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The objective of this paper is to investigate an online method to generate an optimal ascent
trajectory for air-breathing hypersonic vehicles. A direct method called the Pseudo-spectral
method shows promise for real-time optimal guidance. A significant barrier to this optimisa-
tion-based control strategy is computational delay, especially when the solution time of the
non-linear programming problem exceeds the sampling time. Therefore, an online guidance
algorithm for an air-breathing hypersonic vehicles with process constraints and terminal
states constraints is proposed based on the Pseudo-spectral method and sensitivity analysis
in this paper, which can reduce online computational costs and improve performance signifi-
cantly. The proposed ascent optimal guidance method can successively generate online open-
loop suboptimal controls without the design procedure of an inner-loop feedback controller.
Considering model parameters’ uncertainties and external disturbance, a sampling theorem is
proposed that indicates the effect of the Lipschitz constant of the dynamics on sampling fre-
quency. The simulation results indicate that the proposed method offers improved perform-
ance and has promising ability to generate an optimal ascent trajectory for air-breathing
hypersonic vehicles.
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1. INTRODUCTION. The air-breathing hypersonic launch vehicle has many
inherent features to reduce the cost of payloads for future space transportation
(Henry and McLellan, 1971). Optimal steering for an air-breathing hypersonic
launch vehicle exhibits completely different behaviour from conventional rocket
flight. Both thrust and lift depend on the atmospheric dynamic pressure (Yamamoto
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and Kawaguchi, 2007), and an optimal ascent guidance algorithm should be adopted
during the flight to achieve a fuel-optimal control trajectory.
Ascent phase trajectory optimisation and guidance of an air-breathing hypersonic

vehicle is a difficult non-linear problem with various constraints (Vinh, 1981;
García, 2005). Aerodynamics, propulsion, vehicle and attitude are strongly coupled
during the ascent phase. The traditional approach for trajectory guidance is online
tracking of the optimal reference profile which was designed offline (Li et al., 2014;
Saraf et al., 2004), but this method does not have enough capability to deal with exter-
nal disturbances such as aerodynamic and thrust errors.
When solving optimal guidance trajectories in endo-atmospheric flight, it is diffi-

cult to solve the Two Point Boundary Value Problem (TPBVP) in time. Both indirect
and direct methods have been mostly used to solve the offline trajectory optimisation
problem in previous literature (Conway, 2012). The numerical algorithms of non-
linear trajectory optimisation for vehicles were summarised and systematically ana-
lysed by Betts (1998) and Huang et al. (2012). Dukeman (2002) and Dukeman and
Calise (2003) developed a closed-form ascent guidance algorithm, to cyclically
solve the TBBVP during endo-atmospheric flight. The work of Murillo and Lu
(2010) adopted an indirect scheme to achieve a proposed closed-loop ascent guidance
algorithm by solving TPBVP; they first derived the necessary conditions of the
optimal ascent trajectory. However, indirect methods suffer from difficulties in
finding an appropriate initial guess and obtaining a convergent solution for the
TPBVP.
In recent years, with improvements in on board computer performance, a direct

optimal method named Gauss Pseudo-spectral Method (GPM) has been proved
to be an effective way to solve the real-time trajectory optimisation problem
(Bollino et al., 2006). GPM not only has high precision and fast convergence in
solving the optimal control problems, but also proved the equivalence between
the Karush-Kuhn-Tucker (KKT) conditions and the Hamiltonian Boundary
Value Problem (HBVP) first-order optimality conditions (Benson, 2005;
Huntington, 2007). This removes the need for computing analytical gradients of
aerodynamic coefficients. This approach to optimal feedback control based on the
Carathodory-π trajectory concept is capable of solving industrial-strength problems
and it offers the ability to solve the Non-linear Programming (NLP) problem online
(Ross et al., 2008). Two algorithms (free sampling frequency and fixed sampling fre-
quency) are proposed in a real-time optimal feedback control method based on a
domain transformation technique and a Radau-based Pseudo-spectral method.
The techniques are used for a flexible robot arm and a benchmark inverted pendu-
lum problem (Ross et al., 2006) as well. A rapid trajectory optimisation method via
GPM was recently studied for air-breathing hypersonic vehicles (Zhang et al., 2012).
However, a significant barrier to this optimisation-based control strategy is compu-
tational delay, especially when the solution time of the NLP problem exceeds the
sampling time.
Recently proposed non-linear programming sensitivity methods have reduced online

computational costs and can lead to significantly improved performance. Sensitivity
update strategy has been successfully used for Non-linear Model Predictive Control
(NMPC) problems (Zavala and Biegler, 2009; Yang and Biegle 2013). NMPC is an ap-
proach to feedback design that is based on the solution of an Optimal Control Problem
(OCP) at each controller update step (Grüne and Pannek, 2011). The basic sensitivity
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strategy for NLP problem solvers is derived through application of the Implicit
Function Theorem (IFT) to the KKT conditions of a parametric NLP problem
(Fiacco, 1976). However, the air-breathing hypersonic launch vehicle exhibits severe
non-linearity, the sample-and-hold technique used in traditional NMPC problems
cannot be adopted.
In this paper, an online guidance algorithm for an air-breathing hypersonic vehicles

with process constraints and terminal states constraints is proposed based on the
Pseudo-spectral method and sensitivity analysis. An approximated closed-loop
optimal control problem solution is computed in the following way: in each sampling
interval, the nominal non-linear model was used to predict the next sampling states
and an optimal control problem is solved based on the predicted states. When the
system dynamics are simulated to the next sampling instant, based on the difference
between predicted states and measured states, the resulting optimal control sequence
which is applied as input for the next sampling interval(s), is corrected via sensitivities.
This procedure is then repeated iteratively. The proposed ascent optimal guidance
method can successively generate online open-loop suboptimal controls without the
design procedure of an inner-loop feedback controller. This new proposed guidance
method has the ability of online trajectory reconstruction for the optimal performance
index and has high accuracy and robustness via sensitivity updates.
This paper is organised as follows. In Section 2 the nominal differential equations of

an air-breathing hypersonic launch vehicle are presented. In Section 3 the online
optimal guidance algorithm based on the Pseudo-spectral method and sensitivity
updates is proposed. In Section 4, considering model parameters uncertainties and ex-
ternal disturbance, a sampling theorem is proposed which indicates the effect of the
Lipschitz constant of the dynamics on sampling frequency. In Section 5, simulation
results indicate that the method proposed above offers improved performance and
has promising ability for online computation. In Section 6, some conclusions and indi-
cations of future research are given.

2. PROBLEM FORMULATION. During the ascent phase for a point-mass
vehicle model, the hypersonic vehicle dynamics are modelled using Equations (1) to
(4) for a non-rotating Earth assumption (Prasanna et al., 2005).

dh
dt

¼ v sin γ ð1Þ
dv
dt

¼ T cos α�D
m

� μ sin γ

ðRe þ hÞ2 ð2Þ

dγ
dt

¼ T sin αþ L
mv

þ cos γ
v

ðRe þ hÞ �
μ

vðRe þ hÞ2
" #

ð3Þ

dm
dt

¼ � T
Ispg

ð4Þ

where, h is the altitude, v is the velocity, α is the angle of attack, γ is the flight path
angle, m is the mass, T is the aircraft thrust, Isp is the engine specific, D and L are
drag and lift, respectively. μ is the gravitational constant, g is the gravitational acceler-
ation and Re is the radius of the earth.
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Lift force L and drag force D are given as follows:

L ¼ 1
2
ρv2Sref CLðMa; αÞ ð5Þ

D ¼ 1
2
ρv2Sref CDðMa; αÞ ð6Þ

where ρ, Sref are the air density of the current altitude and the reference area respect-
ively. CL and CD are the lift and drag coefficients respectively, which are the non-linear
functions of the attack angle α and the mach Ma.
Considering the thrust T and aerodynamic forces as a composition of forces, we

define the longitudinal, lateral accelerations and dynamic pressure as along, alat and
Q respectively.

along ¼ T cos α�D
m

� μ sin γ

ðRe þ hÞ2 ð7Þ

alat ¼ T sin αþ L
m

þ cos γ
v2

ðRe þ hÞ �
μ

ðRe þ hÞ2
" #

ð8Þ

Q ¼ 1
2
ρv2 ð9Þ

The 1976 US Standard Atmosphere is used as the model for the density ρ which is
applied to compute lift and drag force. The speed of sound c used to calculate the
Mach number Ma is also provided in the model.
Reduction in fuel will make the vehicle climb to a predetermined height; if we put

minimum fuel consumption as a objective of ascent flight phase, the cruise segment
of flight range will be greatly increased. For these reasons, the optimisation objective
is to minimise fuel consumption (or maximise mass at the end) during the ascent phase,
that is equivalent to the following formula:

min J ¼ �mf ð10Þ

3. OPTIMAL GUIDANCE ALGORITHM BASED ON PSEUDO-SPECTRAL
METHODAND SENSITIVITY UPDATES. The idea of a recursive open-loop so-
lution is compelling, because control is available at any point that has been defined as
optimal. Once the state is perturbed from the expected optimal path, correcting back
to that trajectory is likely not optimal from the disturbed position, and a new optimal
path originating from the current state should be introduced. However, a significant
barrier to this optimisation-based control strategy is computational delay, especially
when the solution time of the optimal control problem exceeds the sampling time.
Sensitivity analysis can be adopted to reduce online computational costs.

3.1. Optimal control problem. The optimal control problem, which is often
turned into a Non-linear Programming (NLP) problem, can be written in the following
general form (the 1976 US atmosphere model which as a lookup table was implemen-
ted in the optimisation problem (Murillo and Lu, 2010)). The state, x(t) = [h v γ m],
control, u(t) = α, and final time, tf, that minimise the cost function

J ¼ M½xðtf Þ; tf �þ ∫
tf
t0 gðxðtÞ; uðtÞ; tÞdt ð11Þ
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subject to the constraints, differential dynamics, terminal constraints and path con-
straints:

_xðtÞ ¼ f xðtÞ; uðtÞ; t½ � ð12Þ
φ xðt0Þ; t0; xðtf Þ; tf
� � ¼ 0 ð13Þ
c½xðtÞ; uðtÞ; t� � 0 ð14Þ

3.2. The basic principle of the Gauss Pseudo-spectral Method. The trajectory op-
timisation problem is formulated over the time interval [t0, tf ], and the Legendre-Gauss
(LG) points lie in the interval [−1, +1]. Consider now the following transformation of
the independent variable, t, to the variable τ ϵ [−1, +1] (Benson, 2005) :

t ¼ tf � t0
2

τ þ tf þ t0
2

ð15Þ

Furthermore, we choose the collocation points in the phase to be the set of LG points,
(τ1,…, τN), which are the roots of an Nth-degree Legendre polynomial, PN (τ), given as

PN ¼ 1
2NN!

dN

dτN
½ðτ2 � 1ÞN � ð16Þ

The state and control variables are approximated by using a basis of N + 1 Lagrange
interpolating polynomials, Li (τ) (i = 0, 1, …N)

x τðtÞð Þ ¼
XN
i¼0

x τið ÞLi τð Þ ð17Þ

u τðtÞð Þ ¼
XN
i¼1

u τið ÞLi τð Þ ð18Þ

The derivative of Equation (17) at the LG points τk (k = 1, 2…, N) can be represented
as follows

_xðτkÞ ¼ 2
tf � t0

XN
l

Dklxl ð19Þ

where D= [Dkl] is a (N) × (N+ 1) differential approximation matrix,

Dkl ¼ _LlðτkÞ ¼
XN
i¼0

QN
j¼0; j≠l;i

ðτk � τjÞ

QN
j¼0; j≠l

ðτl � τjÞ
ð20Þ

where k = 1, …, N and l= 0, 1, …N. So the state dynamic constraint Equation (12) is
transcribed into algebraic constraints via the differential approximation matrix as
follows

XN
l¼0

Dklxl � tf � t0
2

f ðxk; ukÞ ¼ 0 ð21Þ
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Also terminal constraints and path constraints are transcribed as follows

eðx0; xN ; τ0; τf Þ ¼ 0 ð22Þ
cðxk; ukÞ � 0 ð23Þ

The cost function can be approximated with a Gauss quadrature, resulting in

J ¼ Eðx0; xN ; τ0; τf Þ þ tf � t0
2

XN
k¼1

Fðxk; ukÞwk ð24Þ

Here, wk is the Gauss weights defined as

wk ¼ 2
1� τ2l

½ _LNðτlÞ�2 ð25Þ

Finally, the optimal control problem is transformed into a NLP problem, it can be
summarised as: finding the state parameters XN= [x0, x1, …, xN], control parameters
UN= [u1, …, uN] to make the cost function of Equation (24) minimised under the
condition that all the constraints of Equations (21) to (23) are satisfied.
Although the Pseudo-spectral Method can be used to calculate an open-loop

optimal trajectory in a very short time, for the online vehicle ascent phase optimal
guidance problem under model parameters uncertainties and external disturbance
Equation (26), a significant barrier to this optimisation-based control strategy is com-
putational delay, especially when the solution time of the NLPP exceeds the sampling
time.

_x ¼ f ðx; u; t; pÞ þ dðtÞ ð26Þ
where p represents the model parameters and d(t) represents the external disturbance.

3.3. NLP Sensitivity Analysis. In recent decades, NLP sensitivity analysis has
been applied to numerous applications in process engineering with parameters that re-
present uncertain data or unknown inputs (Zavala and Biegler, 2009; Yang and Biegler,
2013). In the MPC feedback context, Zavala and Biegler (2009) analysed the impact
of sensitivity updates on the stability of the closed loop in the presence of stabilising
terminal constraints and Lyapunov-type terminal costs.
After an optimal control problem has been transformed into a NLP problem, we can

write the NLP as P(p) which is parametric in the initial state p: = x0 via Equation (27)

min JNðz; pÞ
subject to Ciðz; pÞ ¼ 0; i ¼ 1; . . . ; ne
Ciðz; pÞ � 0; i ¼ ne þ 1; . . . ; nc

ð27Þ

where z denotes the non-linear program variable.
The Lagrangian function can be denoted as Equation (28)

Lðz; μ; pÞ ¼ JNðz; pÞ þ μTCðz; pÞ ð28Þ
The index set of active constraints is shown as Equation (29)

Aðz; pÞ ¼ f1; . . . ; neg ∪
fi Ciðz; pÞ ¼ 0; i ¼ ne þ 1; . . . ; ncj g ð29Þ
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we denote CA(z,p) and μA(z,p) as the active constraints and the corresponding multipliers
respectively.
The NLP Sensitivity Theorem (Fiacco, 1976) states sufficient conditions for the re-

lationship between an optimal solution z(p) and the parameter p. The theorem states:
Lemma 1: Considing Equation (28), suppose that JN and C are at least twice differ-

entiable in a neighborhood of the nominal solution z*(p0). If the Linear Independence
Constraint Qualification (LICQ), the Sufficient Second order Optimality Conditions
(SSOC) and the Strict Complementarity Condition (SCC) are satisfied in this neigh-
borhood, then we have that:

. z*(p0) is an isolated local minimizer and the respective Lagrange multipliers are
unique.

. for where p is in a neighborhood of p0 there exists a unique local minimizer z*(p)
which satisfies LICQ, SSOC and SCC and is differentiable with respect to p.

. there exists a Lipschitz constant LJ such that such that

JNð pÞ � JNð p0Þj j � LJp p� p0k k ð30Þ

. there exists a Lipschitz constant Lz such that for the solution z

zð pÞ � zð p0Þj j � Lzp p� p0k k ð31Þ

Based on the implicit function theorem (Fiacco, 1976), we can obtain Equation (32)

∇2
zzLðz�; μ�; p0Þ ∇zCAðz�; p0Þðz�; p0ÞT

∇zCAðz�; p0Þðz�; p0Þ 0

" #
�

∂z
∂p

ð p0Þ
∂μAðz�; p0Þ

∂p
ð p0Þ

2
664

3
775

¼ � ∇2
zpLðz�; μ�; p0Þ

∇pCAðz�; p0Þðz�; p0Þ

" #
ð32Þ

where the matrix
∂z
∂p

ðp0Þ;
∂μAðz�; p0Þ

∂p
ðp0Þ

� �T
is called the sensitivity matrix. It is simple

to obtain a first-order approximation of the optimal solution for a perturbed param-
eter via Equation (33)

zð pÞ ¼ z�ð p0Þ þ ∂z
∂p

ð p0Þ � ð p� p0Þ ð33Þ

where
∂z
∂p

ðp0Þ is the sensitivity. During the computation of the optimal control

problem, sensitivity information can be obtained very easily with improvements in
fast Newton-based barrier methods. The software Interior Point Optimiser (IPOPT)
and Sensitivity IPOPT (sIPOPT) (Pirnay et al., 2012) are used to compute the sensitiv-
ity information, where IPOPT solves a non-linear program in the background and
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sIPOPT provides an estimate of a neighboring solution. Moreover, in Equation (33),
∂z
∂p

ðp0Þ is directly available in factored form from the optimal solution by IPOPT, so

the sensitivity can be calculated through a simple back solution by sIPOPT.
3.4. Real-time optimal guidance algorithm. If the sampling frequency of the

system is fixed, an approximated closed-loop solution of an optimal control
problem is computed in the following way: in each sampling interval, we use the
nominal non-linear model to predict the next sampling states, an optimal control
problem is solved based on the predicted states. When the system dynamics are simu-
lated to the next sampling instant, based on the difference between predicted states and
measured states, the resulting optimal control sequence is corrected via sensitivities
and is applied as input for the next sampling interval(s). This procedure is then
repeated iteratively.
We denote t0 as the initial time, ti (i= 1, 2, …) represents the sampling instant, ΔT is

the fixed sampling period; x(t0) is the initial state, x(ti) and x̂ðtiÞði ¼ 1; 2; . . .Þ represent
the measured state and the predicted state respectively; u�ðx̂ðtiÞ; tÞ is the optimal
control via GPM and uðx̂ðtiÞ; tÞ is the corrected control via sensitivity updates; we
denote tpi(i = 1, 2, …) as the predicted time from ti−1 to ti and tgi (i = 1, 2, …) as
the computational time of the optimal control problems from ti−1 to tf with the
initial state x̂ðtiÞ. The real-time optimal guidance algorithm design is summarised in
the following algorithm and is shown in Figure 1.
Step 1: Choose the discrete parameter N , the fixed sampling period ΔT and the first

sampling time t1; Collect the initial state x0 = x(t0) and set i = 1. Use the Pseudo-
spectral method to calculate the optimal controller u0

* = u*(x0,t) and apply it to the
system until t1 = t0 + ΔT and get the the predicted state x̂ðt1Þ;
Step 2: Collect the real measurement x(t1), correct the control via sensitivity updates

Equation (34)

uðxðt1Þ; tÞ ¼ u�0 þ
∂u�0

∂x̂ðt1Þ ðxðt1Þ � x̂ðt1ÞÞ ð34Þ

Step 3: Propagate the system dynamics with the control u(x(ti−1),t) with x(ti−1) as the
initial condition to time ti and get the the predicted state x̂ðtiÞ;
Step 4: Use the Pseudo-spectral method to calculate the optimal controller

u�ðx̂ðtiÞ; tÞ with x̂ðtiÞ as the initial condition;
Step 5: If tpi+ tgi≤ ΔT, collect the measurement x(ti), correct the control via

sensitivity updates to get the control u(x(ti), t) as Equation (35) and go to Step 3;
If tpi+ tgi> ΔT, during time period [ti, ti+1], apply the control u(x(ti−1), t) and get the
predicted state x̂ðtiþ1Þ, go to Step 3;

uðxðtiÞ; tÞ ¼ u�i þ
∂u�i
∂x̂ðtiÞ ðxðtiÞ � x̂ðtiÞÞ ð35Þ

We denote that if the control values violate their corresponding constraints, then the
control command u(t) is limited to satisfy the active constraint (Jiang et al., 2012) as
Equation (36).

uðtÞ ¼ fv ∈ U c xðtÞ; uðtÞ; t½ �j ¼ 0g ð36Þ
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4. FEEDBACK-BASED REQUIREMENTS ON SAMPLING FREQUENCY.
Consider two trajectories x(t) and ri(t). x(t) is the system trajectory under the real
control ui(t) = u(x(ti),t), ri(t) is the is the optimal trajectory starting from the same
initial condition x(ti) and driven by the optimal control ui

*(t) = u*(x(ti), t). For each
sampling interval [ti, ti+1], where x(t) satisfies

_xðtÞ ¼ f ðxðtÞ; uiðtÞ; pÞ þ dðtÞ
xðtiÞ ¼ xðtiÞ

and ri(t) satisfies

_riðtÞ ¼ f ðriðtÞ; u�i ðtÞ; p0Þ
riðtiÞ ¼ xðtiÞ

Assumption 1: For the non-linear system Equation (26), model parameters uncer-
tainties and external disturbance are bounded, there exist εp> 0, εd> 0, such that

p� p0k k � εp; dk kL∞
� εd

Assumption 2: The non-linear vector field f (x, u, t;p) is Lipschitz continuous, i.e.,
there are constants Lfx> 0, Lfu> 0, Lfp > 0, such that:

f ðx; u; pÞ � f ðy; v; qÞk k � Lfx x� yk k þ Lfu u� vk k þ Lfp p� qk k
Assumption 3: Given any two initial conditions x1 and x2, we denote u

*(x1, t) and
u*(x2, t) as the optimal controls with the corresponding initial conditions. It is
assumed that there are constants Lux > 0, such that for all t ϵ [t0, ∞)

u�ðx1; tÞ � u�ðx2; tÞk k � Lux x1 � x2k k
This assumption requires that the difference in the optimal controls be linearly
bounded by the difference in the initial conditions.

Figure 1. Real-time optimal guidance algorithm.
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Assumption 4: Errors between the predicted state and the real state caused by model
parameters uncertainties and outside disturbance are bounded. There are positive con-
stants δ, such that for all i and t ϵ [t0, ∞):

xðtiÞ � x̂ðtiÞk k � δ

Assumption 5: The relationship between the corrected control via sensitivity updates
and the optimal control is as follows, there are positive constants εu, such that for all i
and t ϵ [ti, ti+1]:

uðxðtiÞ; tÞ � u�ðx̂ðtiÞ; tÞk k ¼ ∂u�i
∂x̂ðt1Þ xðtiÞ � x̂ðtiÞk k � ∂u�i

∂x̂ðt1Þ δ � εu

where
∂u�i

∂x̂ðt1Þ is the sensitivity. εu is used to represent the sensitivity and the computa-

tional error in the calculation of the optimal controller.
Definition 1: The multivalued function W(x), x ϵR, given implicitly by

W ðzÞeWðzÞ ¼ z ð37Þ
is called the Lambert W function (Ross et al., 2008). For x≥ 0, W(x) is single-valued.
Lemma 2: Let t0; tf

� � ! yðtÞ ∈ Rþ be an integrable function that satisfies
Gronwalls inequality (Ross et al., 2008):

yðtÞ � aðtÞþ ∫
tf
t0 bðsÞyðsÞds ð38Þ

where a(t), b(t) are continuous, nonnegative, bounded functions, with t :! aðtÞ nonde-
creasing over the interval t0; tf

� �
; then

yðtÞ � aðtÞeBðtÞ ð39Þ
BðtÞ ¼∫

tf
t0 bðsÞds ð40Þ

The process of the proof is similar to the notes (Ross et al., 2008), but additionally,
we consider the effect of model parameters, uncertainties, external disturbance and
sensitivities. We note that all of the statements below are under the assumption that
tpi+ tgi≤ ΔT; if tpi+ tgi> ΔT, the ones below should be progressed as indicated in
Step 5, Section 3.4.
Theorem 1: Let the controller be designed according to the proposed algorithm.

Under Assumption 1–5, for any given ε> 0 if

ΔT � ΔTm ð41Þ
where ΔTm satisfies

ΔTm ¼ WðzmÞ
Lfx

ð42Þ

zm ¼ εLfx

A
ð43Þ

A ¼ Lfuðεu þ LuxδÞ þ Lfpεp þ εd ð44Þ
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then,

xðtiþ1Þ � riðtiþ1Þk k � ε ð45Þ
Proof: By the Principle of Optimality, u�ðx̂ðtiÞ; tÞ is the optimal control with the initial
condition x̂ðtiÞ. Therefore, from Assumption 3 and Assumption 5, ∀t ∈ ti; tiþ1½ �,

uiðtÞ � u�i ðtÞ
�� �� � uiðtÞ � u�ðx̂ðtiÞ; tÞk k þ u�ðx̂ðtiÞ; tÞ � u�i ðtÞ

�� ��
� εu þ Lux x̂ðtiÞ � xðtiÞk k � εu þ Luxδ

By Assumption 1 and Assumption 2, we can obtain

xðtÞ � riðtÞk k � Lfx ∫
t
ti xðτÞ � riðτÞk kdτ þ LfuΔT uiðtÞ � u�i ðtÞ

�� ��
þ LfpΔT p� p0k k þ ΔT dk k∞
� Lfx ∫

t
ti xðτÞ � riðτÞk kdτ þ AΔT

ð46Þ

where A = Lfu (εu +Luxδ) +Lfpεp+ εd. Moreover, by Gronwalls inequality (Ross et al.,
2008), from Equation (46) we can get:

xðtÞ � riðtÞk k � AΔTeLfxΔT

When t= ti+1,

xðtiþ1Þ � riðtiþ1Þk k � ðA=LfxÞLfxΔTeLfxΔT ð47Þ
Based on Definition 1 of the Lambert W function, it can be easily verified that for zm,
c ϵR+, if c ≤W(zm), then cec≤ zm. Hence letting c= ΔTLfx, from Equations (42) to
(44), we have

xðtiþ1Þ � rðtiþ1Þk k � ðA=LfxÞzm ¼ ε ð48Þ
According to the property of the W function, there exists a maximal ΔTm satisfying

ΔTm ¼ WðεLfx=AÞ
Lfx

ð49Þ

Remark 1: From Equations (47) and (48) we can see that errors between the
real state and the optimal state of the nominal model are bounded and are affected
by the sampling period, the sensitivity, the computational error, model parameters
uncertainties and external disturbance.
Remark 2: The sample period is mainly determined by the Lipschitz constants of the

system. The W function is an increasing function. The maximal ΔTm can be obtained
by Equation (42).
Remark 3: For the infinite-horizon feedback control problem, optimal control has

the advantage of guaranteeing stability through the Bellman value function serving
as a natural Lyapunov function (Clarke, 2004). However, the online vehicle guidance
problem is a finite-horizon feedback control problem. Thus, if open-loop optimal con-
trols are generated starting at ti ϵ π for each x(ti), it is possible to guide a vehicle to
its target by generating a Carathodory-π feedback solution (Ross et al., 2008). The
proposed method can generate a corrected Carathodory-π feedback solution online.
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5. SIMULATION RESULTS AND ANALYSIS
5.1. Simulation parameters. In this section, we present the trajectory optimisa-

tion problem proposed in the previous sections. Gauss Pseudospectral Optimisation
Software (GPOPS) (Rao et al., 2010; Patterson and Rao, 2014) and sIPOPT (Pirnay
et al., 2012) are used as the simulation software. During the ascent phase of the trajec-
tory, the parameters used in solving the problem are as follows (Prasanna et al., 2005):
reference area S = 1 m2, the empty mass of the aircraftm1 = 2000 kg, the quality of fuel
m2 = 1600 kg, the initial mass of the aircraft m0 =m1 +m2 = 3600 kg, the gravitational
constant μ= 3·9853 × 1014 m3/s2, g= 9·8 m/s2 and Re= 6378000 m is the radius of the
earth. The number of LG point is 20. The other parameters used in simulation are
shown in Tables 1 to 6.
At 32·5 km, let the density be ρ32·5, speed of sound be C32·5, and the speed corre-

sponding to a given mach number M is v32·5 =MC32·5. _mairð32�5Þ is shown in Table 6.
The hypersonic propulsion system has been modelled using data on air mass flow

rate ( _mair) and specific impulse (Isp) as functions of Mach number (M), angle of
attack (α) and altitude (h), respectively. From ( _mair) the thrust (T) can be found
using Equations (50) and (51), where _mf ¼ _mairf=15, f is the equivalence ratio and
during ascent phase its value is 1. A is the nozzle area.

_mair|{z}
at given altitude

¼ _mairð32�5Þ
ρ32�5v32�5A

ρvA|{z}
at given altitude

ð50Þ

T ¼ Isp _mf g ð51Þ

5.2. Analysis of the optimised results. Solving optimal control problems by means
of the Pseudo-spectral method implies that the differential equation is approximated
by a discrete time counterpart. In order to assess the accuracy of the discretization,
we may simulate the system using the optimal control profile as input. With this ap-
proach, the state profiles are computed with high accuracy and the result may then
be compared with the profiles resulting from optimisation. Notice that this procedure
does not verify the optimality of the resulting optimal control profiles, but only the ac-
curacy of the discretization of the dynamics. The comparison of the two states is shown
in Figures 2 and 3 and the number of discretization points used in the optimal control
solution is 30 in Figures 2 and 3. The magnitude of relative errors between them are
10−3∼ 10−4, so the optimised results are credible.

5.3. Simulation of online trajectory reconstruction. The external disturbance will
lead the trajectory to deviate from the standard trajectory during the flight. Based on
the current measured states, the trajectory should be re-planned to meet the terminal
and path constraints from the proposed method. The sampling period for starting the
online trajectory reconstruction algorithm and updating the guidance commands is
defined as 5 s. To assess the capability of the proposed method to deal with disturb-
ance, the aerodynamic coefficients variations in the simulations are given by following
cases:

. Closed-loop simulation based on Pseudo-spectral method optimal control with
sensitivity updates: set drag coefficient error is +10% and lift coefficient error is
−10%
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. Closed-loop simulation base on Pseudo-spectral method optimal control without
sensitivity updates: set drag coefficient error is +10% and lift coefficient error is
−10%

. Open-loop simulation with off-line optimal control command: set drag coefficient
error is +10% and lift coefficient error is −10%

. Simulation with off-line optimal control command in the normal case without
error

The trajectory without reconstruction is defined as the open-loop trajectory. As a
contrast, Table 7 lists the deviation of the re-planning trajectory with sensitivity
updates and the re-planning trajectory without sensitivity updates for the terminal con-
straints and the max trajectory re-planning time during flight. The results are shown
from Figure 4 to Figure 8. Figure 4 illustrates the altitude-versus-time profiles in the
four cases. Figure 5 illustrates the velocity-versus-time profiles in the four cases. As
expected, the flight trajectory with the online trajectory reconstruction algorithm can
arrive at the terminal altitude. If there is no trajectory reconstruction, the open-loop

Table 1. Boundary Conditions.

h(m) v(m/s) γ(rad) m(kg)

x(t0) 16000 1198 0·0698 3600
x(tf) 32000 1840 0 ≥2000

Table 2. Constraint Conditions.

α(deg) γ(deg) Q(Pa))

min 0 −15° 0
max 8° 15° 132000

Table 3. Lift Coefficients.

Mach/α 0° 2° 4° 6° 8°

3·5 0·178 0·665 1·146 1·628 2·099
4·0 0·189 0·629 1·075 1·533 1·969
5·0 0·186 0·576 0·973 1·379 1·782
6·0 0·180 0·530 0·893 1·259 1·614
6·5 0·165 0·494 0·842 1·203 1·574

Table 4. Drag Coefficients.

Mach/α 0° 2° 4° 6° 8°

3·5 0·427 0·477 0·571 0·706 0·874
4·0 0·431 0·480 0·561 0·649 0·841
5·0 0·332 0·376 0·452 0·530 0·705
6·0 0·269 0·274 0·342 0·413 0·572
6·5 0·249 0·288 0·352 0·447 0·575
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flight trajectory cannot meet the terminal altitude constraint. Figure 6 illustrates the
control-versus-time profiles in the four cases. The oscillatory behavior of the angle of
attack near the end of the trajectory is affected by the sampling period of the online tra-
jectory reconstruction algorithm. In our paper, the sampling period for starting the
online trajectory reconstruction algorithm and updating the guidance commands is
defined as 5 s. This is because the simulation environment is Matlab; the sampling
period should be much shorter in a C or C++ language environment and the oscillatory
behavior of the angle of attack near the end of the trajectory should be improved.
Figure 7 illustrates the dynamic presssure-versus-time profiles in the four cases. If

Figure 2. Feasibility analysis of the altitude curve.

Table 6. Mass flow rate of air (-kg/s) corresponds to altitude 32·5 km.

Mach/α 0° 2° 4° 6° 8°

3·5 6·9513 7·2387 8·2962 8·9447 9·6047
4·0 8·9355 9·6937 10·6681 11·6734 12·6860
5·0 12·7916 14·7104 16·6331 18·6106 20·3261
6·0 17·7370 21·1998 24·7330 26·8701 29·1919
6·5 21·5142 25·1683 29·6150 33·1770 35·2587

Table 5. Specific impulse (Isp in seconds).

M/h(km) 15 20 25 30 35 40

3·0 1054·4 1044·8 1024·8 1005·6 976·8 943·2
4·0 1054·4 1044·8 1024·8 1005·6 976·8 943·2
5·0 964 952 931·2 909·6 879·2 847·2
6·0 848·8 837·6 816·8 799·2 775·2 749·6
7·0 719·2 712·8 697·6 687·2 668·8 644
8·0 594·4 592·8 580·8 569·6 542·4 499·2
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Figure 3. Feasibility analysis of the speed curve.

Table 7. Reconstruction precision and time on disturbance on-line.

With sensitivity Without sensitivity

Altitude(m) 31999·14 31998·71
Speed(m/s) 1838·98 1838·32
Flight path angle(deg) 0·0011 0·0013
Mass(kg) 2913·11 2894·20
Max re-planning time 4·13 s 3·94 s

Figure 4. The altitude curve.
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there is no trajectory reconstruction, the open-loop flight trajectory will exceed the path
constraints. Figure 8 illustrates the mass-versus-time profiles in the four cases. The
online trajectory reconstruction algorithm with sensitivity updates can consume less
mass. The time to reconstruct the trajectory is shorter than 5 s, it should be much
faster in a C or C++ language environment. The re-planning trajectory with sensitivity
updates has indeed improved the performance indexes from the data in Table 7.

6. CONCLUSIONS ANDFUTUREWORK. Forhypersonic ascent phase optimal
guidance problems, an online optimal guidance algorithm based on Pseudo-spectral

Figure 5. The velocity curve.

Figure 6. The control curve.
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method and sensitivity analysis is proposed. The proposed closed-loop feedback
method can successively generate online open-loop suboptimal controls without
the design procedure of an inner-loop feedback controller. Considering model par-
ameter uncertainties and external disturbance, a sampling theorem is proposed
which indicates the effect of the Lipschitz constant on the dynamics of sampling

Figure 7. The dynamic pressure curve.

Figure 8. The mass curve.
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frequency. The simulation results indicate that the method proposed above offers
improved performance and has ability for online calculation. Future work will
propose a guidance law for tracking the re-planning ascent phase trajectory and
estimating aerodynamic parameters and density online to get higher predicted
accuracy.
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