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We study a predator{prey system with Holling{Tanner interaction terms. We show
that if the saturation rate m is large, spatially inhomogeneous steady-state solutions
arise, contrasting sharply with the small-m case, where no such solution could exist.
Furthermore, for large m, we give sharp estimates on the ranges of other parameters
where spatially inhomogeneous solutions can exist. We also determine the asymptotic
behaviour of the spatially inhomogeneous solutions as m ! 1 , and an interesting
relation between this population model and free boundary problems is revealed.

1. Introduction

In this paper, we study positive steady-state solutions of the system

ut d1¢u = u(a u bv=(1 + mu)); x 2 D; t > 0;

vt d2¢v = v(d v + cu=(1 + mu)); x 2 D; t > 0;

@u

@¸
=

@v

@¸
= 0; x 2 @D; t > 0;

9
>>=

>>;
(1.1)

where d1, d2, a, b, c, d and m are constants, and they are all positive except d
which may be negative, D is a bounded domain in RN with smooth boundary @D,
and ¸ is the unit outer normal vector on @D. The system (1.1) is a predator{prey
model, where u and v represent the densities of the prey and predator. Thus only
non-negative solutions of (1.1) are of interest. The interaction term, uv=(1 + mu),
is of the Holling{Tanner type, where m measures the prey’s ability to evade attack:
the more elusive the prey, the larger m becomes (see [31]).

The understanding of (1.1) is quite complete when m is small. For m = 0,
Leung [26] proved that all positive solutions of (1.1), regardless of the initial data,
converge to a constant steady-state solution as time goes to in­ nity. It follows
from [3,13] that the results of Leung still hold for small positive m.

In this paper, we want to understand how the behaviour of (1.1) changes when
m becomes large. For m not small, Hainzl [19,20] studied the corresponding kinetic
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system of (1.1) in depth. Among other things, his results show that (1.1) can have
spatially homogeneous periodic solutions. However, little is known about spatially
inhomogeneous steady-state or periodic solutions of (1.1), which are also impor-
tant in determining the dynamics of (1.1). The main purpose of this paper is to
understand all the positive steady-state solutions of (1.1) with large m. Thus we
will concentrate on the system

¢u = u(a u bv=(1 + mu)); x 2 D;

¢v = v(d v + cu=(1 + mu)); x 2 D;

@u

@¸
=

@v

@ ¸
= 0; x 2 @D;

9
>>=

>>;
(1.2)

which is obtained from (1.1) by using the rescaling

u = d1 ~u; v = d2~v; a = d1~a; b = (d2=d1)~b;

d = d2
~d; c = d2=d1~c; m = ~m=d1:

For simplicity, we have dropped the ~¢ sign in (1.2).
We will use d, the growth rate of the predator, as the main parameter, with

other parameters being ­ xed; in particular, m will be ­ xed at a large value. Under
such assumptions, the constant positive solution set of (1.2) is fully understood as
follows: system (1.2) has no constant positive solution if d 62 ( ca=(1 + ma); d ¤ ], a
unique constant positive solution for d 2 ( ca=(1 + ma); a=b] [ fd ¤ g, and exactly
two constant positive solutions for d 2 (a=b; d ¤ ), where d ¤ = (a2=4b)m + o(m) is a
positive constant depending on a, b, c and m.

It turns out that when m is su¯ ciently large, non-constant positive solutions
of (1.2) can exist only for a more restricted range of d. More precisely, we have the
following result.

Theorem 1.1. There exists a large M > 0, depending only on a, b and c, such that
if m > M and d 62 (a=b; d ¤ ), then (1.2) does not have any non-constant positive
solutions.

On the other hand, system (1.2) does have many non-constant positive solutions
if m is large and d falls into the range (a=b; d¤ ). Moreover, as shown in the following
result, system (1.2) has at most two types of non-constant positive solutions when
m is large.

Theorem 1.2. Let f(un; vn)g 1
n = 1 be any non-constant positive solutions of (1.2)

with (d; m) = (dn; mn) and mn ! 1. Then kvn dnk 1 ! 0 and, subject to choos-
ing a subsequence, one of the following conclusions must hold.

(i) dn ! d 2 (a=b; +1), mnun=dn ! w in C2, where w is a positive smooth
solution of

¢w + w

³
a

b

1=d + w

´
= 0;

@w

@¸

­­­­
@D

= 0: (1.3)

(ii) dn ! 1, dn=mn ! ¬ 2 [0; a2=(4b)) and mnun=dn ! w in C1, where w is a
non-negative non-trivial weak solution of the problem

¢w + w(a ¬ w) bÀ fw>0g = 0;
@w

@¸

­­­­
@D

= 0: (1.4)
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Theorem 1.2 implies that if (u; v) is a non-constant positive solution of (1.2)
with large m, then v is close to d, and mu=d is close to a solution of (1.3) or (1.4);
conversely, we can show that non-degenerate positive solutions of (1.3) and (1.4)
induce positive solutions of (1.2) for large m (see x 4.3 for details). It is interesting
to note that (1.4) is of free boundary type when fx 2 D : w(x) = 0g is not empty.

This paper is organized as follows. In x 2, we present some general results on (1.1)
and (1.2). In x 3, we establish some non-existence results on non-constant positive
solutions of (1.2), which includes theorem 1.1 as a special case. A local bifurcation
result of Crandall and Rabinowitz [10] will play an important role here. In x 4, we
concentrate on the existence of non-constant positive solutions of (1.2): we ­ rst
establish theorem 1.2 and then determine when (1.3) or (1.4) have non-trivial solu-
tions; ­ nally, we show how non-trivial solutions of (1.2) can be obtained by using
solutions of (1.3) and (1.4). Here our arguments rely heavily on critical point theory
and topological degree theory.

The system (1.1) with Dirichlet boundary conditions, especially the case m = 0,
has received extensive studies in the last two decades (see [4,11,12,25,27{29,33] and
the references therein); the biologically more interesting case m > 0 was studied
in [2, 5, 15, 16]. It is known that for small positive m, the system (1.1) behaves
similarly as the relatively simple case m = 0; for large m, the system (1.1) is much
more complicated, e.g. there may exist multiple stable steady-states, and Hopf
bifurcation can occur (see [5,15,16]).

The study of predator{prey models has a long history. Apart from the works
mentioned above, we refer to Conway [8] and Smoller [32] for references on di¬usive
predator{prey models; for works on ODE-type predator{prey models, see [9,17,22].

2. Some preliminary results

In this section, we present some general results which can provide us a general look
on the problem. First, we study constant positive solutions of (1.2). The function

H(u) = b 1(a u)(1 + mu) cu=(1 + mu)

turns out to be very useful. In fact, it is easily seen that (u; v) is a constant positive
solution of (1.2) if and only if u is a solution of H(u) = d in the interval (0; a).
Throughout this paper, we de­ ne

d¤ = max
u2 [0;a]

H(u):

Note also that
min

u2 [0;a]
H(u) = H(a) = ca=(1 + ma):

By an elementary analysis of the curve d = H(u), which is essentially cubic,
we obtain the following result, which gives a rather complete description of the
constant solution set of (1.2). Its easy proof is omitted.

Theorem 2.1. Let m2 = a 1(1 + bc) and

m1 =

(
m2 if bc 6 1;

a 1[3(bc)1=3 1] < m2 if bc > 1:
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Then the following statements hold.

(i) For any m > 0, then the system (1.2) has no constant positive solution
for d 62 ( ca=(1 + ma); d¤ ], and at least one constant positive solution for
d 2 ( ca=(1 + ma); d ¤ ).

(ii) If 0 6 m < m1, then H(u) is strictly decreasing in (0; a), d ¤ = a=b and (1.2)
has a unique constant positive solution if d 2 ( ca=(1 + ma); d ¤ ).

(iii) If m > m2, then H 0(u) changes sign exactly once, from positive to nega-
tive, in (0; a), d¤ > a=b, the system (1.2) has no constant positive solu-
tion for d 62 ( ca=(1 + ma); d ¤ ], a unique constant positive solution for
d 2 ( ca=(1 + ma); a=b] [ fd ¤ g, and exactly two constant positive solutions
for d 2 (a=b; d¤ ).

Remark 2.2. A complete understanding of the constant positive solutions of (1.2)
can also be obtained for the case m1 < m < m2. For this case, H 0(u) changes sign
exactly twice in (0; a), and hence there are ranges of d such that (1.2) has three
constant positive solutions.

The following result gives a complete understanding of (1.1) for small positive m.

Theorem 2.3. Suppose that m 6 a 1. Then we have the following.

(i) If d 2 ( ca=(1 + ma); a=b), the unique constant positive solution is globally
attractive, i.e. any solution of (1.1) with non-trivial non-negative initial data
converges to the constant positive solution as time goes to in¯nity.

(ii) If d > a=b, (0; d) is globally attractive.

(iii) If d 6 ca=(1 + ma), (a; 0) is globally attractive.

Proof. We ­ rst show that (i) follows from [13]. Following [13], we write (1.2) as

¢u = h(u)[f (u) a(v)]; ¢v = k(v)[ g(v) + b(u)];

where

h(u) = u=(1 + mu); f (u) = (a u)(1 + mu); a(v) = bv;

k(v) = v; g(v) = v d; b(u) = cu=(1 + mu):

Then it is easy to check that the conditions (A1){(A10) in [13] are satis­ ed. Then (i)
follows from theorem 1 there; for (ii) and (iii), one checks that (A1){(A10) of [13]
are satis­ ed with (û; v̂) = (0; d) and (a; 0), respectively. Again, the conclusions (ii)
and (iii) are consequences of theorem 1 there.

Proposition 2.4. If d 6 ca=(1 + ma), then (1.2) has no positive solution.

Proof. Suppose that (1.2) has a positive solution (u0; v0). We show that d >
ca=(1 + ma). First, by the equation of u0, we have u0 < a. This implies that

¢v0 < v0(d v0 + ca=(1 + ma)):
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By the maximum principle, we have d + ca=(1 + ma) > v0 > 0, i.e.

d > ca=(1 + ma):

Remark 2.5. It would be interesting to know whether (1.2) can have a non-
constant positive solution for d > d ¤ . By theorem 2.3, the answer is no if m 6 a 1.
We will show in the next section that when m is large, the answer is also no.
In fact, from now on, we will concentrate on the large-m case. We remark that
d ¤ =m ! a2=(4b) as m ! 1, and a proof of this can be found in the next section.

3. Non-constant solutions: non-existence

In this section, we ­ nd the ranges of d where (1.2) does not have any non-constant
positive solutions. In general, such accurate results are hard to obtain. However,
we will show that it can be done when m is large. The main result of this section
is as follows.

Theorem 3.1. There exist a small ° 0 > 0 and a large M0 > 0, both depending only
on a, b and c, such that if m > M0 and d 62 [a=b + ° 0; m(a2=(4b) ° 0)], then (1.2)
has no non-constant positive solution.

It is easy to check that theorem 3.1 follows from propositions 3.2 and 3.4. Note
that theorem 3.1 includes theorem 1.1 as a special case; moreover, as we shall see
in x 4, theorem 3.1 is also crucial in establishing theorem 1.2.

3.1. A lower bound of d

The main result of this subsection is as follows.

Proposition 3.2. There exists a small ° 1 > 0 and a large M1 > 0, depending only
on a, b, c, such that if m > M1 and d 6 a=b + ° 1, then (1.2) has no non-constant
positive solution.

To prove proposition 3.2, we need the following a priori estimates.

Lemma 3.3. Let (un; vn) be positive solutions of (1.2) with (m; d) = (mn; dn).
Suppose that mn ! 1 and dn ! ·d 6 a=b. Then kvn dnk 1 ! 0 and either
kun ak 1 ! 0 or mnkunk1 ! 0. Moreover, if mnkunk 1 ! 0, then ·d = a=b,
and un=kunk 1 ! 1 uniformly.

Proof. By the maximum principle, we have dn 6 vn 6 dn + c=mn. Hence we have
kvn dnk1 ! 0.

Claim. Passing to a subsequence if necessary, we have that either mnkunk1 ! 1
or mnkunk 1 ! 0.

To prove our assertion, we argue by contradiction. By choosing a subsequence,
we may assume that mnkunk 1 ! ¬ 2 (0; 1). Set ~un = mnun. Then

¢~un = ~un

³
a

~un

mn

bvn

1 + ~un

´
;

@~un

@¸

­­­­
@D

= 0: (3.1)
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By Lp estimates and Sobolev embedding theorems, we may assume that ~un ! ~u
in C1. Then, passing to the weak limit in (3.1), and by standard elliptic regularity,
we can show that ~u is a classical solution of

¢~u = ~u

³
a

b ·d

1 + ~u

´
;

@~u

@¸

­­­­
@D

= 0: (3.2)

We show that ~u = 0. If not, since ·d 6 a=b, the right-hand side of (3.2) is non-
negative, and not identically zero. However, this contradicts

Z

D

~u(a b ·d=(1 + ~u)) dx = 0:

Hence ~u = 0, i.e. ~un ! 0 uniformly. But this is impossible since k~unk1 ! ¬ > 0.
This proves our assertion.

Next we show that mnkunk 1 ! 1 implies that un ! a uniformly. Set ûn =
un=kunk1 . Then

¢ûn = ûn(a un bvn=(1 + mnun));
@ûn

@¸

­­­­
@D

= 0: (3.3)

By standard elliptic regularity, we may assume that ûn ! û in C1. Since
bvn=(1 + mnun) is bounded, bvn=(1 + mnun) ! h weakly in L2 and h 2 L 1 .
Since kunk 1 6 a, we may assume that kunk 1 ! ¬ . Passing to the weak limit
in (3.3), we have

¢û = û(a ¬ û h);
@û

@¸

­­­­
@D

= 0: (3.4)

Since a ¬ û h is in L 1 , by the Harnack inequality, û > 0 in ·D. Therefore,
mnun(x) = mnkunk 1 ûn(x) ! 1 uniformly. This implies that h = 0 almost every-
where. Hence ¢û = û(a ¬ û): It then follows that û = a=¬ = 1. This implies
that un ! a in C1.

Finally, we show that mnkunk 1 ! 0 implies that ·d = a=b and un=kunk1 ! 1.
Since un ! 0 and mnun ! 0, we see that un=kunk 1 ! û in C1 and û satis­ es
¢û + û(a b ·d) = 0. Thus the only possibility is that ·d = a=b and û = 1. This
completes the proof.

Proof of proposition 3.2. We use an indirect argument. Suppose that there exist
mn ! 1, dn ! ·d 6 a=b, such that for (m; d) = (mn; dn), system (1.2) has non-
constant positive solutions (un; vn). By lemma 3.3, we only need to consider two
cases.

Case 1. un ! a uniformly. By proposition 2.4 or lemma 3.3, we may assume that
dn ! ·d 2 [0; a=b]. By theorem 2.1, lemma 3.3 and a simple analysis of the function
H(u), it is not hard to see that (1.2) has exactly one constant positive solution,
denoted by (u0

n; v0n), with the property that u0
n ! a as n ! 1. Set

h0
n = un u0

n; k0
n = vn v0

n;

hn =
h0

n

kh0
nk 1 + kk0

nk1
; kn =

k0
n

kh0
nk 1 + kk0

nk1
:
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Then it is easy to check that

¢hn =

µ
a (un + u0

n)
bv0

n

(1 + mnun)(1 + mnu0
n)

¶
hn

bun

1 + mnun
kn;

@hn

@¸

­­­­
@D

= 0: (3.5)

and

¢kn =

µ
dn (vn + v0

n) +
cun

1 + mnun

¶
kn

+
cv0

n

(1 + mnun)(1 + mnu0
n)

hn;
@kn

@¸

­­­­
@D

= 0: (3.6)

Since the right-hand sides of (3.5), (3.6) are L 1 bounded and khnk 1 ; kknk 1 6 1,
it follows from the Lp estimates and the Sobolev embedding theorems that hn ! h
and kn ! k in C1. Now, by un; u0

n ! a and vn; v0
n ! ·d, and passing to the limit

in (3.5) and (3.6), we obtain

¢h = ah; ¢k = ·dk;
@h

@¸

­­­­
@D

= 0;
@k

@ ¸

­­­­
@D

= 0:

Since a > 0, we have h = 0. Hence ·d = 0 and k = 1 or 1. Next we show that
k = 0. This contradiction would complete the proof of case 1. By Kato’s inequality
(see [23]),

¢jknj 6 kn

jknj¢kn

6
µ
dn (vn + v0

n) +
cun

1 + mnun

¶
jknj +

cv0
njhnj

(1 + mnun)(1 + mnu0
n)

:

Multiplying this inequality by vn, integrating it by parts and using @jknj=@¸ j@D = 0,
we obtain

Z
jknjvn

³
dn vn +

cun

1 + mnun

´

6
Z µ³

dn (vn + v0
n) +

cun

1 + mnun

´
jknjvn +

cvnv0
njhnj

(1 + mnun)(1 + mnu0
n)

¶
:

Hence Z
v0

nvnjknj 6
Z

cvnv0
n

(1 + mnun)(1 + mnu0
n)

jhnj: (3.7)

Set v̂n = vn=kvnk 1 . Then

¢v̂n = v̂n

³
dn vn +

cun

1 + mnun

´
;

@v̂n

@¸

­­­­
@D

= 0: (3.8)

Since both the right-hand side of (3.8) and v̂n are L 1 bounded, it follows from
the Lp estimates and the Sobolev embedding theorems that, subject to choosing
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a subsequence, v̂n ! v̂ in C1. Now passing to the limit in (3.8), since ·d = 0, we
obtain ¢v̂ = 0, @v̂=@¸ j@D = 0. This implies that v̂ = 1, i.e. v̂n ! 1 in C1. Similarly,
v0

n=kv0
nk 1 ! 1 in C1. Now dividing (3.7) by kvnk 1 kv0

nk 1 and passing to the limit,
we obtain Z

D

jkj 6 0:

Therefore, k = 0.

Case 2. mnkunk 1 ! 0. For this case, we ­ rst show that dn > a=b. Let

wn =
vn dn

kunk 1
and ûn =

un

kunk 1
:

Then wn > 0 and for any constant d satisfying 0 < d < ·d = a=b, and all large n,

¢wn + dwn = (d vn)wn + vn
cûn

1 + mnun
6 vn

cûn

1 + mnun
6 M;

where M > 0 is a constant. Hence fwng is L 1 bounded. Integrating (3.3) in D,
after some rearrangements, we have

Z

D

ûn(a bdn) =

Z

D

ûn

³
un

b(vn dn)

1 + mnun
bdn

mnun

1 + mnun

´
:

Dividing this identity by kunk 1 , and passing it to the limit, noticing that dn ! a=b,
un=kunk1 ! 1, mnun ! 0 and wn is bounded, we obtain

lim
n! 1

Z

D

ûn
a bdn

kunk1
= lim

n! 1

Z

D

ûn

³
ûn

b

1 + mnun
wn bdn

ûnmn

1 + mnun

´
= 1:

This shows that dn > a=b for all large n. Since dn > a=b and dn ! a=b, it is
not di¯ cult to see that one of the two constant positive solutions of (1.2), denoted
by (u0

n; v0
n), satis­ es mnu0

n ! 0. De­ ne hn and kn the same as before, and we
also arrive at (3.5) and (3.6), by which we see that, by passing to a subsequence,
hn ! h, kn ! k in C1. By mnun ! 0, mnu0

n ! 0, vn ! a=b and v0
n ! a=b, we

have

¢h = 0; ¢k = (a=b)( k + ch);
@h

@¸

­­­­
@D

= 0;
@k

@¸
j@D = 0:

It follows that h = const: and k = ch. Since khk1 + kkk 1 = 1, we necessarily have
h 6= 0; on the other hand, using a u0

n = bv0
n=(1 + mnu0

n) and integrating (3.5)
over D, we obtain

0 =

Z

D

³
un +

bv0
nmnun

(1 + mnun)(1 + mnu0
n)

´
hn

Z

D

bun

1 + mnun
kn:

Thus
Z

D

bv0
nun=kunk 1

(1 + mnun)(1 + mnu0
n)

hn =
1

mn

Z

D

³
un

kunk 1
hn +

bun=kunk 1
1 + mnun

kn

´
:

Passing to the limit, we obtain Z

D

h = 0:
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Hence h = 0, contradicting our earlier conclusion that h 6= 0. This completes the
proof.

3.2. An upper bound of d

In this subsection, we ­ nd a rather accurate upper bound for d where (1.2) cannot
have a non-constant positive solution. The accuracy of this bound will be seen
in x 4, where existence of non-constant positive solutions is proved. Since d ¤ ! 1
as m ! 1, it is much harder to establish this upper bound. Here we will make
use of good a priori estimates for positive solutions of (1.2), and the bifurcation
theory of Crandall and Rabinowitz [10]. Our main result of this subsection is the
following.

Proposition 3.4. There exist a small ° 2 > 0 and a large M2 > 0, depending on a,
b and c only, such that if m > M2 and d > m[a2=(4b) ° 2], then (1.2) has no non-
constant positive solutions; moreover, d ¤ 2 (m[a2=(4b) ° 2]; ma2=(4b)) and (1.2)
has only two constant positive solutions for d 2 (m(a2=(4b) ° 2); d¤ ), one constant
positive solution if d = d ¤ and no positive solution if d > d¤ .

In order to prove proposition 3.4, it is convenient to make the following change
of variables:

d = m ~d; u = ~u; v = m( ~d + ~v):

Then (u; v) is a positive solution of (1.2) if and only if (~u; ~v) is a positive solution
of

¢u = u

³
a u

bm( ~d + v)

1 + mu

´
; x 2 D;

¢v = ( ~d + v)

³
mv +

cu

1 + mu

´
; x 2 D;

@u

@¸
=

@v

@¸
= 0; x 2 @D:

9
>>>>>>>=

>>>>>>>;

(3.9)

We also need several preliminary results.

Lemma 3.5. If (3.9) has a positive solution, then ~d < (a + 1=m)2=(4b).

Proof. Let (u; v) be a positive solution of (3.9). Then 0 < u < a and v > 0. Hence

u

³
a u

bm( ~d + v)

1 + mu

´
< u

³
a u

bm ~d

1 + mu

´
: (3.10)

Let f (u) = a u bm ~d=(1+mu). Then one easily ­ nds that f attains its maximum
over ( 1=m; 1) at u0 = (b ~d)1=2 m 1 and f (u0) = a + 1=m 2(b ~d)1=2. Integrat-
ing the ­ rst equation in (3.9), by (3.10) and the properties of f , we obtain

0 =

Z
u(a u

bm( ~d + v)

1 + mu
) <

Z
uf(u) 6

Z
uf(u0):

Hence f(u0) > 0. That is, ~d < (a + 1=m)2=(4b).
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Lemma 3.6. Given any ¯ > 0, there exist a small ° 3 > 0 and a large M3 > 0 such
that, if ~d > a2=(4b) ° 3, m > M3, then for any positive solution (u; v) of (3.9),
ku 1

2ak 1 < ¯ and mkvk1 < ¯ .

Proof. By lemma 3.5, it su¯ ces to show that if dn ! a2=(4b), mn ! 1 and (un; vn)
is a positive solution of (3.9) with ( ~d; m) = (dn; mn), then un ! 1

2a and mnvn ! 0
uniformly. By arguments at the beginning of the proof of lemma 3.3, we see that
mnvn ! 0. From

¢un = un

³
a un

bmn(dn + vn)

1 + mnun

´
;

@un

@¸

­­­­
@D

= 0; (3.11)

we see that kunk1 > ¼ 0 for some ¼ 0 > 0; otherwise, we may assume un ! 0, and
then the integral of the right-hand side of (3.11) over D is negative for large n, which
is impossible. Since the right-hand side of (3.11) is L 1 bounded, kunk 1 < a, by
Lp estimates and Sobolev embedding theorems, subject to choosing a subsequence,
we have that un ! u in C1 and kuk 1 > ¼ 0 > 0. Furthermore, we show that u is a
weak solution of

¢u = u(a u) 1
4 a2 À fu>0g;

@u

@ ¸

­­­­
@D

= 0; (3.12)

where À fu>0g is the characteristic function of the set

D + = fx 2 D : u(x) > 0g:

In fact, denoting the right-hand side of (3.11) by hn, we may assume that hn ! h
weakly in L2. Then, by passing to the weak limit in (3.11), we ­ nd

¢u = h;
@u

@¸

­­­­
@D

= 0:

By elliptic regularity, u 2 W 2;2(D) and ¢u = h a.e. in D (see [18, theorems 8.8
and 8.12]). Since u = 0 a.e. on DnD + , ¢u = 0 a.e. on DnD + , we see that h = 0 a.e.
on D n D + . On the other hand, it is straightforward to see that h = u(a u) 1

4a2

on D + . Hence h = u(a u) 1
4 a2 À fu>0g.

We show next that u = 1
2a. If not, u can not be a constant. Hence

Z

D

u(a u) dx <

Z

D+

( 1
4 a2) dx:

On the other hand, by integrating (3.12) over D, we have

0 =

Z

D

[u(a u) ( 1
4a2) À D+ ] dx =

Z

D

u(a u) dx

Z

D+

( 1
4a2) dx:

This contradiction proves that u = 1
2 a. This implies that the whole sequence fung

converges to 1
2 a in C1. The proof is complete.

Lemma 3.7. There exist a small ° 4 > 0 and a large M4 > 0 such that if
d0 > a2=(4b) ° 4, m > M4, and (u0; v0) is a degenerate positive solution of (3.9)
with ~d = d0, then all the positive solutions of (3.9) with ~d near d0 and (u; v) close
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to (u0; v0) in C1 norm form a smooth curve f( ~d(s); u(s); v(s)) : ¯ < s < ¯ g, ¯ > 0;
with the properties ( ~d(0); u(0); v(0)) = (d0; u0; v0); ~d0(0) = 0 and ~d00(0) < 0: In par-
ticular, system (3.9) has no positive solution near (u0; v0) for ~d > d0 but close to d0.

Proof. With lemma 3.5 in mind, one sees that it su¯ ces to show that if dn !
a2=(4b), mn ! 1 and (un; vn) is a degenerate positive solution of (3.9) with
( ~d; m) = (dn; mn), then, for any ­ xed large n, all the positive solutions ( ~d; u; v)
of (3.9) close to (dn; un; vn) form a smooth curve

f(dn(s); un(s); vn(s)) : ¯ n < s < ¯ ng; ¯ n > 0;

satisfying

(dn(0); un(0); vn(0)) = (dn; un; vn); d0
n(0) = 0; d00

n(0) < 0:

Note ­ rst that un ! 1
2a and mnvn ! 0 in L 1 by lemma 3.6. Next we use these

estimates and theorem 3.2 of [10] to prove the existence of the required curve.
Set

X0 = fu 2 W 2;p(D) : @u=@¸ = 0; x 2 @Dg;

X = X0 £ X0 and Y = Lp(D) £ Lp(D), where p > 1 is so large that W 2;p embeds
continuously into C1. De­ ne F n : R1 £ X ! Y by

F n(d; u; v) =

³
¢u + u

³
a u

bmn(d + v)

1 + mnu

´
; ¢v + (d + v)

³
mnv +

cu

1 + mnu

´´

and de­ ne Tn; ~Tn; T0 : X ! Y by

Tn(h; k) = (T 1
n(h; k); T 2

n(h; k));

T 1
n(h; k) = ¢h + ah 2unh

bmn(dn + vn)

(1 + mnun)2
h

bmnun

1 + mnun
k;

T 2
n(h; k) = m 1

n ¢k dnk 2vnk +
c(dn + vn)

mn(1 + mnun)2
h +

cun

mn(1 + mnun)
k;

~Tn(h; k) = (T 1
n(h; k); mnT 2

n(h; k));

T0(h; k) =

³
¢h;

a2

4b
k

´
:

Then it is easy to check that F n
(u;v)(dn; un; vn) = ~Tn. Using un ! 1

2a, mnvn ! 0
and dn ! a2=(4b), one easily checks that Tn ! T0 in the operator norm. It is
also easy to see that 0 is an isolated K-simple eigenvalue of T0 in the sense of [10]
with T0(1; 0) = 0, where K : X ! Y is the natural injection map. Now it follows
from [10,24] that, for all large n, Tn has a unique K-simple eigenvalue rn near 0.
Moreover, if Tn(h0

n; k0
n) = rn(h0

n; k0
n), then (h0

n; k0
n) ! (1; 0) in X if the norm and

sign of (h0
n; k0

n) are chosen properly.
Since (un; vn) is a degenerate solution, there exists (hn; kn) 6= (0; 0) such that

~Tn(hn; kn) = 0. Using the relationship between Tn and ~Tn, one easily checks that
N ( ~Tn) = N (Tn). Thus we must have rn = 0, (h0

n; k0
n) = tn(hn; kn), tn 6= 0 and

N ( ~Tn) = spanf(hn; kn)g for all large n. We may assume that (hn; kn) ! (1; 0) in
X . Again it follows from the relationship between ~Tn and Tn, the fact rn = 0 is
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a K-simple eigenvalue to Tn that codim R( ~Tn) = codim R(Tn) = 1 for all large n.
Therefore, if we can show that F n

d (dn; un; vn) 62 R( ~Tn) for all large n, then we can
use theorem 3.2 of [10] to conclude the following.

If Z is a complement of spanf(hn; kn)g in X , then, for all large n, the solutions
of F n(d; u; v) = 0 = F n(dn; un; vn) near (dn; un; vn) form a curve

(dn(s); un(s); vn(s)) = (dn + ½ n(s); un + shn + zn(s); vn + skn + wn(s));

where s ! ( ½ n(s); zn(s); wn(s)) 2 R1 £ Z is a continuously di¬erentiable function
near s = 0 and ½ n(0) = ½ 0

n(0) = 0, zn(0) = z0
n(0) = 0, wn(0) = w0

n(0) = 0. Moreover,
if F n is k-times continuously di¬erentiable, so are ½ n(s), zn(s) and wn(s).

Now it is clear that in order to ­ nish the proof of lemma 3.7, it remains to show
two things: (i) F n

d (dn; un; vn) 62 R( ~Tn) for all large n; and (ii) ½ 00
n(0) < 0 for all

large n.
Using perturbation theory for closed linear operators (see [24]), one sees that

T ¤
0 , the adjoint of T0, has 0 as a K ¤ -simple eigenvalue. One also checks that

N (T ¤
0 ) = spanfl0g, where l0 2 Y ¤ is given by

l0(u; v) =

Z

D

u dx:

Thus, since T ¤
n ! T ¤

0 , rn = 0 is a K ¤ -simple eigenvalue for T ¤
n for all large n.

Let N (T ¤
n) = spanflng. Then ln ! l0 in Y ¤ if the norm and sign of ln are chosen

suitably.
A simple calculation gives

F n
d (dn; un; vn) =

³
bmnun

1 + mnun
; mnvn +

cun

1 + mnun

´
! ( b; 0):

Thus if F n
d (dn; un; vn) 2 R( ~Tn), then

³
bmnun

1 + mnun
; vn +

cun

mn(1 + mnun)

´
2 R(Tn)

and

0 = ln

³
bmnun

1 + mnun
; vn +

cun

mn(1 + mnun)

´
! l0( b; 0) =

Z

D

b < 0:

This contradiction proves (i).
Next we prove (ii). We di¬erentiate

¢un(s) = un(s)

³
a un(s)

bmn(dn(s) + vn(s))

1 + mnun(s)

´

with respect to s twice at s = 0. After some calculations, we obtain

¢z00
n(0) + az00

n(0) 2unz00
n(0)

bmn(dn + vn)

(1 + mnun)2
z00

n(0)
bmnun

1 + mnun
w00

n(0) = ¹ n;

¹ n = 2h2
n + 2

bnhnkn

(1 + mnun)2
2

bmn(dn + vn)h2
n

(1 + mnun)3
+

bmnun

1 + mnun
½ 00

n (0):
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Similarly, we di¬erentiate

¢vn(s) = (dn(s) + vn(s))

³
mnvn(s) +

cun(s)

1 + mnun(s)

´

twice with respect to s at s = 0 and obtain

¢w00
n(0) dnmnw00

n(0) 2vnmnw00
n(0)

+
c(dn + vn)

(1 + mnun)2
z00

n(0) +
cun

1 + mnun
w00

n(0) = ² n;

² n = 2mnk2
n

2chnkn

(1 + mnun)2
+ (dn + vn)

2cmnh2
n

(1 + mnun)3
:

Thus Tn(z 00
n(0); w00

n(0)) = ( ¹ n; ² n=mn) and

0 = ln( ¹ n; ² n=mn) = l0(lim ¹ n; lim ² n=mn) = l0(2 + b lim ½ 00
n (0); 0):

This gives lim ½ 00
n (0) = 2=b, i.e. ½ 00

n (0) < 0 for all large n. The proof is complete.

The following problem will play an important role in later discussions

¢u = u(a u) ­ ;
@u

@ ¸

­­­­
@D

= 0; (3.13)

where ­ > 0 is a constant. It is evident that for ­ 2 [0; 1
4a2), problem (3.13) has

two constant positive solutions

u1 = 1
2 (a +

p
a2 4­ ); u2 = 1

2 (a
p

a2 4­ );

a unique constant positive solution u = 1
2 a for ­ = 1

4 a2 and no positive solution
otherwise.

Lemma 3.8. There exists a small ° 0
4 > 0 such that (3.13) has only constant positive

solutions for ­ > 1
4a2 ° 0

4.

Proof. Since (3.13) has no positive solution for ­ > 1
4a2, it su¯ ces to show that if

un is a positive solution of (3.13) with ­ = ­ n ! 1
4
a2, ­ n 6 1

4
a2, then un must be

a constant. Since un < a, by Lp estimates, Sobolev embedding theorems and the
equation

¢un = un(a un) ­ n;
@un

@¸

­­­­
@D

= 0; (3.14)

we can deduce that un ! u in C1. Passing to the limit in (3.14), we obtain

¢u = u(a u) 1
4 a2;

@u

@¸

­­­­
@D

= 0:

This implies that u = 1
2
a. We show next that un is a constant. If not, hn = un u1

n

is not a constant, where u1
n = 1

2 (a
p

a2 4­ n). One easily checks that

¢hn = [a (un + u1
n)]hn;

@hn

@¸

­­­­
@D

= 0: (3.15)

https://doi.org/10.1017/S0308210500000895 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000895


334 Y. Du and Y. Lou

Since un + u1
n ! a in L 1 , it is easy to see from (3.15) that jhnj=khnk 1 ! 1 in

C1. This implies that hn does not change sign in D for all large n. Similarly, let
u2

n = 1
2 (a +

p
a2 4­ n), then kn = un u2

n does not change sign in D for all large
n. Thus for large n we have un < u1

n, or u1
n < un < u2

n, or un > u2
n. In any case,

a (un + u1
n) has a ­ xed sign on D since a (u1

n + u2
n) = 0. This implies that, for

large n,
Z

D

[a (un + u1
n)]hn 6= 0;

which contradicts (3.15). Thus un is a constant for all large n.

Now we use lemma 3.8 to prove the following result.

Lemma 3.9. There exists a small ° 2 > 0 such that, for any ° 2 (0; ° 2), there exists
M = M ( ° ) > 0 large so that, if m > M and ~d 2 [a2=(4b) ° 2; a2=(4b) ° ], sys-
tem (3.9) has exactly two positive solutions, and they are both constants.

Proof. First, we use lemma 3.6 to ­ nd ° 5 > 0 and M5 > 0 such that u > 1
3a for any

positive solution (u; v) of (3.9) with ~d > a2=(4b) ° 5 and m > M5. Then choose
° 2 = minf ° 5; ° 4; ° 0

4=bg, with ° 4 and ° 0
4 from lemmas 3.7 and 3.8. We show that

the conclusion of lemma 3.9 holds for the above chosen ° 2. Otherwise, we can ­ nd
some ° 2 (0; ° 2), mn ! 1 and dn 2 [a2=(4b) ° 2; a2=(4b) ° ] so that (3.9) with
( ~d; m) = (dn; mn) has a non-constant positive solution (un; vn). This is because,
for large m, d ¤ > m(a2=(4b) ° ). Hence, by theorem 2.1, there are two constant
positive solutions of (3.9) for ~d 2 [a2=(4b) ° 2; a2=(4b) ° ].

We may assume that mn > M5. Then 1
3a 6 un < a. As before, mnkvnk1 ! 0.

We may also assume that dn ! d 2 [a2=(4b) ° 2; a2=(4b) ° ]. Now un satis­ es (3.11).
By Lp estimates and Sobolev embedding theorems, we deduce that, subject to
choosing a subsequence, un ! u in C1, and u is a positive solution of

¢u = u(a u) bd;
@u

@ ¸

­­­­
@D

= 0:

Here we have used 1
3a 6 un < a and mnkvnk 1 ! 0. By our choice of ° 2, we have

bd > 1
4
a2 ° 0

4. Thus it follows from lemma 3.8 that

u = u1 = 1
2
(a +

p
a2 4bd) or u = u2 = 1

2
(a

p
a2 4bd):

Therefore, by choosing a subsequence, either (i) un ! u1, or (ii) un ! u2.
Let (u1

n; v1
n), (u2

n; v2
n) with u1

n > u2
n be the two constant positive solutions of (3.9)

with ( ~d; m) = (dn; mn). Then u1
n ! u1, u2

n ! u2 and mnv1
n, mnv2

n ! 0.
When case (i) occurs, we let

h0
n = un u1

n; k0
n = vn v1

n;

hn =
h0

n

kh0
nk 1 + kk0

nk1
; kn =

k0
n

kh0
nk 1 + kk0

nk1
:
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Then

¢hn =

µ
a (un + u1

n)
bmn(dn + v1

n)

(1 + mnun)(1 + mnu1
n)

¶
hn

bmnun

1 + mnun
kn;

@hn

@¸

­­­­
@D

= 0 (3.16)

and

¢kn =

µ
mndn mn(vn + v1

n) +
cmnun

1 + mnun

¶
kn

+
cmn(dn + v1

n)

(1 + mnun)(1 + mnu1
n)

hn;
@kn

@¸

­­­­
@D

= 0: (3.17)

Applying Kato’s inequality on (3.17),

¢jknj 6
µ

mndn mn(vn + v1
n) +

cmnun

1 + mnun

¶
jknj

+
cmn(dn + v1

n)

(1 + mnun)(1 + mnu1
n)

jhnj

6 jknj +
cmn(dn + v1

n)

(1 + mnun)(1 + mnu1
n)

jhnj;

for all large n. Hence

jknj 6 ( ¢ + 1) 1 cmn(dn + v1
n)

(1 + mnun)(1 + mnu1
n)

jhnj ! 0:

This implies that kknk 1 ! 0. Since the right-hand side of (3.16) and hn are both
uniformly bounded, by Lp estimates and Sobolev embedding theorems, up to a
subsequence, we have hn ! h in C1. Passing to the limit in (3.16), we obtain

¢h = (a 2u1)h;
@h

@¸

­­­­
@D

= 0:

By shrinking ° 2 if necessary, we can assume 0 < a 2u1 < ¶ 2, where we use
0 = ¶ 1 < ¶ 2 < ¢ ¢ ¢ to denote the distinct eigenvalues of the operator ¢ under
zero Neumann boundary conditions. Hence h = 0. Thus khnk1 + kknk 1 ! 0,
contradicting khnk 1 + kknk 1 = 1. This completes the proof for case (i). If case (ii)
occurs, we can derive the contradiction similarly. The proof is now complete.

Now we are ready to prove proposition 3.4.

Proof of proposition 3.4. Suppose that M4, ° 2 and M ( ° ) are from lemmas 3.7 and
3.9. We de­ ne M2 = maxfM4; M ( 1

2
° 2)g and show that proposition 3.4 is true for

such chosen ° 2 and M2. By lemma 3.9, d ¤ 2 (m(a2=(4b) ° 2); ma2=(4b)) if m > M2.
Now we ­ x m > M2. Let

d̂ = supf ~d : system (3.9) has a positive solutiong:
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Note that d̂ < 1. Clearly, d̂ > d ¤ =m. It follows from an easy compactness argu-
ment that (3.9) has a positive solution (û; v̂) at ~d = d̂. Thus we use lemma 3.7
and see that all the positive solutions ( ~d; u; v) of (3.9) near (d̂; û; v̂) form a smooth
curve, and the curve bends at this point to the left of d̂. Along this curve, there can
not be any other degenerate point as long as ~d > a2=(4b) ° 2. This is because, by
lemma 3.7, near any such point, system (3.9) has no positive solution for nearby
and larger ~d. Thus we can use the implicit function theorem to continue the ini-
tial curve near (d̂; û; v̂) leftwards until ~d reaches a2=(4b) ° 2. For ~d in the range
(a2=(4b) ° 2; a2=(4b) 1

2
° 2), due to lemma 3.9, the positive solutions (u; v) on the

extended curve can be nothing but the two constant positive solutions. Now we
claim that our extended curve must be the constant positive solution curve. If our
assertion fails, then the two curves must intersect at a point which is a degenerate
solution of (3.9) with ~d > a2=(4b) 1

2 ° 2. By lemma 3.7, we see that (3.9) cannot
have a positive solution near this intersection point with ~d nearby and larger, which
is impossible. The proof is now complete.

4. Non-constant solutions: existence and pro¯les

In this section, we study the existence and pro­ les of non-constant positive solu-
tions of (1.2) with large m. By theorem 3.1, we see that this is possible only if
d 2 [a=b + ° 0; m(a2=(4b) ° 0)].

4.1. Pro¯les of solutions of (1.2)

In this subsection, we study the limiting behaviour of all possible non-constant
positive solutions of (1.2) as m ! 1.

Theorem 4.1. Suppose that f(un; vn)g 1
n= 1 are non-constant positive solutions of

(1.2) with (d; m) = (dn; mn) and mn ! 1. Then kvn dnk 1 ! 0 and one of the
following conclusions must hold.

(i) dn ! d 2 (a=b; +1), mnun=dn ! w in C2, where w is a positive smooth
solution of

¢w = w

³
a

b

1=d + w

´
;

@w

@¸

­­­­
@D

= 0: (4.1)

(ii) dn ! 1, dn=mn ! ¬ 2 [0; a2=(4b)) and mnun=dn ! w in C1, where w is a
non-negative non-trivial weak solution of the free boundary problem

¢w = w(a ¬ w) bÀ fw>0g;
@w

@¸

­­­­
@D

= 0: (4.2)

Proof. It is easy to show that dn 6 vn 6 dn + c=mn. Hence vn dn ! 0 uniformly.
By theorem 3.1, a=b + ° 0 6 dn 6 mn(a2=(4b) ° 0).

Step 1. We claim that the sequence fmnkunk1 =dng 1
n = 1 is bounded.

To prove the assertion, we argue by contradiction: passing to a subsequence if
necessary, we may assume that mnkunk 1 =dn ! 1. We show that un ! a in
C1. Since kunk1 6 a and mnkunk 1 =dn ! 1, thus mn=dn ! 1. Hence, by the
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equation of un and standard elliptic regularity, we can show that un ! u uniformly,
where u is a non-negative smooth solution of

¢u + u(a u) = 0;
@u

@¸

­­­­
@D

= 0:

Therefore, u = 0 or u = a. We ­ rst exclude the case u = 0. Set wn = un=kunk 1 .
Then

¢wn + wn(a un)
bvn

dn

wn

1=dn + (mnkunk1 =dn)wn
= 0:

If un ! 0 uniformly, then, by standard elliptic regularity, wn ! w in C1( ·« ), where
w is a non-negative solution of the equation ¢w + aw = 0, with @w=@¸ j@D = 0.
Hence w ² 0, which contradicts kwk 1 = 1. Therefore, u = a, i.e. un ! a uniformly.
Set ¯ n = 1=dn and

fn(u; z) = u

³
a u

bz

¯ n + (mn=dn)u

´
; gn(u; z) = z

³
1 z

c¯ nu

1 + mnu

´
:

Let zn = vn=dn. Then un and zn satisfy

¢un + fn(un; zn) = 0; ¯ n¢zn + gn(un; zn) = 0;
@un

@¸

­­­­
@D

=
@zn

@¸

­­­­
@D

= 0:

Denote

·un =
1

jDj

Z

D

un dx; ·zn =
1

jDj

Z

D

zn dx:

Multiplying the equation of un by un ·un, and integrating in D, we have
Z

D

jrunj2 =

Z

D

[fn(un; zn) fn(·un; ·vn)](un ·un)

=

Z

D

[fn(un; zn) fn(·un; zn)](un ·un)

+

Z

D

[fn(·un; zn) fn(·un; ·zn)](un ·un)

=

Z

D

@fn

@u
( ² n(x); zn)(un ·un)2

+

Z

D

@fn

@z
(·un; ± n(x))(un ·un)(zn ·zn):

where ² n(x) lies between un(x) and ·un, and ± n(x) lies between ·zn and zn(x). Since
un ! a, zn ! 1, mn ! 1, mn=dn ! 1, it is easy to check that

@fn

@u
( ² n(x); zn) ! a and

@fn

@z
(·un; ± n(x)) ! 0

uniformly as n ! 1. Therefore, for any small ° > 0, there exists a large N1( ° ) such
that, if n > N1, we have

Z

D

jrunj2 6 1
2a

Z

D

(un ·un)2 + °

Z

D

(zn ·zn)2:
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By a similar argument on zn, we can show that

¯ n

Z

D

jrznj2 6 1

2

Z

D

(zn ·zn)2 + °

Z

D

(un ·un)2

for all large n. Add the above two inequalities together and set ° = minf 1
4
a; 1

4
g.

Then, for all large n, un and vn are constants. However, this contradicts the
assumption that (un; vn) are non-constant solutions. Therefore, the sequence
fmnun=dng 1

n = 1 is bounded.

Step 2. We claim that mnkunk 1 =dn > ¯ for some small ¯ > 0 and all large n.
We again argue by contradiction. Suppose that mnkunk 1 =dn ! 0. Since dn >

a=b + ° 0, vn > dn, we have

a un bvn=(1 + mnun) 6 a b(vn=dn)=(mnun=dn + 1=dn)

6 a b=[mnkunk 1 =dn + 1=(a=b + ° 0)] ! b° 0 < 0:

Thus a un bvn=(1 + mnun) is negative for all large n. However, this contradicts
Z

D

un(a un bvn=(1 + mnun)) = 0:

Step 3. In the following we consider two cases.

Case 1. fdng 1
n= 1 is bounded. Since dn > a=b + ° 0, we may assume that, subject

to choosing a subsequence, dn ! d 2 (a=b; 1). Set wn = mnun=dn. By step 1, we
see that wn is uniformly bounded, and un ! 0 uniformly. Therefore, by standard
elliptic regularity, wn has a subsequence converging to some w in C1 and w is a
non-negative smooth solution of the equation

¢w + w(a b=(1=d + w)) = 0;
@w

@¸

­­­­
@D

= 0:

By step 2, kwnk 1 > ¯ > 0. Hence kwk 1 > 0. By the strong maximum principle,
w > 0.

Case 2. dn ! 1. Again, set wn = mnun=dn. Then

¢wn + wn

µ
a (dn=mn)wn

b(vn=dn)

1=dn + wn

¶
= 0;

@wn

@¸

­­­­
@D

= 0:

Since dn=mn 6 a2=(4b) ° 0, we may assume that dn=mn ! ¬ 2 [0; a2=(4b)). By
standard elliptic regularity and Sobolev embedding theorems, we see that, subject
to a subsequence, wn ! w in C1, and a similar consideration to that leading
to (3.12) shows that w is a weak solution of the free boundary problem

¢w + w(a ¬ w) bÀ fw>0g = 0;
@w

@¸

­­­­
@D

= 0:

Again, by step 2, kwnk 1 > ¯ > 0. Thus w is a non-trivial solution. This completes
the proof of theorem 4.1.
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4.2. The pro¯le equations (1.3) and (1.4)

In this subsection, we study positive solutions of (1.3) and (1.4). By theorem 4.1,
we see that this is crucial in understanding the non-constant positive solutions
of (1.2).

Let us begin with some simple observations. By integrating the equation over D,
using Z

D

¢w = 0;

it is not hard to show that (1.3) has a positive solution if and only if d > a=b. By
the convexity of the nonlinearity, one sees further that any positive solution of (1.3)
is unstable. Moreover, if a 6 ¶ 2 and d > a=b, then the only positive solution of (1.3)
is given by w0 ² 1=d + b=a. Indeed, if there is a positive solution w di¬erent from
w0, then by integrating (1.3) we ­ nd that w w0 must change sign. We also have

¢(w w0) +
bd

(1 + dw)(1 + dw0)
(w w0) = a(w w0);

@(w w0)

@¸

­­­­
@D

= 0:

Thus a is an eigenvalue of the operator ¢ + bd=((1 + dw)(1 + dw0)) under Neu-
mann boundary conditions corresponding to an eigenfunction which changes sign.
It follows that a is at least the second eigenvalue, which is greater than ¶ 2 since

bd

(1 + dw)(1 + dw0)
> 0:

Our ­ rst existence result is as follows.

Theorem 4.2. If a > ¶ 2 and d > a2[(a ¶ 2)b] 1, then (1.3) has at least one non-
constant positive solution; if further we assume that d 6= a2[(a ¶ k)b] 1 for any
k > 2, then (1.3) has at least two non-constant positive solutions.

Proof. Let f (u) = u[a b=(1=d + u + )] and consider

¢u = f (u);
@u

@ ¸

­­­­
@D

= 0: (4.3)

It is easy to see that f is C1, and that any solution of (4.3) is non-negative (we use
d > a=b here). Therefore, any solution of (4.3) is a non-negative solution of (1.3).
De­ ne

F (u) =

Z u

0

f (s) ds:

Then any critical point of I : H1(D) ! R,

I(u) =

Z
[ 1

2
jruj2 F (u)]

is a non-negative solution of (1.3).
We show that I satis­ es the Palais{Smale (PS) condition. Given a PS sequence

fung » H1(D),

I(un) ! c;

Z
[runr ¿ f (un) ¿ ] = o(k¿ k) 8 ¿ 2 H1; (4.4)
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we want to show there is a convergent subsequence. By a standard argument, it
su¯ ces to show that fung is bounded. Setting ¿ = un in (4.4), we have

kunk2
H1 6 C(1 + kunk2

2) + o(kunk): (4.5)

Hence we need only prove that fkunk2g is bounded. If not, we may assume that
kunk2 ! 1. Choose ¿ = un in (4.4). Then

Z
jrun j2 (a bd)(un )2 = o(kun k):

Hence kun k ! 0. Let vn = un=kunk2. Then from (4.4) it is easy to see that fkvnkg
is bounded. Hence we may assume that vn converges weakly in H1 and strongly in
L2 to some v 2 H1 with kvk2 = 1. Since un ! 0, we have v > 0. Now dividing (4.5)
by kunk2 and passing to the limit, we obtain

Z
rvr ¿ av¿ = 0 8 ¿ 2 H1:

Hence v > 0 is a non-trivial solution of ¢v = av, @v=@¸ j@D = 0. Since a > ¶ 2,
this is impossible. This proves that I satis­ es the PS condition.

By linearizing (1.3), it is easy to check that u = 0 is a local minimum of I and
its critical groups are given by

Cq(I; 0) = ¯ q;0G;

where ¯ q;p = 0 when q 6= p, ¯ q;p = 1 when q = p and G is the coe¯ cient group.
One can also easily check that I is unbounded from below on H1(D) : I(t) ! 1
as t ! +1. Hence it follows from the mountain pass theorem that I has a critical
point of mountain pass type. We may assume that I has ­ nitely many critical
points. Then, by a well-known result of Hofer (see [7]), we can choose a critical
point u1 from the mountain pass theorem such that

Cq(I; u1) = ¯ q;1G:

By our assumption above, u0 = w0 = 1=d+b=a is also an isolated critical point of
I . Now consider the critical groups of u0. Note ­ rst that the linearization of (1.3)
at u0 is given by

¢h =

µ
a

a2

bd

¶
h;

@h

@¸

­­­­
@D

= 0:

Since a a2=(bd) > ¶ 2, it follows from the shifting theorem that

Cq(I; u0) = 0 for q 6 1 6 ® 2 1;

where we de­ ne
® k = m1 + ¢ ¢ ¢ + mk;

where m1; m2; : : : ; mk; : : : denote the algebraic multiplicities of the eigenvalues
0 = ¶ 1 < ¶ 2 < ¢ ¢ ¢ < ¶ k < ¢ ¢ ¢ , respectively. Hence 0, u0 and u1 are di¬erent critical
points of I .

Next we show that there is one more critical point if d 6= a2=[(a ¶ k)b], i.e.
a a2=(bd) 6= ¶ k. Though this can also be proved by using Morse theory, it is

https://doi.org/10.1017/S0308210500000895 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210500000895


Qualitative behaviour of a predator{prey model 341

easier to use a degree argument. Let P denote the natural positive cone in C( ·D).
Choose K > 0 such that f (u) + Ku is increasing in [0; 1) and de­ ne

Au = ( ¢ + K) 1[f (u) + Ku]:

Then it follows from standard arguments that A maps P , C( ·D) and H1(D) to
themselves and is completely continuous. Moreover, non-negative solutions of (1.1)
correspond to ­ xed points of A. Since

lim
u! 0

f (u)=u = a bd < 0 = ¶ 1; lim
u! + 1

f (u)=u = a > 0 = ¶ 1;

it follows from well-known results in [1] that, for all small r > 0 and large R > 0,

degP (I A; Br \ P; 0) = 1; degP (I A; BR \ P; 0) = 0: (4.6)

Here, B» = fu 2 C( ·D) : kukC < » g. From the linearization of u0 and the Leray{
Schauder formula, we have, for r > 0 small,

degC(I A; u0 + Br; 0) = ( 1)® m ;

where m satis­ es ¶ m < a a2=(bd) < ¶ m+ 1. But u0 + Br » P for r small. Hence

degP (I A; u0 + Br; 0) = ( 1)® m : (4.7)

As before, we suppose that the mountain pass solution u1 is isolated in H1 (and
hence it is isolated in C by regularity). Then we may assume that its critical groups
are given by Cq(I; u1) = ¯ q;1G. It follows from a well-known result in critical point
theory (see [7]) that, for any small neighbourhood U » H1 of u1,

degH1 (I A; U; 0) = 1:

Since A maps H1 to C compactly, by the commutativity property of the degree,
for any small neighbourhood V » C of u1,

degC(I A; V; 0) = degH1 (I A; U; 0) = 1:

But V » P as u1 > 0 on ·D by the maximum principle. Hence

degP (I A; V; 0) = degC(I A; V; 0) = 1: (4.8)

Now, if there is no other ­ xed point of A in P , then, by the additivity of the degree
and (4.6){(4.8),

0 = degP (I A; BR \ P; 0)

= degP (I A; Br \ P; 0) + degP (I A; u0 + Br; 0) + degP (I A; V; 0)

= 1 + ( 1)® m 1;

which is impossible. The proof is complete.

By integrating the equation over D, using
Z

D

¢w = 0;
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we can easily show that (1.4) has a positive solution if and only if a > 2
p

¬ b;
moreover, if a 2 (0; ¶ 2), then (1.4) has only positive constant solutions. Regarding
the existence of non-constant solutions of (1.4), we have the following result.

Theorem 4.3. If a >
p

4 ¬ b + ¶ 2
2, then (1.4) has at least one non-constant positive

solution.

Remark 4.4. Our proof below shows that if ¬ = 0 and a = ¶ k for some k > 2,
then (1.4) has in­ nitely many non-constant positive solutions. If ¬ = 0, a > ¶ 2 but
a 6= ¶ k for any k > 2, then any non-constant positive solution w of (1.4) must have
non-trivial zero set, i.e. the set fw = 0g has positive measure, for otherwise, we
easily deduce w = b=a.

Proof of theorem 4.3. We ­ rst treat the case ¬ = 0. Let ¿ k be an eigenfunction
corresponding to ¶ k and a = ¶ k, k > 2. Then clearly w = b=a + t¿ k are non-
constant positive solutions of (1.4) for all small non-zero t. Hence we only need to
consider the case a > ¶ 2 and a 6= ¶ k 8 k > 2. For small ° > 0, de­ ne

f° (u) =

(
au b; u 2 [° ; 1);

(a b=° )u; u 2 ( 1; ° ]:

Clearly, u ! f° (u) is locally Lipschitz continuous. De­ ne

I° (u) =

Z
jruj2

Z
F ° (u);

where

F° (u) =

Z u

0

f° (s) ds:

Then it is well known that the critical points of I° in W 1;2(D) are weak solutions to

¢u = f° (u);
@u

@¸

­­­­
@D

= 0: (4.9)

Clearly, system (4.9) has two constant solutions, u0 = 0 and u1 = b=a. It is easy to
check that u0 is a local minimum of I° and u1 has Morse index at least 2. Thus u1

can not be a critical point of I° obtained by the mountain pass theorem. If u is a
solution of (4.9), then multiplying (4.9) by u and integrating it over D we obtain

Z

D

jru j2 = (a b=° )

Z

D

(u )2:

Since a b=° < 0, we have u = 0, i.e. u > 0. Now it is clear that if we can ­ nd a
mountain pass solution of (4.9), then it must be a non-constant positive solution.
Since

lim
u! + 1

f° (u)=u ! a 6= ¶ k; lim
u! 1

f ° (u)=u = a b=° < 0;

one can check that I° satis­ es the PS condition. It is also easy to see that I° (t) !
1 as t ! 1. Hence the conditions of the mountain pass theorem are satis­ ed
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and we obtain a non-constant positive solution u° of (4.9) by the mountain pass
theorem. Let ° n ! 0 and un = u ° n . We show that un has a subsequence converging
to a non-constant positive solution of (1.4). First, we claim that un is bounded in
L 1 . Otherwise, we may assume that kunk 1 ! 1. Set wn = un=kunk 1 . Then

¢wn = f ° n (un)=kunk 1 . By standard elliptic regularity, we may assume that
wn ! w in C1. Then f ° n (un)=kunk 1 ! aw uniformly. Hence

¢w = aw;
@w

@¸

­­­­
@D

= 0; kwk 1 = 1:

As a 6= ¶ k, this is impossible. Thus un is uniformly bounded. Again, by elliptic
regularity applied to (4.9) with ( ° ; u) = ( ° n; un), noticing that f° n (un) is bounded
uniformly for n, we have un ! u > 0 in C1. We may assume that f° n (un) ! h
weakly in L2. Then, passing to the limit in (4.9) with ( ° ; u) = ( ° n; un), we obtain

¢u = h;
@u

@¸

­­­­
@D

= 0:

From this equation, we see that h = 0 a.e. on the set fu = 0g; on the set fu > 0g, it
is easily seen that h = au b. Hence h = au bÀ fu>0g, i.e. u is a solution of (1.4).
By the equation of un, we see that f° n (un(x)) changes sign in D. This implies that
maxun > b=a > min un. Hence kuk 1 > b=a. If u = b=a, then for all large n,
un > 1

2
b=a and thus

¢un = aun b;
@un

@¸

­­­­
@D

= 0:

This implies un = b=a as a 6= ¶ k, contradicting our observation that b=a cannot be
a mountain pass type critical point of I ° . This ­ nishes the proof when ¬ = 0.

For the case ¬ > 0, set

f° (u) =

8
><

>:

au b; u 2 [2a=¬ ; 1);

u(a ¬ u) b; u 2 [ ° ; 2a=¬ ];

(a b=° ¬ ° )u; u 2 ( 1; ° ]:

Again, f° (u) is locally Lipschitz continuous. It is also easy to check that I° is coercive
and has u0 = 0, u1 = (a

p
a2 4 ¬ b)=(2 ¬ ), u2 = (a +

p
a2 4 ¬ b)=(2 ¬ ) as critical

points. Moreover, u0 is a local minimizer of I ° and u2 is a global minimizer of I° .
Thus I° satis­ es the PS condition, and it has a mountain pass critical point u °

with I° (u ° ) > I° (u0). By the de­ nition of f ° and the maximum principle, we ­ nd
that u ° > 0. Since any positive constant M > u2 is an upper solution of (4.9), we
have u ° 6 u2. Thus f° (u ° ) is bounded uniformly for all small ° . It then follows from
standard elliptic regularity and Sobolev embedding theorems that, for some ° n ! 0,
u ° n

! ~u in C1. Now, passing to the limit in (4.9) with ( ° ; u) = ( ° n; u ° n ), we ­ nd
that ~u solves (1.4). Moreover, ~u is not a constant since min u ° < u1 < max u° , and
~u = u1 implies that u° n can never be a mountain pass solution. This last statement
follows from the fact that u ° n has Morse index at least 2, due to the assumption
that a2 4¬ b > ( ¶ 2)2 and the closeness of u ° n to u1. This ­ nishes the proof.
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4.3. Non-constant solutions of (1.2)

In this subsection, we show how to obtain non-constant positive solutions of (1.2)
by using the limiting problems (1.3) and (1.4).

Let E = C( ·D) and de­ ne A1 : E ! E by

A1u = ( ¢ + 1) 1[u(a + 1 bd=(1 + du))]:

Then u is a non-negative solution of (1.3) if and only if it is a non-negative ­ xed
point of A1. Let U be a bounded open set in E such that A1u 6= u for u 2 @U .
Then, as A1 is completely continuous, it is well known that the Leray{Schauder
degree degE(I A1; U; 0) is well de­ ned. Moreover, system (1.3) has at least one
solution in U if degE(I A1; U; 0) 6= 0; conversely, if u0 is a non-degenerate solution
of (1.3), then degE(I A1; U; 0) 6= 0 for every small neighbourhood U of u0.

Theorem 4.5. Let U be a bounded open set of E contained in

E + = fu 2 E : u(x) > 0 8 x 2 ·Dg;

and degE(I A1; U; 0) 6= 0. Then there exists M > 0 large such that for any m > M ,
system (1.2) has at least one positive solution (u; v) satisfying (m=d)u 2 U .

Proof. We use a degree argument and the homotopy

¢u = u(a tdu=m b(tv + (1 t)d)=(1 + du));

¢v = v(d v + tcdu=[m(1 + du)]);

@u

@¸

­­­­
@D

=
@v

@¸

­­­­
@D

= 0:

9
>>>=

>>>;
(4.10)

It su¯ ces to show that (4.10) has a positive solution (u; v) with u in U for all large
m and t = 1.

Since degE(I A1; U; 0) is de­ ned, A1u 6= u for u 2 @U . This means that (1.3)
has no solution on @U . We show in the following that (4.10) has no solution on
@(U £ B̄ (d)) for any t 2 [0; 1] and m large, where B ¯ (d) = fx 2 E : kx dkE < ¯ g.
Otherwise, we can ­ nd tn 2 [0; 1], mn ! 1 and (un; vn) 2 @(U £ B ¯ (d)) such
that (un; vn) solves (4.10) with (t; m) = (tn; mn). By standard elliptic regularity,
vn ! d, un ! u in E for some u. By passing to the limit in (4.10), one sees that
u is a solution of (1.3). Since (un; vn) 2 @(U £ B̄ (d)) and vn is in the interior of
B ¯ (d), we must have un 2 @U for all large n. It follows that (1.3) has a solution u
on @U ; a contradiction.

De­ ne Ft : E £ E ! E £ E by

Ft(u; v) =

³
( ¢ + 1) 1u

³
a + 1

tdu

m

b(tv + (1 t)d)

(1 + du)

´
;

( ¢ + 1) 1v

³
d + 1 v

tcdu

m(1 + du)

´´
:

Our above discussion shows that for all large m,

Ft(u; v) 6= (u; v) 8 t 2 [0; 1] 8 (u; v) 2 @(U £ B̄ (d)):
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Since Ft is completely continuous, degE2 (I Ft; U £ B ¯ (d); 0) is well de­ ned and
is independent of t 2 [0; 1]. In particular,

degE2 (I F1; U £ B ¯ (d); 0) = degE2 (I F0; U £ B ¯ (d); 0):

But F0(u; v) = (A1u; ( ¢ + 1) 1v(d + 1 v)). Hence, by the product formula of
the degree,

degE2 (I F0; U £ B ¯ (d); 0) = degE(I A1; U; 0) ¢ degE(I A2; B ¯ (d); 0);

where A2v = ( ¢ + 1) 1v(d + 1 v).
It is well known that v = d is the unique positive solution of A2v = v. By the

Leray{Schauder formula, we have

degE(I A2; B̄ (d); 0) = 1:

Thus
degE2 (I F1; U £ B ¯ (d); 0) = degE(I A1; U; 0) 6= 0:

This implies that (1.2) has a solution (u; v) with (mu=d;v) 2 U £ B ¯ (d). The proof
is complete.

Corollary 4.6. If (1.3) has a non-degenerate non-constant positive solution u0,
then there exists a large M > 0 such that, for any m > M , system (1.2) has a
non-constant positive solution (u; v), with (m=d)u close to u0 in the C1 norm.

Proof. By the maximum principle, it is easy to see that u0 > 0 on ·D. Since u0

is non-degenerate, we can ­ nd a small neighbourhood U of u0 in E + such that
u0 is the only solution of (1.3) in U . Moreover, by the Leray{Schauder formula,
degE(I A1; U; 0) = ( 1)¼ 6= 0. Hence, by theorem 4.5, for all large m, we can ­ nd
a positive solution (u; v) of (1.2) with mu=d 2 U . Since u0 is not a constant and
U is small, mu=d 2 U implies that u is not constant. This ­ nishes the proof.

Remark 4.7. By a result of Henry [21], for generic domains D, any solution of (1.3)
is non-degenerate. Hence corollary 4.6 implies that there are many non-constant
positive solutions of (1.2) for generic domains.

The following result gives non-constant positive solutions of (1.2) for any ­ xed
domain.

Corollary 4.8. Let ® k be the sum of algebraic multiplicities of the eigenvalues
¶ 1 < ¶ 2 < ¢ ¢ ¢ < ¶ k. If ® k is even and ¶ k < a a2=(bd) < ¶ k + 1, then there exists a
large M > 0 such that, for any m > M , system (1.2) has a non-constant positive
solution.

Proof. Following the degree argument in the proof of theorem 4.2, we ­ nd that (4.6)
still holds and degP (I A1; u0 + Br; 0) = 1 as ® k is even. Hence, if we denote
« = (BR n Br) \ P n (u0 + Br),

degP (I A1; « ; 0) = 0 1 1 6= 0:

This means that the set of solutions of (1.3) in « is non-empty. Let S denote this
set. Then it is compact in P by the elliptic regularity and boundedness of « . By
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the maximum principle, any solution in S is positive on ·D. Hence there exists a
small neighbourhood U of S such that U lies in the interior of P . Moreover, we can
choose U such that u 2 U implies u is not constant and

degP (I A1; « ; 0) = degP (I A1; U; 0) = degC( ·D)(I A1; U; 0):

Hence we can use theorem 4.5 to conclude.

Theorem 4.9. Let E and E + be de¯ned as in theorem 4.5 and

A2u = ( ¢ + 1) 1[u(a + 1 ¬ u) b];

where ¬ 2 (0; a2=(4b)). Let U be a bounded open set of E whose closure is contained
in E + such that degE(I A2; U; 0) 6= 0. Then there exist a large M > 0 and a small
¯ > 0 such that, for any m > M and d 2 (m( ¬ ¯ ); m( ¬ + ¯ )), system (1.2) has at
least one positive solution (u; v) with ¬ 1u 2 U .

Proof. We use the following homotopy:

¢u = u(a ¬ u tbv=(1 + ¬ mu)) (1 t)b; x 2 D;

¢v = v(d v + tc¬ u=(1 + ¬ mu)); x 2 D;

@u

@¸
=

@v

@ ¸
= 0; x 2 @D:

9
>>=

>>;
(4.11)

De­ ne Gt : E2 ! E2 by

Gt(u; v) =

³
( ¢ + 1) 1

µ
u

³
a + 1 ¬ u

tbv

1 + ¬ mu

´
(1 t)b

¶
;

( ¢ + 1) 1

µ
v

³
d + 1 v +

tc¬ u

1 + ¬ mu

´¶´
:

We show that, for m large and d=m close to ¬ ,

Ft(u; v) 6= (u; v) 8 t 2 [0; 1] 8 (u; v) 2 @(U £ Id); (4.12)

where Id = fv 2 E : d 1 < v < d + 1g. Otherwise, we can ­ nd mn ! 1,
dn=mn ! ¬ , tn 2 [0; 1] and (un; vn) 2 @(U £ Idn

) such that Ftn
(un; vn) = (un; vn),

i.e. (un; vn) solves (4.11) with (m; d; t) = (mn; dn; tn). By the equation of vn, we
easily obtain 0 6 vn dn 6 c=mn. Hence un 2 @U and vn=mn ! ¬ in E. This
implies that the right-hand side of the equation of un in (4.11) is uniformly bounded
in E. By elliptic regularity, we may assume that un ! u 2 @U in C1. Then, passing
to the limit in the equation of un in (4.11), we have

¢u = u(a ¬ u) b;
@u

@¸

­­­­
@D

= 0:

This shows that A2u = u has a solution u 2 @U , which is impossible by our
assumption. Hence (4.12) holds. By the homotopy invariance of the Leray{Schauder
topological degree,

degE2 (I F1; U £ Id; 0) = degE2 (I F0; U £ Id; 0) (4.13)
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when m is large and d=m is close to ¬ . But F0(u; v) = (A2u; Bv), where

Bv = ( ¢ + 1) 1[v(d + 1 v)]:

Hence, by the product formula for the Leray{Schauder degree,

degE2 (I F0; U £ Id; 0) = degE(I A2; U; 0) ¢ degE(I B; Id; 0): (4.14)

It is easy to check that v = d is the only solution of Bv = v in Id and

degE(I B; Id; 0) = 1:

Hence it follows from (4.13) and (4.14) that

degE2 (I F1; U £ Id; 0) = degE(I A2; U; 0) 6= 0:

This implies that F1(u; v) = (u; v) has a solution in U £ Id, i.e. system (1.2) has a
positive solution with u=¬ 2 U . The proof is complete.

The following result follows from an argument similar to that of corollary 4.8.

Corollary 4.10. If u0 is a positive non-degenerate solution of system (1.4), then
there exist a large M > 0 and a small ¯ > 0 such that, for any m > M and
d 2 (m( ¬ ¯ ); m( ¬ + ¯ )), system (1.2) has at least one non-constant positive solu-
tion.

Remark 4.11. Non-degenerate positive solutions of (1.4) like u0 in corollary 4.10
can often be obtained by looking at solutions of (1.4) which bifurcate from the con-
stant solution uc = (a

p
a2 4 ¬ b)=(2 ¬ ). For example, if

p
a2 4 ¬ 0b is an eigen-

value of ¢u = ¶ u under homogeneous Neumann boundary conditions, then by a
well-known bifurcation result for operators with variational structure, system (1.4)
has solutions (u; ¬ ) bifurcating from (uc; ¬ 0) in a small neighbourhood of (uc; ¬ 0).
These are necessarily non-constant positive solutions of (1.4). By [21], for generic
domains D, these are non-degenerate solutions satisfying the conditions in corol-
lary 4.10.

Remark 4.12. If the domain D is an interval, then the results in this section can be
signi­ cantly sharpened. For example, one can use phase plane argument to obtain
much sharper existence results for (1.3) and (1.4). Moreover, one can use local
and global bifurcation theory to look for non-constant positive solutions of (1.3)
and (1.4) which bifurcate from constant solutions. By following the global bifurca-
tion branches, one can ­ nd many sets U such that the degree conditions in the-
orems 4.5 and 4.9 are satis­ ed, and hence obtain non-constant positive solutions
of (1.2).

Remark 4.13. It would be interesting to see how to obtain non-constant positive
solutions of (1.2) from non-negative solutions of (1.4) with non-trivial zero sets.
The degree method above does not seem to work for this case.

Remark 4.14. For large m, it is easy to show that for d 2 ( ca=(1+ ma); a=b], the
unique constant positive solution of (1.2) is linearly stable; and for d 2 (a=b; d ¤ ),
one of the constant positive solutions is linearly stable while the other is linearly
unstable. It would be interesting to know whether there can be stable non-constant
positive solutions of (1.2) when m is large.
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