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SUMMARY
Central Pattern Generators (CPGs) can generate robust,
smooth and coordinated oscillatory signals for locomotion
control of robots with multiple degrees of freedom, but
the tuning of CPG parameters for a desired locomotor
pattern constitutes a tremendously difficult task. This paper
addresses this problem for the generation of fish-like
swimming gaits with an adaptive CPG network on a multi-
joint robotic fish. Our approach converts the related CPG
parameters into dynamical systems that evolve as part of
the CPG network dynamics. To reproduce the bodily motion
of swimming fish, we use the joint angles calculated with
the trajectory approximation method as teaching signals for
the CPG network, which are modeled as a chain of coupled
Hopf oscillators. A novel coupling scheme is proposed to
eliminate the influence of afferent signals on the amplitude
of the oscillator. The learning rules of intrinsic frequency,
coupling weight and amplitude are formulated with phase
space representation of the oscillators. The frequency,
amplitudes and phase relations of the teaching signals can be
encoded by the CPG network with adaptation mechanisms.
Since the Hopf oscillator exhibits limit cycle behavior, the
learned locomotor pattern is stable against perturbations.
Moreover, due to nonlinear characteristics of the CPG model,
modification of the target travelling body wave can be carried
out in a smooth way. Numerical experiments are conducted
to validate the effectiveness of the proposed learning rules.

KEYWORDS: Biomimetic robotic fish; Central pattern
generator; Fish swimming kinematics; Dynamical systems;
Learning.

1. Introduction
The astonishing swimming capabilities of aquatic animals
(e.g., fish and cetaceans) have attracted substantial research
interests in bio-mechanisms of swimming and building
of biorobotic underwater vehicles in the last decade.1, 2

The hydrodynamic interaction between the swimming
organisms and the fluid environment constitutes a quite
complex problem for biologists and engineers, while
artificial devices of biological propulsion and maneuvering
hold great promises to achieve higher efficiency, greater
maneuverability and lower noise radiation than conventional
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screw-propelled vehicles. With the increasing understanding
of the swimming mechanisms of aquatic animals and the
progress in material, sensor, control and fabrication, the
nautical technology that we have been acquainted with will
be revolutionized in the future.

Recent years have seen the emergence of a variety of swim-
ming machines that mimic the morphology and locomotion
of fish, with research emphasis ranging from experimental
investigation and validation of fish hydrodynamics,3, 4

modeling and control theoretic analysis,5–7 engineering
demonstration and field deployment,8, 9 to education and
exhibition.10–12 A fundamental problem that needs to be
solved for robotic fish is how to control the movement
of tail in order to generate thrust forces effectively.
An instinctive approach is to reproduce the empirically
observed bodily motion of swimming fish with multiple
tail linkages connected by rotating joints.13, 14 Although
accurate mimicry of fish movements can be obtained with
such a trajectory approximation method, it requires time-
consuming numerical computations that are unsuitable for
real-time control, and online modification of the target
kinematic model is difficult to be realized. In refs. [15]
and [16], a sine-based approach that applies phase-lagging
sinusoidal signals to the serially connected joints is employed
to generate propulsive travelling waves. The explicit
relationship between joint kinematics and the governing sine
equation allows easy adjustment of the amplitude, frequency
and wavelength of the swimming motion. However, online
modification of the parameters of the sine function will cause
discontinuous jump of joint angles which might damage the
actuator and the transmission mechanisms. An important
concept from neurophysiology which has been extensively
used for locomotion control of robots is Central Pattern
Generator (CPG).17, 18 It has been generally accepted that
many rhythmic movements in locomotion, such as walking,
running, swimming and flying, are controlled by CPG neural
circuits that are found in both vertebrate and invertebrate
animals. CPG can produce coordinated oscillatory signals in
the absence of sensory inputs or descending inputs from
higher cognitive elements. A few studies have examined
the biologically inspired swimming control of robotic fish
utilizing CPG.19–25 The CPG-based method allows easy
implementation and online generation of the swimming
gait. The intrinsic nonlinear characteristics of CPG enables
smooth transitions between gaits, as well as adaptations to
both perturbations of state variables and modifications of
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the control parameters. However, there is not yet a well-
established design methodology that can be used to achieve
a particular desired locomotion behavior for a particular robot
structure. The determination of CPG model type, coupling
topology and sensory feedback pathways are based mostly
on experience, and much effort is required to tune the CPG
parameters by hand or by an optimization algorithm.

In this paper, we investigate the problem of mimicking the
bodily motion of swimming fish with a chain of adaptive
CPGs for an articulated robotic fish. The objective is to
combine the advantages of both the trajectory approximation
method and the CPG-based method. Rhythmic movements
of the tail joints are driven by the outputs of CPGs,
which are modeled mathematically as a network of
coupled nonlinear oscillators. Learning rules which provide
adaptation mechanisms are proposed to dynamically tune
the parameters of the oscillators and the coupling strengths
between them, according to the kinematic model of
swimming fish. After learning, CPG outputs with appropriate
frequency, amplitudes and phase relations can be acquired,
thus the instructed locomotor pattern can be reproduced by
the robotic fish. The proposed learning method provides a
synthesis tool for the CPG-based control, and meanwhile
guarantees the biological basis for generation of swimming
gaits on the robotic fish.

The paper is organized as follows. Section 2 presents
the derivation of teaching signals from fish kinematics, the
CPG model with input transformation and the learning rules
to acquire the instructed locomotor pattern with CPG. In
Section 3, we demonstrate the effectiveness of the proposed
method by numerical simulations. Conclusions are drawn
and future works are discussed in Section 4.

2. Learning Fish Swimming with CPG
In this section, we first derive teaching signals for CPG
from the swimming kinematics of fish, then the CPG
model employed for joint angle control of the robotic
fish is presented and finally the learning rules that enable
reproduction of the instructed swimming gait are proposed.

2.1. Deriving teaching signals from fish
swimming kinematics
Majority of fish species use body/caudal fin (BCF)
undulations for propulsion. Carangiform is the most common
BCF swimming style in nature, and fish utilizing carangiform
swimming exhibits remarkable performance in both speed
and efficiency.1 For carangiform swimmers, the body
undulations are restricted to the rear third of the body, and
the forward part of the body remains relatively immobile.
For application of fish swimming on underwater vehicle
system, carangiform swimming mode bears the advantages
of high speed, high efficiency and easy implementation.
Consequently, most studies of robotic fish have focused on
carangiform swimming, which also serves as the kinematic
model for learning fish-like swimming in this study.

Biological observations have shown that the kinematics of
carangiform swimmers is generally in the form of a backward
travelling wave with the amplitude increasing from the nose
to the tail. Lighthill26 suggested a specific form of travelling

wave that describes the body-spline of a swimming fish:

ybody(x, t) = (c1x + c2x
2)sin(kx − ωt), (1)

where ybody(x, t) represents the transverse displacement of
the fish body, x denotes the displacement along the body
axis, k = 2π/λ indicates the body wave number, λ is the
body wave length, c1 is the linear wave amplitude envelope,
c2 is the quadratic wave amplitude envelope, ω = 2πf is the
body wave frequency (in rad s−1), f is the body oscillation
frequency and t is the time. Equation (1) specifies a sinusoidal
wave that propagates from the fish’s center of mass to the tail
bounded by a second-order amplitude envelope.

Given the swimming kinematics of fish, the following task
is to reproduce the bodily motion on robotic fish with limited
number of tail joints. In refs. [13] and [14], a link-based
body wave fitting technique is proposed to numerically fit the
spatial- and time-varying body wave at discrete time instants
with a planar, serial chain of links connected with oscillating
joints. The end-point coordinates (xi,j , yi,j ) of the ith link at
the j th instant of a swimming cycle can be obtained from the
following equation:

{
(xi,j − xi−1,j )2 + (yi,j − yi−1,j )2 = l2

i

yi,j = (c1xi,j + c2x
2
i,j )sin(kxi,j − 2πj

M
)

, (2)

where i = 1, . . . , N , N denotes the number of links, j =
1, . . . , M − 1, M is the number of discrete instants in a
swimming cycle and li represents the length of the ith link.
With the end-point coordinates of each link, the joint angles
can thus be calculated iteratively as

θi,j = arctan
yi+1,j − yi,j

xi+1,j − xi,j

− θi−1,j , (3)

where θi,j denotes the angle of the ith joint at instant j .
Figure 1 shows a schematic illustration of the trajectory
approximation method for a four-link robotic fish. The
variations of joint angles calculated with this method are
shown in Fig. 2. The joints oscillate in a nearly sinusoidal
manner, with the same frequency, different amplitudes and
specific phase shifts. In Section 2.3, the joint angles obtained
with the trajectory approximation method will be used as
teaching signals for a network of CPGs. The waveform of

Fig. 1. (Colour online) Schematic illustration of the trajectory
approximation method.
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Fig. 2. (Colour online) The joint angles calculated with the
trajectory approximation method. The body wave is given by
ybody(x, t) = (0.2x + 0.5x2)sin(2x − πt), and the lengths of all
the links are set as 0.25.

the CPG’s oscillatory outputs and the phase relations between
them will be learned, so that the swimming kinematics of
fish can be reproduced when driving the joints with the CPG
outputs.

2.2. CPG model for generation of swimming gait
Ichthyology studies reveal that rhythmic patterns of neural
activity exist in the axial motion of fish body. The swimming
movements generated by waves of left–right alternating
motor activity that travel rostrocaudally along the body are
considered to be controlled by spinal CPGs.27 Therefore, we
employ a network of coupled CPGs to generate rhythmic
swimming movements on the robotic fish.

The CPG model that we utilize is based on the Hopf
oscillator. The dynamics of the oscillator is governed by the
following nonlinear differential equations:

{
u̇ = (ρ − r2)u − ωv

v̇ = (ρ − r2)v + ωu
, (4)

where r = √
u2 + v2, u and v are state variables in Cartesian

space, ρ > 0 controls the amplitude of the oscillation and
ω specifies the intrinsic frequency of the oscillator (in rad
s−1). The Hopf oscillator has a harmonic limit cycle, and the
steady state solution of the system can be written as u∞(t) =√

ρcos(ωt + φ0) and v∞(t) = √
ρsin(ωt + φ0), where φ0 is

determined by the initial condition. The analytical solution of
the oscillator facilitates parameter specification for a desired
oscillation behavior. Further, the limit cycle is structurally
stable, which means small perturbations on the oscillator do
not change the general behavior of the system and once the
perturbation is gone, it will converge back to its original
trajectory.

Each joint of the robotic fish is allocated with a CPG, and
the target angle of the joint is determined by the CPG output,
which equals the state variable u of the Hopf oscillator.
To generate fish-like swimming patterns, oscillations of the
joints should be coordinated by connecting them together
with appropriate coupling scheme. The coupling term is

most often implemented as an additive perturbation on
the nonlinear oscillator. The general form of additive
perturbation can be represented by the following equations:

{
u̇ = (ρ − r2)u − ωv + pu

v̇ = (ρ − r2)v + ωu + pv
, (5)

where pu and pv are the components of the perturbation
acting on u and v state variables, respectively. The
perturbation signal can influence the phase dynamics of the
oscillator, thus inter-joint coordination can be achieved in
such a way that one oscillator perturbs another in order to
realize frequency synchronization and to maintain a stable
phase difference between them.

However, the oscillation amplitude of the perturbed
oscillator will also be modified, which is an undesirable side
effect of the perturbation. To illustrate how the perturbation
signal influences the amplitude and phase dynamics of the
oscillator, we rewrite the perturbed oscillator equation in
polar coordinates. By setting u = rcosφ and v = rsinφ,
Eq. (5) can be transformed into

{
ṙ = (ρ − r2)r + pucosφ + pvsinφ

φ̇ = ω − pu
r sinφ + pv

r cosφ
. (6)

It can be seen from Eq. (6) that there is no equilibrium
point of the amplitude due to the complex influence of the
perturbation, which makes it hard to specify parameter for a
desired oscillation amplitude. To eliminate this influence,
components of the perturbation signal are required to
satisfy the following relationship: pucosφ + pvsinφ = 0.
For an afferent signal p, we allow some kind of input
transformations pu(·) and pv(·) before it acts on the state
variables of the oscillator, so that the above relationship
can be satisfied. A viable form of transformations can be
represented by the following equations:

⎧⎨
⎩pu(p) = pv2

r

pv(p) = −puv
r

. (7)

The oscillator perturbed by signal p with the above input
transformations can thus be described in polar coordinates as

{
ṙ = (ρ − r2)r
φ̇ = ω − psinφ

. (8)

It is obvious from the equation that the amplitude remains
unperturbed and only the phase is affected. The entrainment
property of the nonlinear oscillator can be reserved after
transformation of the periodic input signal. Figure 3 shows
the structure of the CPG model based on the Hopf oscillator
with input transformation.

The phase relations among a network of CPGs can be
achieved by feeding weighted states u and v of one oscillator
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Fig. 3. CPG model based on Hopf oscillator with input
transformation.

Fig. 4. CPG network implemented to generate fish-like swimming
gait.

to the other, as illustrated by the following equations:

⎧⎪⎪⎨
⎪⎪⎩

u̇i = (ρi − r2
i )ui − ωivi + ∑

j

(ai,juj + bi,j vj )v2
i

ri

v̇i = (ρi − r2
i )vi + ωiui − ∑

j

(ai,juj + bi,j vj )uivi

ri

,

(9)

where ai,j and bi,j denote the connection weights between the
ith and the j th oscillator. The phase difference between the
coupled oscillators is determined by the connecting weights
ai,j and bi,j .

The CPG network is constructed as a chain of Hopf
oscillators, following the tail structure of the robotic fish. For
simplicity, only neighboring oscillators are connected. Both
unidirectional and bidirectional couplings can induce phase
synchronization between oscillators. But less parameters that
need to be tuned are required for unidirectional coupling.
Thus, only descending couplings are assumed, which follows
that each oscillator can only be affected by its adjoining
frontal oscillator. With this setting, the coupling weights
ai,j and bi,j that do not satisfy i = j + 1 will be set as
zero. Figure 4 shows the structure of the CPG network
implemented to generate the fish-like swimming gait.

2.3. Learning rules for CPG
The waveform of the teaching signal obtained numerically
from the kinematics of swimming fish is almost sinusoidal,
therefore it can be approximated by the harmonic output
of the Hopf oscillator with appropriate frequency and
amplitude. The phase relations between the teaching signals
should also be learned in order to generate the propulsive
travelling wave. An optimization and search algorithm is
feasible to find the suitable CPG parameters for reproduction

of the instructed locomotor pattern. But heavy computational
cost is generally required. In this study, we propose
a dynamical systems approach to the acquisition of an
appropriate parameter set. By converting the parameters
controlling frequency, phase difference and amplitude into
new state variables with their own dynamics, the waveforms
of the teaching signals and their phase relations can be
encoded by the CPG network in a simple and efficient way.
The learning is embedded into the dynamics of the oscillator,
and no external optimization or preprocessing of the teaching
signal is required.

During learning, the teaching signal for each CPG is
received by the oscillator as an additive perturbation. Then
the network of CPG, with coupling between adjacent
oscillators and additive inputs of the periodic teaching
signals, can be described by the following equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i = (ρi − r2
i )ui − ωivi + ai,i−1ui−1v

2
i

ri

+bi,i−1vi−1v
2
i

ri
+ εTiv

2
i

ri

v̇i = (ρi − r2
i )vi + ωiui − ai,i−1ui−1uivi

ri

−bi,i−1vi−1uivi
ri

− εTiuivi
ri

, (10)

where Ti is the teaching signal for the ith oscillator, and
ε > 0 is an adaptation constant. By transforming equation
(10) into polar coordinates, we obtain:

⎧⎪⎨
⎪⎩

ṙi = (ρi − r2
i )ri

φ̇i = ωi − ai,i−1ri−1cosφi−1sinφi

−bi,i−1ri−1sinφi−1sinφi − εTisinφi

. (11)

The phase space representation shows clearly how the
behavior of the limit cycle system is influenced by external
perturbations. In the following, we derive the learning rules of
frequency, coupling weight and amplitude from a geometric
point of view.

2.3.1. Learning frequency. In this paper, since the teaching
signals are derived from Eq. (1) that explicitly specifies the
body wave frequency, we can directly assign the value of
body wave frequency to the intrinsic frequency of the Hopf
oscillator, avoiding the need for an adaptation mechanism.
However, when the teaching signals are obtained in other
ways, the learning of frequency may become necessary.
For example, we can record the swimming motion of live
fish and use the trajectories of some marked points on fish
body as the teaching signals. In that case, the frequency is
not given explicitly and has to be learnt from the recorded
data. Therefore, we present the learning rules for frequency
that enables frequency adaptation to instructed locomotor
behavior in a more general form.

The frequency of a periodically driven self-sustained
oscillator will change toward the frequency of the input
signal. When the frequency mismatch between the oscillator
and the input signal is small, the oscillator gets entrained,
i.e., it oscillates at the frequency of the input signal.28

But this frequency adaptation is only temporary. Once the
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input signal is removed, the oscillator immediately returns
to its intrinsic dynamics. In order to enlarge the range
of frequencies in which synchronization occurs and to
maintain the learned frequency after the external driving
signal disappears, dynamic plasticity is developed for the
oscillator in refs. [29] and [30], in the sense that the parameter
controlling the intrinsic frequency of the oscillator is allowed
to change dynamically.29, 30 The adaptation mechanism,
called the Dynamic Hebbian learning, is developed according
to the effects of external perturbation on the activity of
the oscillator. In phase plane representation, a periodic
perturbation can result in an average acceleration or
deceleration of the rotating phase point. This effect can be
used to tune the intrinsic frequency of the oscillator. An
ordinary differential equation, with the intrinsic frequency
as the state variable and the effect of perturbation on phase
dynamics as the evolving law, drives the intrinsic frequency
of the oscillator toward the frequency of the perturbation. The
convergence properties of the adaptive frequency oscillator
are presented in ref. [29].

We design the frequency adaptation mechanism for the
Hopf oscillator with input transformation following the
approach presented in refs. [29] and [30]. The influence
of external perturbation on phase dynamics of oscillator is
shown in Eq. (11). Thus, the adaptation law for learning the
frequency of the teaching signal is given by the following
equation:

ω̇i = −ai,i−1ri−1cosφi−1sinφi

−bi,i−1ri−1sinφi−1sinφi − εTisinφi. (12)

The intrinsic frequency changes according to the total effect
of the input signals. It is apparent that the input signals
contain only one frequency component, namely the common
frequency of the teaching signals for the joints. Therefore,
after learning all the joints will oscillate at the frequency of
the instructed propulsive wave.

2.3.2. Learning coupling weight. The coupling from one
oscillator to another is to maintain correct phase difference
between them, so that the phase relations will not be
destroyed by external perturbations after learning. As has
been discussed above, the coupling between a pair of
oscillators is a composite signal coming from the two state
variables of the forcing oscillator, each alone producing some
phase lag on the forced oscillator. By adjusting the relative
strengths of components of the signal, a range of phase
difference between oscillators can be attained.

The input signal can influence the instantaneous frequency
of the forced oscillator, and accelerates or decelerates the
phase point depending on the input signal and the state of the
oscillator (i.e., the position of the point on the limit cycle).
To evaluate how much the phase point is pushed forward or
pulled back by the input signal within a given time interval,
we can integrate the perturbation term acting on the phase
of the oscillator over that time interval. We formulate the
learning algorithm of coupling weights by using the time-
averaged effects of the input signals on phase dynamics of
the oscillator. With the correlation-based learning rule, the
coupling weight should be enforced when the signal from

the forcing oscillator and the teaching signal push the phase
point in the same direction, and be weakened otherwise. The
learning rule that modulates the coupling weights to produce
the phase difference specified by the teaching signals takes
the following form:

ȧi,i−1 = γ

∫ t

t−τi

ri−1cosφi−1sinφidt

∫ t

t−τi

Tisinφidt, (13)

ḃi,i−1 = γ

∫ t

t−τi

ri−1sinφi−1sinφidt

∫ t

t−τi

Tisinφidt, (14)

where γ is a positive constant controlling the learning rate,
and τi = 2π/ωi is the oscillation period of the ith oscillator,
indicating that the time-averaged effects are evaluated over
an oscillatory cycle of the oscillator.

2.3.3. Learning amplitude. When an oscillator is perturbed
by an external periodic signal with frequency equal to its
intrinsic frequency, it can achieve in-phase synchronization
with the input signal, i.e., the phase difference between them
settles to zero.28 With the frequency adaptation mechanism,
the intrinsic frequency of the CPG converges to the frequency
of the input signal, so that the timing of the CPG output will
become in-phase with the input signal. In the CPG network,
the phase dynamics of an oscillator is influenced not only
by the teaching signal but also by signals from its adjacent
oscillator. The learning rule of coupling weights ensures
that the composite signal from the forcing oscillator and the
teaching signal can be tuned to synchronize with zero phase
difference, which implies in-phase synchronization between
the CPG output and the teaching signal.

With the proposed input transformation of afferent signals,
the amplitude of the oscillator is solely determined by the
parameter ρ, which can also be converted into a state variable
with its own evolving dynamics. The learning rule is based
on the correlation between the CPG output and its difference
with the teaching signal, which is given by the following
equation:

ρ̇i = η(Ti − ricosφi)ricosφi, (15)

where η is a positive constant that determines the rate
of learning. The adaptation of amplitude starts when the
CPG output and the teaching signal become in-phase.
The evolution law increases the amplitude when the CPG
output and the error signal are correlated, and decreases the
amplitude when uncorrelated. The amplitude converges to
the maximum value of the teaching signal, in which case the
waveform of the CPG output matches the waveform of the
teaching signal.

In Section 2.2, we presented a network of Hopf oscillators
for reproduction of fish swimming gait. The learning rules
of intrinsic frequency, coupling weight and amplitude for
the CPG network are formulated in polar coordinates in
Section 2.3. By transforming the learning rules into Cartesian
coordinates and combining the rules with the CPG model,
we obtain an adaptive CPG network with six state variables,
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which are described by the following equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇i = (ρi − r2
i )ui − ωivi + ai,i−1ui−1v

2
i

ri

+bi,i−1vi−1v
2
i

ri
+ εTiv

2
i

ri

v̇i = (ρi − r2
i )vi + ωiui − ai,i−1ui−1uivi

ri

−bi,i−1vi−1uivi
ri

− εTiuivi
ri

ω̇i = −ai,i−1ui−1vi
ri

− bi,i−1vi−1vi
ri

− εTivi
ri

ȧi,i−1 = γ

∫ t

t−τi

ui−1vi

ri

dt

∫ t

t−τi

Tivi

ri

dt

ḃi,i−1 = γ

∫ t

t−τi

vi−1vi

ri

dt

∫ t

t−τi

Tivi

ri

dt

ρ̇i = η(Ti − ui)ui

. (16)

3. Numerical Simulations
In this section, we conduct numerical experiments with the
adaptive CPG to show the effectiveness of the proposed
learning rules.

3.1. Learning sinusoidal signals
To examine the learning ability of the adaptive CPG network,
we first use sinusoidal signals that can be described explicitly
as the teaching signals. Since the CPG network used to mimic
fish swimming has unidirectional coupling and only adjacent
units are connected, it suffices to consider a pair of oscillators
with couplings from one to the other. The sinusoidal teaching
signals are described by the following equations:

T1(t) = 1.2sin(2t − 0.2), (17)

T2(t) = 1.6sin(2t − 1.2). (18)

The waveforms of the teaching signals and the CPG
outputs at the beginning of learning and after learning are
plotted in Fig. 5. Figure 6 shows the evolution of intrinsic
frequency, coupling weight and amplitude. As shown in the
figures, the second oscillator, which has a small frequency
difference with the teaching signal at the beginning, quickly
synchronizes with the teaching signal, whereas no frequency
locking occurs to the first oscillator due to its large frequency
difference with the teaching signal. With the proposed
learning rule, the intrinsic frequencies of both oscillators
gradually adapt to the frequency of the teaching signals. But
the intrinsic frequencies oscillate around rather than converge
to the desired frequency. The amplitudes of the oscillations
are determined by the learning rate. Therefore, the faster the
oscillator learns, the larger will be the adaptation error. To
attain the correct frequency of the teaching signal, we employ
a first-order low-pass filter τf ω̇ = −ω + ω to attenuate the
oscillation, where τf is a time constant. When the learning
stops, ω is used as the intrinsic frequency of the oscillator.

The convergence values of coupling weights are
determined not only by the phase difference between
oscillators but also by their initial values and the initial phase
difference. We investigate the evolution of coupling weights
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_
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l

Fig. 5. (Colour online) The waveforms of the teaching signals and
the CPG outputs at the beginning of learning and after learning. The
arrow indicates the time to stop learning. The initial conditions are
ω1(0) = 0.5, ω2(0) = 3.0, ρ1(0) = 3.0, ρ2(0) = 1.0, a21(0) = 0.6
and b21(0) = 0.2. The learning rates are ε = 0.3, γ = 0.03 and
η = 0.04. The convergence values of the parameters are shown in
Fig. 6. (a) At the beginning of learning. (b) After learning.

with several pairs of initial values and the same initial phase
difference. Table I shows the initial and convergence values
of coupling weights, with the phase difference specified by
Eqs. (17) and (18). It illustrates that different combinations
of coupling weights can produce the same phase difference.
But the ratios of a21 and b21 are almost the same, which
follows that the relative strength of coupling weights is what
really matters to the phase difference. Hence, if we fix one
of the coupling weights to some nonzero value and allow
the other to evolve, appropriate combination of coupling
weights can also be attained. In addition, the dependence
of convergence values of coupling weights on initial phase
difference between oscillators is examined. As shown in
Table II, with the same initial values of coupling weights
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Fig. 6. (Colour online) The evolution of intrinsic frequency,
coupling weight and amplitude during learning. (a) The evolution
of intrinsic frequency. (b) The evolution of coupling weight. (c)
The evolution of amplitude.

and different initial phase differences, several combinations
of coupling weights are obtained, while their relative strength
remains almost fixed.

To validate the correctness of the coupling weights, we
perturb one of theoscillators to change the phase difference

Table I. Convergence values of coupling weights with different
initial values and the same initial phase difference.

Initial values Convergence values
Ratio of

a21 b21 a21 b21 convergence values

0.6 0.2 0.104645 0.157384 0.664902
0.8 0.05 0.096500 0.145116 0.664985
0.2 0.04 0.065210 0.098047 0.665089
0.2 0.1 0.089655 0.134821 0.664993
0.1 0.1 0.062226 0.093560 0.665092
0.05 0.1 0.040589 0.073151 0.665022
0.01 0.15 0.068786 0.103429 0.665055
0.04 0.16 0.084315 0.126782 0.665039

Table II. Convergence values of coupling weights with the same
initial values and different initial phase difference. Note that the
initial phase difference is determined by the initial values of state
variables. The initial coupling weights are a21 = 0.1 and b21 = 0.1.

Initial values of
state variables Convergence values Ratio of

convergence
u1 v1 u2 v2 a21 b21 values

−0.1 0.1 −0.1 0.1 0.062226 0.093560 0.665092
−0.1 0.1 0.1 −0.1 0.089473 0.134544 0.665009
−0.1 0.1 −0.1 −0.1 0.109308 0.164408 0.664858
−0.1 0.1 0.1 0.1 0.109779 0.165133 0.664791

p

o

_

_

_

_

_

u
u

Fig. 7. (Colour online) The response of the oscillator to transient
perturbation.

between them with transient perturbation. As shown in Fig. 7,
a transient perturbation is superimposed on the state variable
of the second oscillator at some random time after learning,
and as a result the phase difference is changed. But after
a short transition period, the phase difference recovers its
earlier value before perturbed. It is obvious that the phase
relation has been correctly encoded by the coupling weights.

Before the oscillator and its teaching signal become in-
phase, the amplitude decreases quickly. To avoid negative
value of the amplitude that will cause failure of the
learning, small learning rate should be used. Once in-phase
synchronization is achieved, the amplitude starts to adapt to
the desired value.
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_

_

Fig. 8. (Colour online) The joint angles generated by the CPG
network after learning. The convergence values of the parameters
are as follows: ω1 = ω2 = ω3 = ω4 = 3.1416, ρ1 = 0.0916, ρ2 =
0.3050, ρ3 = 0.6233, ρ4 = 0.9769, a21 = 0.4410, b21 = 0.3483,
a32 = 0.4692, b32 = 0.2967, a43 = 0.5163, b43 = 0.2397.

In conclusion, with appropriate learning rates, the adaptive
CPG network can learn frequency, coupling weight and
amplitude of sinusoidal teaching signals in a single stage. The
intrinsic frequency and amplitudes learned by the proposed
method ensure that the CPG outputs and the teaching signals
will overlap, and the coupling weights guarantee the stability
of phase relations between oscillators.

3.2. Learning fish swimming gaits
To learn fish swimming gaits with the CPG network, we
use the joint angles θi,j calculated with the trajectory
approximation method as the teaching signals. In numerical
simulations, the teaching signals are discrete in time, so that
we have Ti(j ) = θi,j , where i = 1, . . . , 4 and j is the discrete
time number. Figure 8 shows the joint angles generated by
the CPG network after learning. Compared with the teaching
signals shown in Fig. 2, the desired frequency, amplitudes
and phase relations are obtained. Although there exist small
adaptation errors with the amplitudes, which are caused by
the non-sinusoidal waveforms of the teaching signals, the
effectiveness of the proposed learning rules can be validated.

Learning of the desired travelling body waves can be
carried out offline on a computer. Once the appropriate
CPG parameters are obtained, the differential equations
describing the CPG model are integrated numerically with
the microcontroller onboard the robotic fish to generate the
swimming gait online. Change of the travelling wave can
be achieved through modification of the CPG parameters.
Figure 9 shows the joint angles generated by the CPG
network when the travelling wave is changed. The CPGs
can adapt to abrupt parameter changes and converge to the
new limit cycles quickly due to the nonlinear characteristics
of the CPG model. The smooth transitions between different
swimming gaits avoid jerky changes of the joint angles that
may damage servomotors.

_

_

Fig. 9. (Colour online) The joint angles generated by the CPG
network when the travelling wave is changed. The body wave is
given by ybody(x, t) = (0.2x + 0.5x2)sin(2x − πt) before t = 60,
and ybody(x, t) = (0.1x + 0.15x2)sin(4x − 2πt) after t = 60.

4. Conclusions and Future Works
In this contribution, we presented an adaptive CPG network
capable of learning instructed locomotor pattern for a multi-
joint robotic fish. To reproduce the bodily motion of a
swimming fish, the joint angles calculated with the trajectory
approximation method were used as the teaching signals.
The CPG network was modeled as a chain of coupled
Hopf oscillators. A novel coupling scheme is proposed to
eliminate the influence of afferent signals on the amplitude
of the oscillator. We formulated the learning rules of
frequency, amplitude and coupling weight with phase plane
representation of the oscillator. The effectiveness of the
proposed learning rules was validated through numerical
simulations.

The proposed learning method provides a novel approach
to synthesizing CPG-based controllers that exhibit desired
locomotor pattern. Compared with stochastic optimization
methods, the instructed locomotor pattern can be encoded by
the CPG network in an efficient and elegant way. The learning
is embedded in the dynamical systems, as opposed to being
implemented by an external algorithm. The main limitation
of the method is that learning of frequency, phase relation and
amplitude takes place serially, leading to slow convergence.
The learning rates should be selected carefully in order to
realize successful learning. In addition, the waveform of
the teaching signals is limited to sinusoidal signals. In the
future research, generalization of the method to other network
topology than chain topology with unidirectional couplings,
to other robot structures and teaching signals of other
waveforms will be investigated. Sensory feedback will also
be integrated to explore the dynamics of the neuromechanical
system composed of neural oscillator, robotic fish and the
fluid for high efficient swimming.
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