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We investigate analytically and numerically the semi-collisional regime of the
plasmoid instability, defined by the inequality δSP�ρs� δin, where δSP is the width of
a Sweet–Parker current sheet, ρs is the ion sound Larmor radius and δin is the width
of the boundary layer that arises in the plasmoid instability analysis. Theoretically,
this regime is predicted to exist if the Lundquist number S and the length of the
current sheet L are such that (L/ρs)

14/9 < S< (L/ρs)
2 (for a sinusoidal-like magnetic

configuration; for a Harris-type sheet the lower bound is replaced with (L/ρs)
8/5).

These bounds are validated numerically by means of simulations using a reduced
gyrokinetic model (Zocco & Schekochihin, Phys. Plasmas, vol. 18 (10), 2011, 102309)
conducted with the code Viriato. Importantly, this regime is conjectured to allow
for plasmoid formation at relatively low, experimentally accessible, values of the
Lundquist number. Our simulations obtain plasmoid instability at values of S as
low as ∼250. The simulations do not prescribe a Sweet–Parker sheet; rather, one is
formed self-consistently during the nonlinear evolution of the initial tearing mode
configuration. This proves that this regime of the plasmoid instability is realizable,
at least at the relatively low values of the Lundquist number that are accessible to
current dedicated experiments.
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1. Introduction

Magnetic reconnection is a fundamental plasma physics phenomenon, relevant to
laboratory, space and astrophysical systems (Biskamp 2000; Zweibel & Yamada 2009;
Uzdensky 2011). It involves a rapid topological rearrangement of the magnetic field,
leading to efficient magnetic energy conversion and dissipation. Solar flares (Shibata
& Magara 2011) and sawtooth crashes in tokamaks (Hastie 1997) are two popular
examples of processes where reconnection plays a key role; others include substorms
in the Earth’s magnetosphere (Dungey 1961; Burch et al. 2016), particle acceleration
in jets and pulsar winds (Cerutti, Uzdensky & Begelman 2012; Kagan et al. 2015;
Werner et al. 2016), magnetized turbulence (e.g. Matthaeus & Lamkin 1986; Servidio
et al. 2009; Zhdankin et al. 2013; Cerri & Califano 2017; Loureiro & Boldyrev 2017;
Mallet, Schekochihin & Chandran 2017), etc.
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In magnetohydrodynamic (MHD) plasmas, reconnection sites (current sheets) tend
to be unstable to the formation of multiple small islands (or plasmoids) provided
that the Lundquist number (defined as S = LVA/η, where L is the system size, VA
the Alfvén speed and η the magnetic diffusivity) is sufficiently large (typically, S &
104). This is known as the plasmoid instability; the current sheets mediated by the
plasmoids have an aspect ratio that is much smaller than that of the global sheet, thus
triggering fast reconnection (Loureiro, Schekochihin & Cowley 2007; Lapenta 2008;
Bhattacharjee et al. 2009; Cassak, Shay & Drake 2009; Samtaney et al. 2009; Huang
& Bhattacharjee 2010; Uzdensky, Loureiro & Schekochihin 2010; Loureiro et al. 2012;
Loureiro, Schekochihin & Uzdensky 2013; Loureiro & Uzdensky 2016).

In weakly collisional plasmas, where the frozen-flux constraint is broken by kinetic
effects instead of collisions, plasmoids are also abundantly observed (e.g. Drake et al.
2006; Ji & Daughton 2011; Daughton & Roytershteyn 2012), suggesting that plasmoid
generation and dynamics are robust and fundamental features of reconnecting systems,
regardless of the collisionality of the ambient plasma.

Because of its perceived importance – from determining the reconnection rate in
MHD plasmas to its possible role in the reconnection onset (Pucci & Velli 2014;
Comisso et al. 2016; Uzdensky & Loureiro 2016; Tolman, Loureiro & Uzdensky
2018) and in the energy partition (Loureiro et al. 2012; Numata & Loureiro 2015)
and particle acceleration and plasma heating (Drake et al. 2006; Giannios, Uzdensky &
Begelman 2009; Oka et al. 2010; Cerutti et al. 2013; Sironi & Spitkovsky 2014; Guo
et al. 2015; Zhou et al. 2015; Sharma, Mitra & Oberoi 2017; Werner & Uzdensky
2017) – the plasmoid instability has been the subject of a multitude of theoretical and
numerical studies (see Loureiro & Uzdensky (2016) for a brief review). There are
also abundant reports of plasmoid observation in solar flares (Milligan et al. 2010;
Nishizuka et al. 2010; Liu, Chen & Petrosian 2013), coronal jets (Zhang & Ji 2014)
and in the Earth’s magnetotail (Moldwin & Hughes 1992; Zong et al. 2004) and in
the magnetospheres of other planets (Jackman, Slavin & Cowley 2011; Zhang et al.
2012; DiBraccio et al. 2015). This, however, contrasts starkly with plasmoid detection
and investigation in laboratory experiments, which have so far been relatively limited,
with only a handful of studies reporting plasmoid observation (Fox, Bhattacharjee &
Germaschewski 2012; Dorfman et al. 2013; Jara-Almonte et al. 2016; Olson et al.
2016; Hare et al. 2017a,b, 2018). In all cases, these observations have occurred in
non-MHD regions of parameter space (dedicated reconnection experiments have not
been able to reach S > 104, although future ones might (Forest et al. 2015; Ji et al.
2015)), and lack a solid theoretical footing.

In a recent paper, Loureiro & Uzdensky (2016) have identified a plasma collisionality
regime where the requirement for triggering the plasmoid instability is significantly
eased with respect to its pure MHD counterpart. In essence, this regime relies on
collisionality being high enough that an MHD current sheet may form in the first place
(i.e. the current sheet thickness exceeds any kinetic scale); but small enough that when
such a sheet is analysed for its stability to plasmoid formation, two-fluid effects can no
longer be neglected. Interestingly, some of the above mentioned experimental reports
of plasmoid detection (Dorfman et al. 2013; Jara-Almonte et al. 2016; Hare et al.
2017a,b, 2018) seem to sit in, or very close to, this region of parameter space (Hare
2017), and it is conceivable that they provide experimental evidence of the existence
of this novel regime.

The aim of this paper is to report a set of numerical experiments designed to
confirm the existence of the semi-collisional plasmoid instability, with particular
focus on experimentally accessible values of the Lundquist number, and precisely
map out the regions of parameter space inhabited by it.
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Plasmoid instability in the semi-collisional regime 3

2. The semi-collisional plasmoid instability

The linear theory of the plasmoid instability in MHD plasmas (Loureiro et al.
2007; Bhattacharjee et al. 2009; Loureiro et al. 2013) assumes the existence of a
Sweet–Parker (SP) current sheet (Parker 1957; Sweet 1958), which is taken as the
background equilibrium whose stability is analysed. In standard tearing mode fashion
(Furth, Killeen & Rosenbluth 1963), the calculation divides the spatial domain into
an outer region, where resistivity effects can be ignored, and an inner region – a
boundary layer of thickness δin – where resistivity matters.

Let us revisit this question adding minimal kinetic two-fluid effects: we wish to
consider the case where the ion sound Larmor radius, ρs, although smaller than the
thickness of the SP current sheet, δSP, is however larger than the boundary layer of the
MHD linear plasmoid instability: δSP� ρs� δin.1 This obviously implies that MHD
is no longer a sufficient description. On the other hand, collisionality (νei) will still
be taken to be large enough that the frozen-flux constraint is broken by resistivity,
instead of electron inertia; i.e. δin� de, with de the electron skin depth (which results
from the ordering νei� γ , where γ is the tearing mode growth rate). Nonetheless, the
semi-collisional tearing mode requires δin� ρs and transitions to the usual collisional
(MHD) tearing mode in the limit δin�ρs, and becomes the collisionless tearing mode
when the collision frequency is decreased such that νei� γ (Drake & Lee 1977). On
a qualitative level, this regime does not require ion finite Larmor orbit effects (i.e.
it exists in the limit ρi→ 0 as long as ρs remains finite). But our arguments below
assume ρi ∼ ρs, and our simulations will consider the case when T0i = T0e.

The expressions for the growth rate of the plasmoid instability in this regime can be
obtained from the appropriate tearing mode theory (Drake & Lee 1977; Pegoraro &
Schep 1986; Zocco & Schekochihin 2011), following the usual procedure of replacing
the equilibrium scale length with δSP ∼ LS−1/2, where L is the length of the current
sheet (Tajima & Shibata 2002; Bhattacharjee et al. 2009).

For small values of the tearing mode instability parameter ∆′, i.e. ∆′δin � 1, we
find

γL/VA ∼ (kL)2/3(∆′ρs)
2/3, (2.1)

δin/L∼ (∆′ρs)
1/6(kL)−1/3S−1/2, (2.2)

where γ is the growth rate of a mode with wavenumber k. This expression can be
simplified if ∆′ is not too small, such that it can be approximated as ∆′δSP∼ 1/(kδSP),
as pertains to the usual Harris-like magnetic configuration (Harris 1962). In that case,
we obtain

γL/VA ∼ (ρs/L)2/3S2/3, (2.3)

and the validity condition ∆′δin � 1 becomes kL � (ρs/L)1/9S4/9. Note that this
expression is independent of k to lowest order.

In the opposite limit of large ∆′, i.e. ∆′δin� 1, we instead have

γL/VA ∼ (ρs/L)4/7S2/7(kL)6/7, (2.4)
δin/L∼ (ρs/L)1/7(kL)−2/7S−3/7. (2.5)

1An additional requirement is that the electron skin depth, de = c/ωpe, with ωpe the electron plasma
frequency, is negligible, i.e. δin� de. A further generalization of the theory to include electron inertia effects
is possible – see Loureiro & Uzdensky (2016).
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The fastest growing mode is yielded by the intersection of these two branches
(Loureiro & Uzdensky 2016)2

γmaxL/VA ∼ (ρs/L)2/3S2/3, (2.6)
kmaxL∼ (ρs/L)1/9S4/9, (2.7)
δin/L∼ (ρs/L)1/9S−5/9. (2.8)

The validity of these expressions rests on two conditions: δSP � ρs, and ρs � δin.
Using (2.8), these therefore imply that the semi-collisional plasmoid instability
inhabits the region of parameter space defined by3

(L/ρs)
2
� S� (L/ρs)

8/5. (2.9)

An alternative current sheet profile worth considering – and the one we will make
use of in this paper – is that of a sinusoidal-like magnetic field, By(x)= B0 sin(x/a),
for which ∆′δSP ∼ 1/(kδSP)

2. For small ∆′, we obtain,

γL/VA ∼ (ρs/L)2/3(kL)−2/3S, (2.10)
δin ∼ (ρs/L)1/6(kL)−2/3S−1/4, (2.11)

valid if kL� (ρs/L)1/16S15/32. For large ∆′, the scaling for γL/VA is same as in (2.4),
as there is no explicit dependence on ∆′. The fastest growing mode is therefore
characterized by

γmaxL/VA ∼ (ρs/L)5/8S11/16, (2.12)
kmaxL∼ (ρs/L)1/16S15/32, (2.13)
δin/L∼ (ρs/L)1/8S−9/16. (2.14)

Figure 1 illustrates both limits of the dispersion relation, and their intersection, for two
different combinations of the two relevant parameters, S and L/ρs. In the Appendix we
recover these scalings via direct numerical simulation, confirming both their validity
and the ability of the code Viriato (Loureiro et al. 2016), which we will employ in
this paper (see §§ 3 and 4), to recover them.

In this case of a sinusoidal-like current sheet profile, equation (2.9) is replaced by:

(L/ρs)
2
� S� (L/ρs)

14/9. (2.15)

The lower bound here has only a slightly smaller exponent than (and is in practice
difficult to discern from) the Harris-like case of (2.9).

Equations (2.9) and (2.15) lead to the interesting suggestion that this particular
version of the plasmoid instability can be obtained at relatively low values of S,
provided that the system (the current sheet length L, to be precise) is not too large
compared with ρs. In other words, the lower bound of S ∼ 104 that pertains to
the MHD version of the plasmoid instability (Biskamp 1986; Loureiro et al. 2005;
Samtaney et al. 2009; Baty 2014) is replaced by a function in the semi-collisional
regime, (L/ρs)

14/9, or (L/ρs)
8/5, as appropriate. This growth of plasmoids at low S

is possible in the semi-collisional regime due to the presence of the ρs scale, which
is unavailable in MHD. The tearing calculation in this regime has to account for

2Note that the scaling for δin, equation (2.8), has been corrected from Loureiro & Uzdensky (2016).
3In addition, the existence of the plasmoid instability (irrespective of the collisionality regime) requires that

γL/VA� 1 and kL� 1; both of these conditions yield requirements on S and L/ρs that are less demanding
than the rightmost inequality in (2.9), so (L/ρs)

8/5 should be the correct lower bound.
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FIGURE 1. Dispersion relation for the semi-collisional plasmoid instability for two
different combinations of the relevant parameters: (S, L/ρs) = (1000, 35) (red lines) and
(S, L/ρs) = (106, 4000) (blue lines). Solid lines represent the case of ∆′δin � 1 (2.11),
whereas dashed lines are for the case of ∆′δin� 1 (2.4). Respectively, these lines are only
valid to the right, or to the left, of their intersection. Their point of intersection provides
an estimate of the most unstable wavenumber and corresponding growth rate.

nested boundary layers instead of a single one: this introduces an extra parameter in
the problem and makes the critical Lundquist number (derived from the requirement
that the condition for semi-collisional regime, δSP > ρs > δin be satisfied) become
dependent on this new parameter.

From both the experimental and the numerical points of view, this feature of
low critical Lundquist number is a significant advantage. In particular, this regime
should be available to reconnection experiments such as the magnetic reconnection
experiment (MRX) (Yamada et al. 1997), terrestrial reconnection experiment (TREX)
(Olson et al. 2016), facility for laboratory reconnection experiments (FLARE) (Ji &
Daughton 2011) and the mega ampere generator for plasma implosion experiments
(Magpie) (Hare et al. 2017a,b, 2018). Indeed, as we mention above, it is tempting to
attribute recent reports of experimental plasmoid observation (Dorfman et al. 2013;
Jara-Almonte et al. 2016; Hare et al. 2017a,b, 2018) to this version of the plasmoid
instability – or to its β ∼ 1 analogue (Baalrud et al. 2011) (β is the ratio of the
plasma pressure to the magnetic pressure). In the weak guide field or β ∼ 1 case,
the relevant scale is the ion-inertial scale di (instead of ρs), and the same feature of
scale-dependent critical Lundquist number is expected to hold.

Despite these speculations and conjectures, the existence of this regime of the
plasmoid instability has not been confirmed via direct numerical simulations, and
indeed there are a couple of issues that may raise suspicion. In particular, we note
that all of the scalings above are predicated on there being an asymptotic separation
between the scales involved, namely δSP � ρs � δin.4 As the Lundquist number is

4Note that the condition for semi-collisional regime should not be confused with a similar looking criterion
specified in a scenario of hierarchy of plasmoids and interplasmoid current sheets, namely, δSP(L) > ρs > δc
(see Uzdensky et al. 2010). Here, δSP(L) refers to the width of the primary global SP current sheet and
δc is the width of the smallest interplasmoid SP current sheet which is marginally unstable to the plasmoid
instability. This criterion guarantees a transition of the plasmoid hierarchy from MHD to kinetic scales.

The scalings (2.8) and (2.14) allow us to make this criterion more precise. Consider the plasmoid cascade. For
an interplasmoid current sheet with the width δ(N) (δ(2), δ(3) are the secondary and tertiary SP current sheets,
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made smaller, this scale separation is inevitably lost, and thus the claim that the
semi-collisional plasmoid instability may be obtainable at the relatively low values of
S and L/ρs that are within the reach of existing experiments needs careful numerical
validation.

An additional concern of significant relevance is that of whether the Sweet–Parker
sheet that is assumed as the background for the instability derived here is realizable.
As has been pointed out (Loureiro et al. 2007; Pucci & Velli 2014; Uzdensky &
Loureiro 2016), the existence of a super-Alfvénic instability whose growth rate
diverges as S→∞ indicates that the equilibrium that it arises from, may never form
in the first place. We think this claim is pertinent at high values of the Lundquist
number. However, in the opposite limit of relatively low S with which we are mostly
concerned here, where the instability is only mildly super-Alfvénic, a Sweet–Parker
sheet may still form and beget the instability.

This paper aims to answer these questions by means of direct numerical simulations
of a reconnecting system where the current sheet is not prescribed, but rather allowed
to form self-consistently.

3. The model

The weak collisionality of a large number of reconnecting environments demands
the use of a kinetic description. In the most general case, one is forced to adopt a
first-principles formalism (such as particle-in-cell, or the six-dimensional (6-D) Vlasov
(or Boltzmann) equation), with its inherent analytical and numerical complexity. In
many situations, however, a strong component of the magnetic field is present that
is perpendicular to the reconnection plane. This guide field offers an opportunity
for significant simplification: the 5-D gyrokinetic formalism (Frieman & Chen 1982;
Howes et al. 2006).

Further simplification is possible if, in addition, one considers plasmas such that
the electron β is sufficiently low to be comparable to the electron-to-ion mass ratio
(me/mi); a case in point is the solar corona, as mentioned earlier in § 2. Leveraging on
these assumptions (strong guide field and low β), a reduced-gyrokinetic formalism was
recently derived (dubbed the ‘kinetic reduced electron heating model’, or KREHM)
(Zocco & Schekochihin 2011). One of its appealing features is that the phase space
is reduced further to four dimensions (position vector and velocity in the guide-field
direction only), thus rendering computations, and even analytic theory, significantly
more manageable than fully kinetic approaches.

In this work, we use the KREHM equations to investigate the plasmoid instability
in the semi-collisional regime. We will restrict our numerical investigations to the two
spatial dimensions comprising the reconnection plane, (x, y). With this restriction, the
KREHM equations become:

1
n0e

dδne

dt
=

1
B0

{
A‖,

e
cme

d2
e∇

2
⊥

A‖

}
, (3.1)

and so on), if the corresponding inner layer δ(N)in is larger than ρs, then the arising plasmoids are still in MHD

regime. However, if at any point in the plasmoid cascade one obtains ρs > δ
(N)
in , then the system transitions

into the semi-collisional regime. Using the relationship δc ∼ LcS−1/2
c , where Sc ∼ 104 is the critical value of

the Lundquist number to obtain the plasmoid instability in MHD, it is easy to conclude that a transition to
the semi-collisional regime must occur at some point in the plasmoid hierarchical cascade if S> S3/8

c (L/ρs),
for a Harris-type sheet, or S> S5/14

c (L/ρs), for a sinusoidal-type sheet.
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d
dt
(A‖ − d2

e∇
2
⊥

A‖)= η∇2
⊥

A‖ −
cT0e

eB0

{
A‖,
(
δne

n0e
+
δT‖e
T0e

)}
, (3.2)

dge

dt
−
v‖

B0

{
A‖,
(

ge −
δT‖e
T0e

F0e

)}
=C[ge] −

(
1−

2v2
‖

v2
the

)
F0e

B0

{
A‖,

e
cme

d2
e∇

2
⊥

A‖

}
, (3.3)

where
d
dt
=
∂

∂t
+

c
B0
{φ, . . .}. (3.4)

Here, φ is electrostatic potential and {. . .} denotes the Poisson bracket, defined for
any two fields P, Q as {P,Q} = ∂xP∂yQ− ∂yP∂xQ.

Equations (3.1) and (3.2) evolve the zeroth and first moments of the perturbed
electron distribution function, δfe. The zeroth moment is the electron density
perturbation, δne. The first moment is the parallel electron flow, u‖e, and is related to
the parallel component of the magnetic vector potential A‖ by u‖e = (e/cme)d2

e∇
2
⊥

A‖.
The perturbed electron distribution function is given by

δfe = ge + (δne/n0e + 2v‖u‖e/v2
the)F0e, (3.5)

where F0e = n0e/(π/v
2
the)

3/2 exp[−(v2
‖
+ v2

⊥
)/v2

the] is the Maxwellian equilibrium, and
v‖ and v⊥ are, respectively, the velocity coordinates parallel and perpendicular to
the guide-field direction. The electron thermal speed is vthe =

√
2T0e/me, with e the

electron charge, and me its mass. Note that this is a δf formulation, so any fluctuating
quantity is necessarily much smaller than the equilibrium quantity.

The quantity ge is dubbed the reduced electron distribution function; its evolution
is given by (3.3). It contains all the moments of δfe higher than δne and u‖e.
For example, parallel temperature fluctuations (second-order moment) are given
by δT‖e/T0e = (1/n0e)

∫
d3v(2v2

‖
/v2

the)ge. On the right-hand side, C[ge] denotes the
collision operator, and the second term represents what survives of the so-called
‘gyrokinetic potential’ in this expansion.

The background magnetic guide field is B0; and n0e, T0e are the background electron
density and temperature, respectively. Other symbols introduced above are the electron
skin depth, de = c/ωpe, with ωpe =

√
4πn0ee2/me the electron plasma frequency.

The perturbed electron density, δne, and the electrostatic potential are related via the
gyrokinetic Poisson law,

δne

n0e
=

1
τ
(Γ̂0 − 1)

eφ
T0e
, (3.6)

where, τ = T0i/T0e is the ion to electron background temperature ratio, and Γ̂0 is a
real space operator whose Fourier transform is Γ0(α)= I0(α)e−α, with I0 the modified
Bessel function of zeroth order and α = k2

⊥
ρi

2/2, with ρi = vthi/Ωi the ion Larmor
radius, vthi =

√
2T0i/mi the ion thermal velocity and Ωi = |e|B0/mic the ion gyro

frequency.
To make contact with a more familiar set of equations, note that, in the fluid limit

(de, ρi, ρs → 0), equations (3.1) and (3.2) decouple from (3.3) and reduce to the
momentum and induction equations of reduced MHD. However, when kinetic effects
are retained, Ohm’s law couples to the kinetic equation (3.3) via parallel electron
temperature fluctuations.

Observe that (3.3) does not explicitly depend on v⊥. Provided that one chooses
a collision operator which is itself also independent of v⊥, this coordinate can be
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integrated out, yielding a reduced electron distribution function that is effectively four-
dimensional only, ge = ge(x, y, z, v‖, t). One model collision operator that exhibits
this property is the Lenard–Bernstein operator (Lenard & Bernstein 1958), modified
to conserve the pertinent quantities (Zocco & Schekochihin 2011). Then (3.3) can be
more conveniently solved in terms of its expansion in Hermite polynomials:

ge(x, y, z, v‖, t)=
∞∑

m=2

1
2mm!

Hm(v‖/vthe)gm(x, y, z, t)F0e(v‖), (3.7)

where Hm denotes the Hermite polynomial of order m and gm is its coefficient.
Inserting this expansion into (3.3) yields a coupled set of fluid-like equations for the
coefficients of the Hermite polynomials, where by construction g0 = g1 = 0, and for
m > 2 we have

dgm

dt
−
vthe

B0

(√
m+ 1

2
{A‖, gm+1} +

√
m
2
{A‖, gm−1}

)

=

√
2δm,2

B0

{
A‖,

e
cme

d2
e∇

2
⊥

A‖

}
− νei(mgm − 2δm,2g2), (3.8)

where νei is the electron–ion collision frequency, νei = η/d2
e . The kinetic equations

solved by means of Hermite expansion requires a closure. A way to close the set
of equations is to demand that at some m=M, the collision term becomes significant
such that gM+1/gM � 1. This constraint will truncate the kinetic equations at gM as
gM+1 can be written in terms of gM (Zocco & Schekochihin 2011; Zocco et al. 2015;
Loureiro et al. 2016; White & Hazeltine 2017). This type of closure also recovers the
semi-collisional limit exactly.

4. Numerical set-up
Equations (3.1), (3.2), (3.6) and (3.8) are solved numerically on a two-dimensional

grid of size Lx × Ly, using the pseudo-spectral code Viriato (Loureiro et al. 2016).
Periodic boundary conditions are employed in both directions. The numerical
configuration is akin to that employed in Loureiro et al. (2005) and, as we will
show, is such that one can self-consistently obtain an SP current sheet whose stability
to plasmoid formation can then be studied. Specifically, the input parameters can be
specified in a way as to lead to the dynamic formation of a SP current sheet that
meets the conditions of the semi-collisional regime that we have discussed earlier.

The initial equilibrium is A‖(x, y, t = 0) = A‖0/ cosh2(x), where A‖0 = 3
√

3/4,
such that the maximum of the reconnecting field, By = dA‖/dx, is By,max = 1. This
equilibrium is destabilized with a small amplitude (linear) perturbation which seeds
the fastest growing tearing mode; in all simulations, this is the longest wavelength
mode that fits in the simulation box. Once in the nonlinear stage, the tearing mode
undergoes X-point collapse (Waelbroeck 1989; Loureiro et al. 2005), and a current
sheet forms which is consistent with the SP scaling (as we shall confirm). The
plasmoid instability is then triggered, or not, depending on the values of S and ρs
specified in the simulation.

The length of the SP current sheet can be varied by changing the instability
parameter, ∆′(k), pertaining to the initial tearing mode (Loureiro et al. 2005).
In practice, this is achieved by changing the length of the box in the outflow
direction, Ly.
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The resolution of a simulation in the inflow (x) direction is set by the size of the
inner boundary layer that is expected to arise due to the plasmoid instability, estimated
using (2.8). The resolution demands in the outflow (y) direction are less stringent, and
are determined on a ad hoc basis.

An additional constraint on our runs is that the electron inertia play no role. This
is insured by setting it to be smaller than the resolution for any given simulation.
Therefore, in all runs, the frozen-flux constraint is broken by resistivity. Note that
no hyper-resistivity (or hyper-viscosity) is used in these runs, ensuring that the actual
Lundquist number in the simulations is determined by the resistivity that we specify.
The simulations also employ a finite viscosity, set equal to the magnetic diffusivity.

A final choice has to do with the number of Hermite polynomials to keep in the
simulations. For all runs reported here, the highest-order polynomial is M = 4 – this
ought to be sufficient given the relatively high collisionality of our simulations (and
indeed we find that in all our runs resistivity is the dominant energy dissipation
channel). To check convergence, we performed one test using instead M = 10, and
observed that in the spectrum of |gm|

2/2, the energy at m> 3–4, is lower than that at
m = 2 by orders of magnitude, indicating that the power transferred to the Hermite
polynomials of higher order is not significant. In all runs, the convergence of the
Hermite representation is accelerated by the use of a hyper-collision operator (see
Loureiro et al. (2016) for details).

5. Results

As previously stated, our main aim is to numerically ascertain the existence of the
semi-collisional plasmoid instability and validate the bounds of the parameter space
defined by S and L/ρs where this instability is expected to be active. We specifically
wish to focus on the instability’s existence at modest, experimentally accessible, values
of the Lundquist number. To this effect, we perform a series of runs as listed in
table 1. Amongst other parameters, the table lists the length of the current sheet, L,
that is dynamically obtained during the nonlinear evolution of the primary tearing
mode (which results from the collapse of the X-point, as previously described). This
length is measured using a full width at half-maximum estimate5 (as is the current
sheet thickness, δ) just before the plasmoid appears, and it is this length that is used
to estimate the Lundquist number that is also listed in table 1 (the magnitude of the
upstream magnetic field remains unchanged by the X-point collapse).

The first step in the description of our results is the characterization of the current
sheet that is dynamically obtained from the X-point collapse of the primary tearing
mode. The theory of the semi-collisional plasmoid instability laid out in § 2 assumes
a SP sheet as the background equilibrium; and so it is important to determine whether
indeed that is the case in our simulations. In figure 2, we plot δ/L as a function of
the Lundquist number S, obtained from all the runs. We find, as shown in figure 2 by
the blue stars (Runs A to H) and red diamonds (Runs I, J, K), that the current sheets
in these runs follow the SP scaling. The system in these runs is initially purely in
the MHD regime as the inner boundary layer thickness of the primary tearing mode
is larger than the kinetic scales. And thus, upon X-point collapse of the MHD tearing
mode, the current sheets that form are expected to follow the SP scaling (Loureiro
et al. 2005), which indeed bears out.

5This is different from Ji & Daughton (2011), where L represents the half-length of the reconnecting sheet.
This difference amounts to a shift equal to log (2) between our reconnection phase diagram and theirs.
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FIGURE 2. The ratio of current sheet width δ to its length L against the Lundquist number
S is shown for Runs A through H (blue stars), I, J and K (red diamonds), and L, M and
N (black inverted triangles). Refer to table 1 for details of these runs. The dotted line
indicates an S−1/2 slope, expected for Sweet–Parker current sheets.

Run ρs L L/ρs S δin Nx ×Ny Ly/2π η δSP >ρs? ρs > δin?

A 0.12 3.01 25.1 256 0.089 512 × 128 1.75 0.012 Yes Yes
B 0.1 2.73 27.3 453 0.058 1024 × 256 1.695 0.00657 Yes Yes
C 0.07 2.91 41.6 557 0.052 512 × 128 1.678 0.00583 Yes Yes
D 0.06 2.58 43.0 977 0.033 1024 × 256 1.678 0.003 Yes Yes
E 0.036 2.52 70.0 1149 0.028 1024 × 256 1.587 0.0025 Yes Yes
F 0.04 2.28 57.0 1796 0.020 1024 × 256 1.587 0.00146 Yes Yes
G 0.03 2.30 76.7 2997 0.015 2048 × 512 1.587 0.00088 Yes Yes
H 0.015 2.46 164.0 5560 0.010 4096 × 512 1.587 0.0005 Yes Yes
I 0.02 0.98 49.0 269 0.026 512 × 128 1.19 0.004 Yes No
J 0.02 1.56 78.0 565 0.026 1024 × 256 1.351 0.00276 Yes No
K 0.01 0.95 95.0 1092 0.010 1024 × 256 1.09 0.001 Yes No
L 0.083 1.00 12.0 255 0.032 512 × 128 1.19 0.004 No Yes
M 0.12 1.90 15.8 472 0.042 512 × 128 1.492 0.0044 No Yes
N 0.04 1.10 27.5 1171 0.014 1024 × 256 1.19 0.00094 No Yes

TABLE 1. Summary of all the runs discussed in the paper. The table lists the values of
the sound Larmor radius ρs, length of the current sheet L, their ratio L/ρs, Lundquist
number S, the inner boundary layer width δin (using (2.14)), the number of grid points
employed Nx × Ny, the length of domain in the y-direction, Ly, resistivity η and answers
whether both constraints of the semi-collisional regime are satisfied or not for a given run.

In the case of the three black inverted triangles shown in the figure 2, corresponding
to Runs L, M and N, the ion sound Larmor radius ρs is set to be larger than the
SP current sheet width (δSP). Thus, when X-point collapse happens, these runs are
affected by ion scale physics; unsurprisingly, the current sheets here do not follow
the SP scaling. In summary, by the end of the collapse of the primary tearing mode
and formation of the current sheet, the blue starred runs (Runs A to H) are in the
semi-collisional regime (δSP > ρs > δin), the red diamond runs (Runs I, J, K) in the
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FIGURE 3. Reconnection phase diagram showing the semi-collisional regime marked out
by the upper bound (δSP > ρs; solid line) and lower bound (ρs > δin; dashed line) as
prescribed by (2.15). Blue stars denote simulations which show the plasmoid instability;
red diamonds and black inverted triangles correspond to simulations which do not. The
parameters (and other details) of each run can be looked up in table 1.

MHD regime (δSP >δin >ρs) and the black inverted triangles (Runs L, M and N) in a
weakly collisional regime where a Sweet–Parker sheet no longer forms (ρs>δSP>δin).

Next, we show whether or not the plasmoid instability is observed for a given run
on the S–L/ρs parameter space in figure 3. The two groups of runs represented by
blue stars and red diamonds, which form SP current sheets, have ρs<δSP (the symbols
here match those in figure 2). Furthermore, in the case of the blue starred runs, upon
the formation of the current sheet, the system becomes sensitive to the presence of ρs,
as this kinetic scale is now larger than the semi-collisional inner boundary layer δin
(corresponding to the newly formed SP layer) (see (2.8)). As a result, the plasmoid
instability can arise, and indeed it does, as seen in Runs A to H (blue stars). On
the other hand, in the case of Runs I, J, K (red diamonds), ρs is not only smaller
that δSP, but is also smaller that δin and thus no plasmoids arise in these runs. The
condition of ρs < δin implies the absence of the plasmoid instability simply because
the system continues to be in MHD regime and S is much below the critical value of
∼104 required in MHD.

The Runs A to H which do result in plasmoid instability are within the two
theoretical bounds of the semi-collisional regime marked by solid and dashed black
lines (2.15). Runs I, J and K (where ρs<δin) below the lower bound match roughly in
S with Runs A, C and E respectively; Runs L, M, N (where ρs>δSP) above the upper
bound, were performed to match in S roughly with Runs A, B and E respectively. We
find that neither of these two sets of runs yield the plasmoid instability. We conclude,
therefore, that the theoretically prescribed bounds demarcating the semi-collisional
regime are remarkably robust within the range of Lundquist numbers and Larmor
radii that we have explored.
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(a) (b) (c)

(d) (e) (f)

FIGURE 4. Contour plots of A‖ for Run A (a–c) with lowest S = 256 (and L/ρs = 25),
and Run H (d–f ) with highest S= 5560 (and L/ρs = 164) at three different times: (a,d),
just before the plasmoid forms; (b,e), in the early stages of plasmoid formation; and (c, f ),
when the plasmoid is in its nonlinear stage.

Further insight can be gained by visually analysing these runs. In particular it is
of interest to visually compare Runs A and H, corresponding, respectively, to the
lowest (S = 256) and highest (S = 5560) values of the Lundquist number at which
we have observed the plasmoid instability. Figure 4 shows contour plots of A‖ at
three different times. The two leftmost panels (a,d) depict the system just before
the plasmoid formation. The middle panels show the early stages of the plasmoid
development; and the rightmost panels show the plasmoid well into the nonlinear
stage. In both cases, note that in its early stage (b,e) the y-extent of the plasmoid
(roughly its linear wavelength) is much smaller than the length of the current sheet
(to be discussed below). Also, due to the highly symmetric configuration of the
magnetic field (and the intrinsic symmetry germane to the pseudo-spectral method
that we employ), the plasmoid is stuck to the middle of the sheet. In a less constrained
situation, we expect that this plasmoid would be ejected upwards or downwards, and
subsequent plasmoids to be seeded until the system approaches saturation. It can be
seen clearly that the gradient of A‖ in the current sheet is larger in Run H compared
to Run A, as expected given the order of magnitude difference in the values of their
Lundquist numbers. Thus a curiosity is that even in the run with highest S, only a
single plasmoid forms. We will address this concern at a later point.

Another interesting comparison is between Runs E (S = 1149, L/ρs = 70.5, blue
star) and K (S= 1092, L/ρs= 95, red diamond). As seen in figure 5, Run E shows a
similar time evolution to that displayed by the runs in figure 4, with the current sheet
becoming unstable to plasmoid formation. In Run K, on the other hand, the collapsed
current sheet never goes unstable, and the primary tearing mode just proceeds to
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(a) (b) (c)

(d) (e) (f)

FIGURE 5. Contour plots of A‖ for Run E in the semi-collisional regime (a–c), with S=
1149 and L/ρs = 70.5; and for Run K in the MHD regime (d–f ), with S = 1092 and
L/ρs = 95, at three consecutive times from left to right.

(a) (b) (c)

FIGURE 6. Contour plots of A‖ for Run N (in the weakly collisional regime), with S=
1171 and L/ρs = 27.5, at three consecutive times from (a) to (c).

saturation. This is rather remarkable given how close in the phase space outlined by
S and L/ρs these two runs are (see figure 3).

In figure 6, we also show a run from the weakly collisional regime, with the
parameters S = 1171 and L/ρs = 27.5 (Run N). There is no plasmoid formation as
expected. It is interesting to note that the current density forms an X-point, as seen
from figure 6(a), which is consistent with what is expected in such a regime. The
X-point later transitions to a double-structured current sheet, which retains a sharp
peak at its centre.

It is noteworthy that all of the runs in this regime are at Lundquist numbers much
lower than the MHD critical value of order ∼104. The lowest S at which a simulation
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FIGURE 7. Wavenumber measured from the width of the arising plasmoid in Runs A–G,
plotted against the theoretical prediction (2.13).

(Run A) obtains the plasmoid instability is 250. As one decreases the value of S even
further we find in our simulations that width of the primary island becomes as large as
the simulation domain before any plasmoid is observed. In a less constrained system
it is possible that the plasmoid instability remains active at even lower values of S.

The linear regime of the plasmoid instability is very short lived: it ends once
the plasmoid becomes larger than the inner boundary layer. Although this layer is
resolved in all our simulations, the number of grid points in the inner layer is not
sufficiently large to be able to trace a long enough evolution in the linear regime.
Thus, linear growth rate measurements cannot reliably be obtained. However, the
wavenumber is a straightforward quantity to measure. An intriguing observation is
that only one single plasmoid arises in the Runs A–H. These runs range over a
decade in Lundquist number and thus the expected number of plasmoids varies by a
factor of &3 from the run with lowest S to the run with highest S, according to (2.13).
That is not what we obtain, suggesting disagreement with the linear predictions. This
leads one to wonder why it is that the lower bound, S > (L/ρs)

14/9, is validated so
well (figure 3), given that its validity relies on the scalings for kmax (and γmax) being
correct.

To address this issue, we proceed as follows. For each run, instead of counting
the number of plasmoids to estimate the wavenumber, we compute it from the
measurement of the y-extent of the plasmoid (full width at half-maximum of the
island in A‖) at the earliest possible stages of its appearance. We find that this
measurement of the wavenumber does follow the theoretical scaling rather well,
as shown in figure 7. We suspect that the explanation for this result lies in the
effects of spatial inhomogeneity in the direction along the sheet, as well as flows
and reconnected component of the magnetic field. None of these effects is negligible
at these low values of the Lundquist number, but they are all neglected in the
theoretical derivation. This argument is strengthened further by the results shown in
the Appendix. The important observation, however, is that the plasmoid that does
form has the correct wavenumber as predicted by linear theory.

6. Discussions and conclusions
In this paper, we have investigated, analytically and numerically, the semi-collisional

regime of the plasmoid instability – an extension to a Sweet–Parker sheet of the

https://doi.org/10.1017/S002237781800106X Published online by Cambridge University Press

https://doi.org/10.1017/S002237781800106X


Plasmoid instability in the semi-collisional regime 15

semi-collisional tearing mode (Drake & Lee 1977; Cowley, Kulsrud & Hahm 1986;
Zocco & Schekochihin 2011). We employ a reduced kinetic formalism obtainable
from the gyrokinetic formalism via asymptotic expansion in low plasma β (Zocco &
Schekochihin 2011). The simulations are carried out with the code Viriato (Loureiro
et al. 2016). This regime is analytically predicted to occupy a significant sliver of the
reconnection phase diagram defined by a lower bound S > (L/ρs)

14/9 and an upper
bound S< (L/ρs)

2. Our numerical simulations show that these bounds are remarkably
robust: runs which fall within these two bounds yield the plasmoid instability, and
vice versa. The instability arises at much lower values of the Lundquist numbers than
the MHD analogue; as low as S ∼ 250. We are limited in our exploration of even
lower values of S by our simulation set-up. Thus, we do not rule out the formation
of plasmoids for S < 250 in less constrained systems; indeed, we speculate that this
regime could also potentially explain formation of plasmoids in recent reconnection
experiments (Jara-Almonte et al. 2016; Hare et al. 2017a,b, 2018). In Magpie, for
example, we find from table I in Hare et al. (2018) that S≈ 120 and L/di≈ 18. If we
were to consider the relevant kinetic scale to be di instead of ρs, then the value of
these parameters (S and L/di) satisfy the condition for the semi-collisional regime and
fall within its bounds. Note that in the collisionless (or weakly collisional) regime,
plasmoids arise only when L/ρs is larger than a value of about ∼50 (an empirical
value seen in simulations) (Ji & Daughton 2011), whereas the semi-collisional regime
seems to offer no hard lower bound. Further, with the validation of the existence of
this regime, the reconnection phase diagram (figure 1 in Ji & Daughton 2011) would
be modified. The lower bound of this regime, governed by either S = (L/ρs)

14/9 or
S= (L/ρs)

8/5 would now cut across the two lines – one line representing the critical
Lundquist number for MHD plasmoid instability (S = Sc) and then a second line
representing the lower bound of the multiple X-line hybrid regime (S= L

√
Sc/2ρs).

The numerical experiments reported here are limited in that the amount of flux to
reconnect is finite, and the simulation box is periodic. As such, (statistical) steady state
reconnection cannot be attained, thereby preventing us from numerically answering the
important question of what the reconnection rate is in the semi-collisional plasmoid
regime. However, theoretically we may expect the following. In the phase-space
diagram of figure 3, assume that the initial system, with a certain S, L and ρs, is
in the semi-collisional regime. As the plasmoid instability unfolds, we expect that
smaller, interplasmoid current sheets will arise. These will necessarily have a smaller
length, L′ ∼ L/N, where N is the number of primary plasmoids. Each of these
interplasmoid current sheets now defines a reconnecting site which can be located
in the reconnection phase diagram. Since ρs and η are fixed, and assuming that VA
is the same in these daughter sheets, the only parameter that has changed is the
length, from L to L′. This means a diagonal displacement in the direction of smaller
L/ρs from the initial point in that diagram; the slope of that diagonal is 1, because
both axes are linearly proportional to L. If the new position in this diagram remains
in the semi-collisional regime, each interplasmoid current sheet is still unstable to
the semi-collisional plasmoid instability. The process then repeats (i.e. the plasmoid
hierarchy unfolds further) until arriving at an interplasmoid current sheet which is
now short enough to be outside of the semi-collisional bounds. Inevitably, therefore,
this lands the system to the left of the S ∼ (L/ρs)

2 bound, i.e. the collisionless
regime, where the expected reconnection rate is ∼0.1τ−1

A . Defining λc= (Lc/ρs) as an
empirical scale separating the single from the multiple X-line collisionless regimes
(numerically observed to be ∼50), we conclude that the system finally lands in either
the multiple, or single, X-line collisionless regime depending on whether it is initially
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above or below the diagonal line S∼ λc(L/ρs), (which intersects the line S∼ (L/ρs)
2

at (L/ρs)= λc) in the reconnection phase space diagram.
Finally, let us outline some general arguments for the case when, unlike our

simulations, the global Lundquist number of the system is so large that a Sweet–
Parker current sheet may not be able to form dynamically. Consider then a forming
current sheet, and assume for simplicity that the characteristic time at which it is
forming is Alfvénic, τA = L/VA. At any given moment of time, we parameterize the
forming current sheet aspect ratio as a/L = S−α (Pucci & Velli 2014), where a is
the current sheet width, and α is a number such that 0 < α < 1/2, with α = 1/2
representing a Sweet–Parker sheet (which the system presumably never gets to).

Using (2.6) (for a Harris-type sheet) we see that the growth rate of the most
unstable semi-collisional mode exceeds the current sheet formation rate (Alfvénic)
when

γmaxτA ∼ (ρs/L)2/3S−1/3+2α & 1. (6.1)
This expression constrains the relationship between S and L/ρs, for any value of α,
to attain Alfvénic growth at that value of α. In addition, we must further require that
this mode (the most unstable semi-collisional mode) is indeed in the semi-collisional
regime, i.e. δSC

in,max <ρs. This leads to,

(ρs/L)1/9S−(2α/3)−2/9 <ρs/L. (6.2)

These two expressions intersect when α = 1/3. That is, if α < 1/3, the relationship
that S and L/ρs must satisfy to yield Alfvénic growth is given by (6.1); if instead
α > 1/3, then it is sufficient to satisfy (6.2) to attain Alfvénic growth.6

A detailed analysis of all different possibilities that are encountered as α increases is
beyond the scope of this paper and will be left to future work. Generally, for α < 1/3,
the condition for the fastest semi-collisional mode to become faster than Alfvénic
becomes progressively less demanding on S. Consider the particularly interesting case
where α reaches the value of 1/3. At this value, we must have S > (L/ρs)

2 for the
semi-collisional mode to both exist and be super-Alfvénic. Remarkably, α = 1/3 is
the value at which the fastest growing MHD mode becomes Alfvénic (Pucci & Velli
2014). The condition for that mode to indeed be in the MHD regime is, unsurprisingly,
just the reverse of the above, S< (L/ρs)

2. So, in this case (α = 1/3), the outcome is
particularly simple: if S > (L/ρs)

2 the forming sheet would be disrupted by a semi-
collisional mode, and one might expect the reconnection rate to ensue to be 0.1τ−1

A as
discussed above; if, instead S<(L/ρs)

2 then the sheet would be disrupted by an MHD
mode, and the reconnection rate would presumably be S−1/2

c τ−1
A ∼ 0.01τ−1

A (unless a
transition to the semi-collisional regime occurs during the plasmoid cascade – see
footnote 4 on page 5). For example, in the solar corona, where S∼ 1013 and L/ρs ∼

107, we see that the MHD mode would win.

Acknowledgements
We thank E. Tolman and R. White for helpful discussions. This work was supported

by the NSF-DOE Partnership in Basic Plasma Science and Engineering, Award no.
DE-SC0016215. The simulations presented in this paper were performed on the MIT-
PSFC partition of the Engaging cluster at the MGHPCC facility (www.mghpcc.org)
which was funded by DoE grant no. DE-FG02-91-ER54109. We also acknowledge
the usage of Stampede cluster in Texas under the allocation TG-PHY140041.

6If instead one considers the case of a sinusoidal-like current sheet, equation (6.1) is replaced by γmaxτA∼
(ρs/L)5/8S−1/4+(15α/8) & 1; and (6.2) is replaced by (ρs/L)1/8S−(5α/8)−1/4 < ρs/L. Their intersection now
takes place at α = 3/10. All the same arguments apply to this case.

https://doi.org/10.1017/S002237781800106X Published online by Cambridge University Press

http://www.mghpcc.org
https://doi.org/10.1017/S002237781800106X


Plasmoid instability in the semi-collisional regime 17

(a) (b)

FIGURE 8. Growth rate (a) and wavenumber (b) of the most unstable semi-collisional
plasmoid mode in a prescribed Sweet–Parker-like sheet, plotted against the theoretical
predictions, equations (2.12) and (2.13).

Appendix. Semi-collisional tearing mode scalings in an SP sheet
To confirm the validity of the analytical derivation of § 2, and the ability of the

Viriato code to recover the scalings predicted there, we have performed a set of
simulations whose key difference from those reported in the main text lies in the fact
that the thickness of initial magnetic profile is now the Sweet–Parker width, LyS−1/2,
as is assumed throughout § 2. This initial configuration is not an exact Sweet–Parker
sheet because it lacks both the appropriate flows, and the reconnected component of
the magnetic field; these are also simplifications adopted in the theoretical derivation,
and which can be shown analytically to be justifiable (Loureiro et al. 2007, 2013).

All possible modes are seeded by the introduction of a small amplitude random
perturbation at t= 0. After an initial transient, we observe the exponential growth of
a single mode – the most unstable perturbation. The growth rate and wavenumber
(determined by counting the number of arising plasmoids) of this mode are plotted
in figure 8. Excellent agreement with the theoretical scalings of (2.12) and (2.13) is
observed.
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