of the function f (r, h, h′) given in appendix A. The sufficient
condition of the minimum energy is identical: ω2 − ω1 > 0 on [0, r1], where r1 is
determined by h(r1)= 0.

For the MFB between the plates with the axisymmetric surface shape r= ζ (z), the
sufficient condition of the minimum energy is ω2 − ω1 > 0 on [−d, 0]. The equation
for the determination of the functions ωi(z), i= 1, 2 and their boundary conditions are
given in appendix B.

3.4. Necessity and sufficiency of the minimum conditions
Consider the case where the sufficient conditions of the minimum energy are not
satisfied for an extremal solution z = h(r) of the MF surface shape. Then, it may
be shown that there exists another continuously differentiable function in the weak
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neighbourhood of h(r), which provides a smaller value for the energy functional
than the extremal h(r). This will reveal that the curve z= h(r) cannot realise a local
minimum for the energy functional.

Let us suppose that the characteristic ω functions are defined on the whole segment
[0, r1], but ω2 − ω1 < 0. Using the substitution ω=−f ′′h′h′u

′/u, we may introduce two
perturbation functions u1(r) and u2(r) on [0, r1]:

u1(r)= δh0e−
∫ r

0 (ω1(t)/f ′′h′h′ (t)) dt, u2(r)=−h′(r1)δr1e
∫ r1

r (ω2(t)/f ′′h′h′ (t)) dt. (3.16a,b)

Note that these functions are the solutions of (3.11) written in the form: ( f ′′h′h′u
′(r))′=

f ′′hhu(r). They satisfy the following boundary conditions: u1(0) = δh0, u′1(0) = 0 and
u2(r1)=−h′(r1)δr1, u′2(r1)= (ω2h′/f ′′h′h′)|r=r1δr1. So, it is possible to define them on the
whole segment [0, r1], even when the functions ω1 and ω2 do not exist everywhere
on it. Moreover, it can be shown that the expression f ′′h′h′(u

′

1u2− u1u′2)=C is constant
for 0 < r 6 r1. This means that the difference ω2 − ω1 does not change sign within
the common domain of these functions.

Let r = r∗ be a point of the segment [0, r1]. Assuming the end point variations
δh0 and δr1 are small and linked so that u1(r∗)= u2(r∗), the piecewise differentiable
perturbation û(r) is defined as û(r) = u1(r) for 0 6 r 6 r∗ and û(r) = u2(r) for
r∗ 6 r 6 r1. Using (3.12), (3.13) and (3.16), it is possible to show that in the weak
neighbourhood of h(r) the functional value for the curve h+ û is smaller than Ψ [h]:

Ψ [h+ û] −Ψ [h] = 1
2δ

2Ψ [û] =π(ω2 −ω1)|r=r∗ û
2(r∗)=πC< 0. (3.17)

We can now construct a continuously differentiable perturbation u(r) on [0, r1]

so that the difference Ψ [h + u] − Ψ [h + û] is infinitesimally small. For any ε > 0,
consider an ε neighbourhood of the point r= r∗, where the derivative û′ has a jump
discontinuity, since u′1(r∗) 6= u′2(r∗). The smooth curve u(r) is derived from û(r) by
replacing the part in the interval [r∗ − ε, r∗ + ε]. For this, let us join the points
û′(r∗ − ε) and û′(r∗ + ε) by a continuous curve υ(r) in such a way that∫ r∗+ε

r∗−ε
υ(r) dr=

∫ r∗

r∗−ε
u′1(r) dr+

∫ r∗+ε

r∗

u′2(r) dr. (3.18)

Therefore, we may define u(r) as follows:

u(r)=


u1(r), for 0 6 r 6 r∗ − ε,

u1(r∗ − ε)+
∫ r

r∗−ε
υ(t) dt, for |r− r∗|6 ε,

u2(r), for r∗ + ε6 r 6 r1.

(3.19)

It is easy to verify that the function u(r) is continuously differentiable on [0, r1]

and satisfies the boundary conditions u(0)= δh0 and u(r1)=−h′(r1)δr1. At the points
r= r∗ ± ε, we have u= û and u′ = û′.

Considering (3.5), the difference between the functional values on the curves h+ u
and h+ û may be simplified as:

Ψ [h+ u] −Ψ [h+ û] = 2π

∫ r∗+ε

r∗−ε
( f (r, h+ u, h′ + u′)− f (r, h+ û, h′ + û′)) dr=O(ε).

(3.20)
If ε is sufficiently small, the curve h+u lies in the weak neighbourhood of h(r). So,

for an appropriate choice of ε and according to (3.17), the difference Ψ [h+ u]−Ψ [h]
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can be made negative:

Ψ [h+ u] −Ψ [h] =πC+O(ε) < 0. (3.21)

Hence, if the conditions of the minimum energy are not satisfied, the admissible
surface perturbation u(r) defined by (3.19) is found such that the functional value
Ψ [h + u] is smaller than Ψ [h]. This means that on the extremal solution z = h(r),
the local minimum of the energy functional cannot be reached. In other words, the
surface shape z= h(r) is unstable.

Without going into the details, it should be noted that the reasoning will be the same
also in the case where the characteristic functions ω1(r) and ω2(r) are not defined
on the whole segment [0, r1], and even where they do not have a common domain.
Anyway, it is possible to choose the point r = r∗ so that the expression (3.17) is
negative.

To summarise, the condition ω2 −ω1 > 0 on the whole segment [0, r1] (or [−d, 0])
is necessary and sufficient for a local minimum of the energy functional to be reached
on the curve z= h(r) (or r= ζ (z)). The proposed theoretical method makes is possible
for the given parameters of the problem to calculate an MF equilibrium surface shape
and examine its stability relative to small axisymmetric surface perturbations.

4. Numerical calculation of an MF equilibrium shape and its stability analysis
In this section, the results of numerical calculations of the equilibrium surface shape

of an MF volume are presented. The stability of the obtained solutions is analysed
using the theoretically derived necessary and sufficient conditions. The section is
organised as follows: § 4.1 shows the geometry of the magnetic field imposed by the
electromagnet used in the experiment. As we show, the wetting hysteresis phenomenon
occurs in the experiment when the current in the coil is changed cyclically, e.g. see
figure 6(d, f ). That is why, first, the results in § 4.2 are carried out assuming that the
contact angle at the MF–NML–solid plate interface is constant and equals θ0 = 80◦.
For this particular value, a variety of solutions for the simply connected MF surface
shapes of the given volume is shown. Then in § 4.3, the results are obtained taking
into account the wetting hysteresis phenomenon, i.e. considering the dependencies of
the contact angle θ0(i) on the current. Thereby, the comparison between numerically
computed and experimentally observed MF surface shapes is made.

Numerical calculations are carried out using MATLABr. A second-order differential
equation that describes the MF surface shape (in particular, (3.7) for the drop on the
lower plate) is first reduced to the system of three nonlinear first-order differential
equations by introducing the natural parametrisation of the curve z=h(r). The material
properties are defined according to the parameters used in the experiment, see § 2.1
and table 1. The other parameters that enter the calculation are g = 980 cm s−2,
T = 300 K, k= 1.38× 10−16 erg K−1, n= 3.82× 1016 cm−3.

4.1. Modelling of the stationary magnetic field of the electromagnetic coil
When solving numerically, e.g. (3.7) and (3.14) for the drop on the lower plate, the
problem of magnetic field distribution H(r, z) in the area between the horizontal plates
of the set-up occurs. The modelling and the calculation of the stationary magnetic field
H(r, z) of the axisymmetric electromagnetic coil with the inserted ferrite core were
done numerically using a finite element software package (ANSYSr). The geometry
and material properties of the model were defined according to the parameters of
the coil and the core used in the experiment, see § 2.1. For numerical computation,
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FIGURE 9. (a) Magnetic field distribution H(r, z) (in Oe) of the electromagnetic coil with
the ferrite core used in the experiment for i= 0.5 A; (b) comparison between numerical
and measured values of H(r, z) for i= 0.5 A.

the PLANE53 element was chosen, which allows two-dimensional modelling of
the magnetic field in axisymmetric problems. Far-field elements are defined by
INFIN110 element type. The domain is meshed with elements of 0.05 cm edge
length. Figure 9(a) shows the distribution of the magnetic field strength H(r, z) in the
vicinity of the lower end of the core obtained numerically. The results are compared
with the data measured for the experimental coil with an analogue Hall sensor, see
figure 9(b). The discrepancy in the results may be caused by the singularity of the
magnetic field at the edge of the core and the real geometrical dimensions of the
Hall sensor surface.

4.2. Stability of the equilibrium surface shape of MF drops and MFB for a constant
contact angle

In this part, the numerical calculations are carried out assuming a constant contact
angle of θ0=80◦ at the MF–NML–solid plate interface. Therefore, the obtained results
can be compared only qualitatively with experimental results of § 2.
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FIGURE 10. Dependencies of h0 (left axis) and r0 (right axis) on i obtained numerically
in the case of a constant contact angle θ0 = 80◦ for V0 = 2 cm3 and d= 1.2 cm:@ – h0
for the drop on the lower plate;A – h0 for the drop on the upper plate;E – r0 for the
MFB. Stable solutions, on which the local minimum of the energy functional is reached
are shown by black symbols.
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FIGURE 11. (a) Unstable (h0 = −0.26 cm, r1 = 1.24 cm) and stable (h0 = −0.58 cm,
r1 = 1.31 cm) solutions for the drops on the lower plate at i = 1 A for V0 = 2 cm3,
d= 1.2 cm and θ0 = 80◦; (b) characteristic ω functions corresponding to these drops.

Solution branches. Here, we consider only simply connected equilibrium shapes of an
MF drop on the lower plate, an MF drop on the upper plate or an MFB. For these
three shape types, the dependencies of the characteristic coordinates h0 and r0 on i
are obtained numerically for an MF volume V0 = 2 cm3 and a distance between the
plates d = 1.2 cm, see figure 10. It can be seen that for a certain range of currents,
the surface shape of the MF cannot be determined unambiguously.

For example, there are two different branches of solutions for the drop on the lower
plate: more lifted and flattened, see figure 11(a) at i= 1 A. For the obtained solutions,
equation (3.14) with the boundary conditions (3.15) is solved numerically. It shows
that for all drops, which correspond to the branch of the more lifted solutions, the
necessary and sufficient conditions of the minimum energy are not satisfied, since
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FIGURE 12. (a) Unstable (r0 = 0.55 cm, r1 = 1.27 cm) and stable (r0 = 0.59 cm,
r1=1.08 cm) solutions for the MFB at i=0.8 A for V0=2 cm3, d=1.2 cm and θ0=80◦;
(b) characteristic ω functions corresponding to these shapes.

ω2(r)− ω1(r) < 0 on the intersection of the domains of these functions. An example
is shown in figure 11(b) for h0 =−0.26 cm at i= 1 A. According to § 3.4, it can be
concluded that the local minimum of the energy functional for the obtained solutions
is not reached and they are unstable. For more flattened solutions of the drop on
the lower plate, the local energy minimum is reached for currents from i = 0 A to
i = 1.02 A, as ω2(r) − ω1(r) > 0 on the whole segment [0, r1], see figure 11(b) for
h0 = −0.58 cm at i = 1 A. Hence, they are surface shapes stable relative to small
axisymmetric surface perturbations. At currents from i = 1.02 A to the value i =
1.07 A, at which two solution branches of the drop on the lower plate intersect, the
necessary and sufficient conditions of the minimum energy for the flattened drops are
not satisfied, i.e. these surface shapes are unstable.

The numerical calculation of the surface shape of the MF drop retained on the upper
plate beneath the coil shows that one solution branch with V0 = 2 cm3 exists on the
range of currents i > 1.8 A, see figure 10. By checking the necessary and sufficient
conditions of the energy minimum, it can be shown that from i= 1.8 A to i= 1.87 A
they are not satisfied on the shapes of the upper drop. The solutions obtained for
i > 1.87 A meet all necessary and sufficient minimum conditions, so they are stable
relative to small axisymmetric surface perturbations.

For the MFB of V0 = 2 cm3, three solution branches exist, two of which do not
satisfy the necessary and sufficient minimum conditions, see figure 10. The main
branch is obtained for currents from i = 0.64 A to i = 2.55 A. The calculations
show that MFB equilibrium surface shapes corresponding to the main branch realise
the local energy minimum within the range from icr = 0.72 A to icr = 2.3 A. These
marginal values are the critical currents of the MFB for d=1.2 cm, at which it breaks
up. Moreover, the volumes of the resulting drops on the lower and upper plates can
be estimated approximately. Figure 12(a) illustrates two solutions of the MFB existing
at i= 0.8 A. The one assigned with points r0 = 0.59 cm and r1 = 1.08 cm is stable
relative to small axisymmetric surface perturbations since on it the necessary and
sufficient conditions of the minimum energy are satisfied: ω2(z) − ω1(z) > 0 on the
whole segment [−d, 0], see figure 12(b). Recall that these characteristic functions
of the MFB are determined by equations given in appendix B. On the contrary, for
the other solution with r0 = 0.55 cm and r1 = 1.27 cm, the local energy minimum
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FIGURE 13. Numerically obtained stability curves icr= icr(d) of the MFB of V0= 0.5 cm3,
1 cm3, 1.5 cm3 and 2 cm3 for the case of a constant contact angle θ0 = 80◦.

is not reached because no common domain of ω1(z) and ω2(z) exists on [−d, 0],
see figure 12(b). So this MFB having a narrow neck in the middle is unstable and
it would break up into two drops where the volume of each drop can be estimated
from the height of the neck.

Stability curves. The theoretical method of finding stable/unstable MF surface
shapes can be applied to obtain stability curves of the MFB numerically. This is
accomplished as follows: for the fixed parameters d and V0, MFB equilibrium shapes
are calculated depending on the current i, that is, similar dependencies r0(i) as shown
in figure 10 are computed. By checking the necessary and sufficient conditions of
the energy minimum, the surface shapes stable relative to small axisymmetric surface
perturbations are marked out by black on the main solution branch. Taking the
marginal stable points, the critical current values icr(d) of the MFB with volume V0

are determined. The resulting stability curves icr = icr(d) are presented in figure 13
for four different MF volumes. It can be seen that, although these lines are carried
out for a constant contact angle of θ0 = 80◦, they are qualitatively similar to the
experimental dependencies in figure 8. This can be seen as a good proof of the
model validity.

Thus, based on the numerical calculation of MF equilibrium shapes for θ0= const.,
it is possible to determine stability regions of the simply connected solutions and to
predict qualitatively how the transformation of a given MF volume can proceed. As
seen in figure 10, for a large volume of V0 = 2 cm3, the MF drop initially placed
on the lower plate will become unstable at increasing ↑ i = 1.02 A and most likely
will abruptly form an MFB since the stability regions of these solutions have a wide
intersection there. The same transformation process was observed in the experiment.
However, it occurred at the other critical value ↑ i = 0.69 A due to the presence
of the wetting hysteresis phenomenon, see figure 6. For a lower value of V0, if no
MFB exists (figure 13), the initial drop on the lower plate will divide into two parts
for increasing i. The obtained results reveal that the bistability of simply connected
solutions in certain current ranges leads to the hysteresis of the MF surface.
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FIGURE 14. (Colour online) Contact angles θ0(i) on the lower (a) and upper (b) plates
for the MF equilibrium surface shapes of V0 = 2 cm3 shown in figure 6. Measured data:
@ – drop on the lower plate;A – drop on the upper plate;E – MFB. Current values at
which abrupt changes occur: ↑ ia = 0.69 A and ↓ ib = 0.37 A. The solid line shows the
corresponding values θ0(i) used in numerical calculations.

4.3. Calculation of MF equilibrium surface shapes under consideration of the
wetting hysteresis phenomenon

In order to compare stable equilibrium surface shapes of the MF obtained
experimentally and theoretically, the wetting hysteresis phenomenon is taken into
account. This means that the experimental dependencies of the contact angle θ0(i) on
current are used as constraints in the simulations.

Since, in terms of technical applications the stable MFB between the plates existing
in wide current ranges is of particular interest, the comparison of the experimental and
numerical results is made for an MF volume of V0 = 2 cm3. As was mentioned, the
MF volume can have different surface forms due to the contact angle hysteresis. For
example, figure 6(d, f ) shows two different MFBs for the increasing and decreasing
i= 1 A. Obviously, this is caused by the varying wetting/non-wetting contact angles,
where an MF–NML interface meets the solid plate. These angles are measured
by image analysis of experimental photos and plotted depending on the current in
figure 14. When calculating an MF surface shape, these dependencies are applied
as follows. For each current value i, the form of numerical solution to be sought is
defined according to the experiment, see figure 7. Starting with the simply connected
drop on the lower plate for the increasing i and then the MFB, the corresponding
contact angles used in calculations are assigned values equal (or close) to the
experimentally measured values θ0(i), so that the obtained solution has a volume
of V0 = 2 cm3. At the decreasing current ↓ ib = 0.37 A, when the MFB disintegrates,
the volumes of the resulting upper and lower drops are estimated on the basis of the
photo to be 0.13 cm3 and 1.87 cm3, respectively. Then, the form of these drops is
calculated separately from each other taking experimental values θ0(i).

Thus, figure 15 shows equilibrium surface shapes of this MF volume calculated
considering the contact angle hysteresis for the increasing and decreasing current cases.
It may be seen that the obtained surface shapes coincide with the experimental forms
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FIGURE 15. Equilibrium surface shapes of an MF volume V0 = 2 cm3 obtained
numerically by taking into account the wetting hysteresis phenomenon for the increasing
(a–e) and decreasing (e–j) current i.

presented in figure 6. The theoretical dependencies of the characteristic coordinates h0
and r0 of the drops on the upper or lower plates and of the MFB are plotted against
the current i in figure 7 (bold line). It has been shown that, according to the theoretical
analysis, the MF surface shapes observed in the experiment realise a local minimum
of the MF energy for practically all values of the current.

5. Conclusions

The problem of the static surface shape of an MF volume between two horizontal
plates in the magnetic field of an electromagnet is investigated theoretically and
experimentally. The abrupt changes and hysteresis of the MF surface shape are
observed in the experiments, when the current in the coil increases and decreases
quasi-statically. The current values at which these abrupt changes take place are
determined. The variational problem of minimum energy of a simply connected MF
volume is considered theoretically. The necessary and sufficient conditions for a
local minimum of the energy functional are derived, from which the method to find
stable/unstable MF surface shapes is developed. In the case of a constant contact
angle, MF equilibrium surface shapes are calculated numerically with the unstable
solutions picked out. The stability curves of the MFB are determined theoretically
for a constant contact angle. It is shown that these dependencies are qualitatively
similar to the experimental stability curves. The MF equilibrium surface shapes are
obtained numerically taking into account the wetting hysteresis phenomenon, which
is observed in the experiment for the increasing and decreasing current. It is found
that the experimental surface shapes coincide with the shapes obtained numerically,
and practically all of them satisfy the derived necessary and sufficient conditions of
the minimum energy. The obtained results can be used to design applications based
on MF, such as valves, interrupters and cooling systems.
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Appendix A
For the MF drop on the upper plate with the axisymmetric surface shape z= h(r),

the auxiliary functional Ψ [h] is described according to (3.1) and (3.5) as

Ψ [h] = 2π

∫ r1

0
f (r, h, h′) dr, where f (r, h, h′)= σ r

√
1+ h′2(r)− σ r cos θ0

−
1
2

grh(r)(ρ1 − ρ2)(h(r)+ 2d)+ nkT
∫ h(r)

0
r ln

sinh(mH(r, z)/(kT))
mH(r, z)/(kT)

dz

+ p0rh(r). (A 1)

Here, (r1, 0) is the point of intersection of the surface z= h(r) with the upper plate.

Appendix B
For the MFB between the plates with the surface shape function r = ζ (z), the

auxiliary functional Ψ [ζ ] has the following form:

Ψ [ζ ] = F[ζ ] − p0V0[ζ ] = 2π

∫ 0

−d
f (z, ζ , ζ ′) dz−πσ cos θ0(ζ

2(0)+ ζ 2(−d)), (B 1)

where

f (z, ζ , ζ ′) = σζ (z)
√

1+ ζ ′2(z)+
1
2

gζ 2(z)(ρ1 − ρ2)(z+ d)

− nkT
∫ ζ (z)

0
r ln

sinh(mH(r, z)/(kT))
mH(r, z)/(kT)

dr−
1
2

p0ζ
2(z). (B 2)

In this case, the equation for the determination of the characteristic functions ω1(z)
and ω2(z) is

f ′′ζ ′ζ ′
(

f ′′ζ ζ −
d
dz

f ′′ζ ζ ′ +ω
′(z)
)
=ω2(z). (B 3)

Taking into account the explicit form of f (z, ζ , ζ ′), it can be seen that the boundary
conditions for these functions are identically zero:

ω1(−d)= f ′′ζ ζ ′ |z=−d + σ cos θ0 = 0 and ω2(0)= f ′′ζ ζ ′ |z=0 − σ cos θ0 = 0. (B 4a,b)
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