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Abstract

Let A and A be unbounded linear operators on a Hilbert space. We consider the following problem. Let
the spectrum of A lie in some horizontal strip. In which strip does the spectrum of A lie, if A and A are
sufficiently ‘close’? We derive a sharp bound for the strip containing the spectrum of A, assuming that

A — A is a bounded operator and A has a bounded Hermitian component. We also discuss applications of
our results to regular matrix differential operators.
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1. Introduction and statement of the main result

Let H be a complex separable Hilbert space with a scalar product (-, -), norm given by
Il -1l = V() and unit operator 1. By £L(#) we denote the set of all bounded operators
in H. For an operator A on H, D(A) is its domain, A* and A~! are the adjoint and
inverse operators, respectively, o-(A) is the spectrum, R.(A) = (A —zI)™! (z ¢ o(A))
is the resolvent, and 4;(A) (j = 1,2,...) denote the eigenvalues of A taken with their
multiplicities. In addition, for w > 0, we denote by

H,:={zeC:|Imz < w)}

the horizontal strip of height 2w which is symmetric with respect to the real axis.
Following [ 10, Section 4.1], we will say that an operator A on H is a strip-type operator
of height w (in short, A € Strip(w)) if o(A) C H,, and Supjy, s [IR-(A)]] < oo for all
' > w. Finally,
wg(A) ;= inflw > 0 : A € Strip(w)}

is called the spectral height of A.

We consider the following problem. Let A and A be strip-type operators on . In
which strip does the spectrum of A lie if wg(A) is known and A and A are sufficiently
‘close’? We also discuss applications of our results to matrix differential operators.
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The strip-type operators form a wide class of unbounded operators in a Banach
space. The important example here is the logarithm of a sectorial operator, arising
in various applications (see [10, 16]). The natural functional calculus for strip-type
operators appears first in [2]. It is discussed in [11] in a general setting and used in
[3]. The theory of strip-type operators is developed in [9, 16, 17] and the references
given therein. For more details, see [10, Ch. 4]. To the best of our knowledge, the
above-mentioned problem has not been considered in the literature, although it is
important for the localisation of spectra and in various applications.

Furthermore, A is said to be a strong strip-type operator of height w, if for any
«’ > w there is an L, such that

L.,
IR.(A)| < m for [Im z| > «'.

From [10, Example 4.1.1.2, page 92], if iA generates a Co-group e in a Hilbert space,
then A is a strong strip-type operator of height 6(e*A’), where 6(¢*’) is the group type

of ¢ In particular,
wx(A) = 6(e™). (1.1)

Throughout the paper it is assumed that D(A) is dense in H, A = Ag + iA;, where Ag
and A; are self-adjoint operators, and

A; € L(H). (1.2)

According to the Stone theorem (see [10, Section 4.1]), the operator iAg generates
a Co-group e™r (—co <t < c0) of unitary operators. In particular, for ¢ > 0 it is
a semigroup. Moreover, by [5, Theorem 11.4.6], iAg generates a bounded analytic
semigroup. Hence, by [5, Proposition IIl.1.12], iA generates a bounded analytic
semigroup, since A; is bounded. Thus, under condition (1.2), A is a strip-type operator
and therefore (1.1) holds.

Let

D) =D(A) and ¢ :=]|A-A| < co. (1.3)
Then ||A;]] < q + ||A;|| and therefore Aisalsoa strip-type operator.
We introduce the notation x(f) = e™xq (x9 € D(A)), a(A;) =sup o(A;) and
B(Ap) = inf o(A)). Then
d .
E(X(t),X(t)) = 2Re (iAx(1), x(1)) = —2(A1x, x) < =2B(A;) < 2J|A|| Ix(0)|?

and

dit(x(t),x(t)) = -2(A1x,x) = -2a(A))(Ax, x).
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Consequently, [lexol| < |lxolle™ for ¢>0). Thus, from (1.1), wg(A) < ||A/]l.
Similarly,

wa(A) < 1Al (1.4)

This inequality is rather rough. Below, we present a considerably sharper estimate.

To this end, note that according to (1.1), |[e*|| < const. e“ (¢ > 0), and thus the
operators —(cl + iA), for ¢ € R, generate the exponentially stable semigroups e~ (/=4
provided ¢ > wg. Hence, the integral

XC = f e—(iA+C1)*fe—(iA+Cl)t dl, (C > wst) (1‘5)
0
strongly converges and

To'e]
IX.] < f e 2 le™ | dt.
0

We are now in a position to formulate our main result, which we prove in Section 2.

THEOREM 1.1. Let conditions (1.2) and (1.3) hold. Let X, be defined by (1.5) for some
¢ > wyg. Then wy(A) < ¢, provided q||X || < 1/2.

Now put

we(A) 1= % fm IGA + (s + o)D)~ ds.

0

By the classical Parseval-Plancherel equality [1, Theorem 5.2.1], for any x € H,

(ch’ )C) — (f e—(lc+iA)*t€—(1C+iA)tx dr, x) — f ||e—(Ai+IC)l‘x”2 dt
0 0

1 00
= — f IGA + (is + o))" x||* ds.
21 Joo
Hence,
[1X ] < we(A). (1.6)

If A is normal, that is, AA* = A*A, then by the spectral representation (see, for instance,
[12]), we easily see that [e|| = W, where B(A) := infIm o(A) and ¢ > 0. But
B(A) > —wg(A). Therefore,

il [

0 2c+BA)  2c—wa(A))

(c > wg(A)).

Making use of Theorem 1.1, we obtain we(A) < we(A) + q + e for € > 0. Hence, letting
€ — 0, we arrive at the following result.

COROLLARY 1.2. Let conditions (1.2) and (1.3) hold and let A be normal. Then
wx(A) < wg(A) + q. In particular, if A is self-adjoint, then wg(A) < q.
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Let us show that Theorem 1.1 is sharp. To this end, assume that K € £(H) and A are
self-adjoint commuting operators and A = A + iK. Suppose also that o(A) and o (K)
are discrete. Then o (A) consists of the eigenvalues

Ae(A) = 4(A) +i(K) (L k=1,2,...).

Hence, wy(A) = sup; |4(K)| = g, since g = A - All = ||IK|| = sup; [4x(K)|. But due to
Corollary 1.2, wg(A) < g, since wg(A) = 0. So the bound in Theorem 1.1 is attained in
this case.

2. Proof of Theorem 1.1
We need the following well-known theorem (see [4, Theorem 5.1.3, page 217]).

THEOREM 2.1. Suppose that B is the infinitesimal generator of the Cy-semigroup T(t)
on a Hilbert space H. Then T(t) is exponentially stable if and only if there exists a
bounded positive definite operator P such that

(Bz, P7) + (Pz,Bz) = —(z,2) (z € D(B)). 2.1

Moreover, if B is the infinitesimal generator of an exponentially stable
Co-semigroup then from [4, Section 5.5.3a, Equation (5.62)], for any Q € L(H)
the equation

(Bz1, Pz22) + (Pz1,Bz2) = —(z1, 022) (2.2)
has a solution P € L(H) which, again by [4, Section to 5.5.3a], is representable as
P f 10 dr. 2.3)
0

For a self-adjoint operator S we write S > 0 (S < 0), if S is positive (negative) definite.
Let D(B) = D(B*) and B*P + PB = —C? (with C > 0) on D(B) for some positive
definite P € L(H). Then

c'ppc ' +c'pBCc! = c'Breclpc + clpCc'eBCT! = 1.

That is, M*Y + YM = —I, where M = CBC™' and Y = C"'PC™".
According to Theorem 2.1, M generates an exponentially stable semigroup. Since
M and B are similar, we arrive at the following result.

COROLLARY 2.2. Let D(B) = D(B*) and B*P + PB <0 on D(B) for some positive
definite P € L(H). Then supRe o(B) < 0.

PROOF OF THEOREM 1.1. From (2.3),
(cI +iAY' X, + X (cI +iA) = I. (2.4)
Put E = A — A. Then from (2.4),
GA + cD)*X. + X.(iA + cI) = (A + cI)* X, + X.(iA + c]) — iE*X, + iX.E
=1-iE'X, +iX.E.
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If 2¢lIX.|| < 1, then (iA + cI)* X, + X.(iA + cI) > 0. By Corollary 2.2, it follows that
supRe o(—iA —cl) <0. So —c—Re(ix—y)=—-c+y<0 for any x+iye o(A).
Thus supIm o(A) < c. Replacing A by —A and proceeding in the same way,
we find —c +Re (ix—y) = —c —y < 0. Thus infIm o(A) > —c. This proves the
theorem. O

3. Spectral strips of differential operators with matrix coefficients

Let L? = L*([0, 1], C") be the space of functions defined on [0, 1] with values in C"
and the scalar product

1
(fi2 = fo (fC), O dx  (f,heL?),

where (-, -), means the scalar product in C". On the domain
D(A) = {ueL?: u" € L* and u(0) = u(1) = 0},

consider the operator

2

A= —% +C(x) (x€(0,1)), 3.D

where C(x) is an n X n matrix continuously dependent on x. We consider this operator
as a perturbation of the operator

2

d
A=——5+C (e©.1) (3.2)

with a constant n X n matrix Cy. By way of example, one can take Cy = C(0) or
Co = [, Cdx.
Clearly,

Arf)x) = Cufx) (f € L2, x €0, 1], Cor = (Co — Cp)/2i)
and

g =lIA = Al < suplIC(x) = Coll-
X

Here ||A — Al|;2 is the operator norm in L? of A — A and || - ||, means the spectral matrix
norm (the operator norm with respect to the Euclidean vector norm).

Take into account that the operator S defined on D(A) by S := —d?/dx* commutes
with constant matrices. Since the eigenvalues of S are 7%k* (k = 1,2,...), by simple
calculations we can show that o-(A) consists of the eigenvalues A;(A) = ok + Ai(Co)
(k=1,2,...,j=1,...,n), where 4;(Cp) are the eigenvalues of C; taken with their
multiplicities. Thus,

wsi(A) = we(Co) = max IIm 4;(Co)l-
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Since S and Cy commute, we have e’ = ¢/“0¢iS' Hence, taking into account that S =

S* and therefore |¢’|| = 1, we can write ||e”]|,2 < ||’“"||, and
0 .
IXellz2 < f e ||~ |2 dt. (3.3)
0

To estimate [|e’“’||,, for an n x n matrix M, introduce the quantity g(M) which
measures the departure from normality:

g(M) = [N%(M) - Z uk<M)|2]”2,
k=1

where N»(M) := (trace (M*M))"/? is the Hilbert—Schmidt (Frobenius) norm of M and
(M) (k = 1,...,n) are the eigenvalues of M taken with their multiplicities.
Various properties of g(M) can be found in [8, Section 3.1]. In particular,

g2 (M) < N2(M) — |trace M?|
and
g2(M) < 2NX(M;) (where M; = (M — M*)/2i).

In addition, g(zM) = |z|g(M) for z € C. If M is a normal matrix, that is, MM* = M*M,
then g(M) = 0. By [8, Theorem 3.5], for any n X n matrix M,

n=1 k
t g (M)t
lle™|| < expla(M)1] ; T

But a(iCp) < wy(Cp) and g(iCp) = g(Cp). Thus,

gH(Co)tt
D

(a(M) = mlflx Re 4,(M),t > 0).

n—1
le'|| < explwy(Co)l )| (12 0)
k=0

and from (3.3),

0 n—1 k C k 2
el < fo expl-2(c ~ wu(Coprl( 3 SX)

k=0 (k!)3/2
00 n-l1 g/‘+k(co)tk+j
= f expl-2(c ~ wu(Co)il ) “=rSdi (e > wa(Co)).
0 Fre S AL

Since
. P {
. CXp[—S[]f dt = F (s >0),

we find [|X.|| < $£(c — wg(Co)), where

n—1 i

(+K)! g (Co)

g(s) = Z 2k (1 k) )03/2 (s > 0).
J.k=0
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Now Theorem 1.1 implies the following result.
COROLLARY 3.1. Let A be defined by (3.1) and, for some ¢ > wg(Cy), let the condition

gl(c — wgx(Cp)) < 1
hold. Then wg(A) < c.

Let x,, be the unique nonnegative root of the equation

n—1

i+ k) g/*k(C
() =q ]Z:) ng;kﬂ)f(ﬂ ;E! )03),2 =1 (>0, (3.4)
j7 =

which is equivalent to the equation

_qz (]+k)'g]+k(C0)y2n k—j—1

TG =1 (3.5)

If y > x, + wg(Cy), then q{(y) < g{(x,) = 1. Now Corollary 3.1 implies wg(A) < y.
Letting y — x,, + wy(Cp), we obtain the following result.

COROLLARY 3.2. Let A be defined by (3.1). Then wg(A) < wg(Co) + Xp.

If Cy is normal, then g(Cy) = 0, and with 0° = 1 we have /(s) = 1/s and thus x, = g.
The following lemma gives us an estimate for x,, in the case g(Cyp) # 0.

LEMMA 3.3. Let g(1) < 1. Then

< ad (D).

PROOF. By (3.4), gl(x,) =1 > q{(1). Since {(s) is monotonically decreasing, it
follows that x,, < 1. Now (3.5) proves the lemma. O

Corollary 3.2 and the Lemma 3.3 yield the following result.
COROLLARY 3.4. Let A be defined by (3.1) and qZ(1) < 1. Then
wst(A) < we(Co) + VgZ(1).

For recent results on the spectra of differential operators see, for instance, the works
[6,7, 13, 14, 15, 18, 19] and the references which are given therein.
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