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THE COMPLEXITY OF HOMEOMORPHISM RELATIONS

ON SOME CLASSES OF COMPACTA∗

PAWEŁ KRUPSKI AND BENJAMIN VEJNAR

Abstract. We prove that the homeomorphism relation between compact spaces can be continuously

reduced to the homeomorphism equivalence relation between absolute retracts, which strengthens and

simplifies recent results of Chang and Gao, and Cieśla. It follows then that the homeomorphism relation

of absolute retracts is Borel bireducible with the universal orbit equivalence relation. We also prove that

the homeomorphism relation between regular continua is classifiable by countable structures and hence it

is Borel bireducible with the universal orbit equivalence relation of the permutation group on a countable

set. On the other hand we prove that the homeomorphism relation between rim-finite metrizable compacta

is not classifiable by countable structures.

§1. Introduction. Measuring the complexity of structures is a very general task.
Usuallywe study the complexity in a relativewayby comparingwith other structures.
One possible approach for this by using embeddings of categories was elaborated
by Pultr and Trnková in [25]. However, in this paper we use the notions of Borel
reducibility andBorel bireducibility to relate the complexities of equivalence relations
on standard Borel spaces or Polish spaces in order to compare the complexities of
classification problems. For more details we refer to the book of Gao [10].
Several equivalence relations becamemilestones in the theory of Borel reductions,

we will mention four of them:

• the equality on an uncountable Polish space,
• the S∞-universal orbit equivalence relation,
• the universal orbit equivalence relation,
• the universal analytic equivalence relation.

Let us give several examples to make the above relations more familiar. A classical
example is a result of Gromov (see e.g., [10, Theorem 14.2.1]) who proved that the
isometry equivalence relation of compact metric spaces is a smooth equivalence
relation, which means that it is Borel reducible to the equality of real numbers
(or equivalently of an uncountable Polish space). The isomorphism relation of
countable graphs or the isomorphism relation of countable linear orders are Borel
bireducible with the S∞-universal orbit equivalence. The isometry equivalence
relation of Polish metric spaces and the isometry relation of separable Banach
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734 PAWEŁ KRUPSKI AND BENJAMIN VEJNAR

spaces were proved by Gao and Kechris in [11] and by Melleray in [22] to be
Borel bireducible with the universal orbit equivalence relation (see a survey paper
by Motto Ros [23]). Ferenczi, Louveau, and Rosendal proved in [9] that the
isomorphism equivalence relation of separable Banach spaces is Borel bireducible
with the universal analytic equivalence relation.
In order to capture all the structures in one spacewe need some sort of coding. This

can be done by considering some universal space (e.g., theHilbert cube, theUrysohn
space or the Gurariı̆ space) and all its subspaces with some natural Polish topology
or Borel structure (e.g., the hyperspace topology or the Effros Borel structure).
Sometimes there are other natural ways to encode a given structure. For example
the class of Polish metric spaces can be coded by the set of all metrics on N where
two metrics are defined to be equivalent if the completions of the respective spaces
are isometric. Fortunately by [10, Theorem 14.1.3] it does not matter which coding
we choose. It is generally believed that this independence on a natural coding is
common to other structures and thus the statements are usually formulated for all
structures without mentioning the current coding.
In this paper we are dealing solely with the classification problem of compact

metrizable spaces up to homeomorphism. Unless otherwise stated we assume that
the coding of compact metrizable spaces is given by the hyperspace of the Hilbert
cube. Based on coding techniques developed by Sabok [27], Zielinski proved in
[30] that the homeomorphism equivalence relation of metrizable compacta is Borel
bireducible with the universal orbit equivalence relation. Soon after Chang and
Gao proved in [4] that a similar result is true if we restrict the relation only to
continua. Recently Cieśla proved in [5] that a similar result holds true also for locally
connected continua. We prove in Theorem 6 that the homeomorphism relation
restricted to absolute retracts still has the same complexity. By a similar idea we
prove in Theorem 9 that at most n-dimensional continua are Borel reducible to at
most n-dimensional LCn–1-continua, for every n∈N. However, the exact complexity
of at most n-dimensional compacta remains unknown.
Camerlo, Darji, and Marcone proved in [2] that the homeomorphism relation

of dendrites is Borel bireducible with the S∞-universal orbit equivalence relation,
especially dendrites are classifiable by countable structures. A similar result was
proved by Camerlo and Gao in [3] for zero-dimensional compacta instead of
dendrites. We prove in Theorem 16 that the homeomorphism equivalence relation
of regular continua has the complexity of countable structures. On the other hand
it is surprising that the homeomorphism relation of rim-finite compacta, which is a
natural small class containing all dendrites and zero-dimensional compacta, is not
classifiable by countable structures; see Theorem 18.

§2. Definitions and notations. Recall that a standard Borel space is a measurable
space (X,S) such that there is a Polish topology ô on X for which the family
Borel(X ,ô) of Borel subsets of (X ,ô) is equal to S. In order to compare the
complexities of equivalence relations we use the notion of Borel reducibility.

Definition 1. Suppose that X and Y are standard Borel spaces and let E, F be
(usually analytic) equivalence relations on X and Y respectively. We say that E is
Borel reducible to F, and we denote this by E ≤B F , if there exists a Borel mapping
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f : X → Y such that

xE x′ ⇐⇒ f (x)F f (x′),

for every x,x′ ∈ X . The function f is called a Borel reduction. We say that E is Borel
bireducible with F, and we write E ∼B F , if E is Borel reducible to F and F is Borel
reducible to E.

In a similar fashion we can define being continuously reducible if we suppose that
X and Y are Polish spaces and f is continuous.
In the whole paper we denote I = [0,1] and Q= IN. For a separable metric space

X we denote by 2X the hyperspace of all compacta inX with the Hausdorff distance
dH . The hyperspace C(X) stands for all continua in X. Since we are dealing mainly
with the homeomorphism equivalence relation between elements of some class C of
metric compacta, we restrict the relation to C ∩ 2Q. For example, we say that the
class of continua is continuously reducible to the class of compacta instead of the
longer expression that the homeomorphism relation of the class of all continua in
the Hilbert cube is continuously reducible to the homeomorphism relation of all
compacta in the Hilbert cube.
We say that an equivalence relation E defined on a standard Borel space X

is classifiable by countable structures if there is a countable relational language L
such that E is Borel reducible to the isomorphism relation of L-structures whose
underlying set is N. An equivalence relation E on a standard Borel space X is said
to be an orbit equivalence relation if there is a Borel action of a Polish group G on X
such that xE x′ if and only if there is some g ∈ G for which gx= x′.
Let C be a class of equivalence relations on standard Borel spaces. An element

E ∈ C is called universal for C if F ≤B E for every F ∈ C. It is known that for every
Polish groupG there is an equivalence relation (denoted by EG) on a standard Borel
space that is universal for all orbit equivalence relations given by G-actions. We
are particularly interested in the universal S∞-equivalence relation ES∞ . It is known
that an equivalence relation is classifiable by countable structures if and only if it is
Borel reducible to ES∞ . Also there exists universal orbit equivalence relation which is
denoted by EG∞ . We should also note that all the mentioned equivalence relations
are analytic.
A space X is an absolute retract (absolute neighborhood retract) if it is a retract of

any space Y (of an open neighborhood of X in Y) containing X as a closed subset.
A space X is Cn (connected in dimension n) if for each 0 ≤ m ≤ n every continuous
map from the unit m-sphere Sm into X has a continuous extension over the unit
(m+1)-ball Bm+1. X is LCn (locally connected in dimension n) if for each x ∈ X , for
each 0≤m≤ n and each neighborhood U of x there is a neighborhood V ⊂U of x
such that every continuous map Sm→ V extends to a continuous map Bm+1→ U .
Locally connected metric continua (which are also called Peano continua since they
are continuous images of I) are known to be both C0 and LC0. An arc is a space
homeomorphic to I and an n-od is a space homeomorphic to the cone over the set
{1, ... ,n}.
A continuum is called arc-like if it is an inverse limit of arcs with continuous and

onto bondingmappings. A dendrite is a locally connected continuumwhich does not
contain a simple closed curve. It is worth mentioning that a nondegenerate dendrite
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736 PAWEŁ KRUPSKI AND BENJAMIN VEJNAR

is fully characterized as an absolute retract of dimension one. A point x of a spaceX
is of order≤ n in X (ordxX ≤ n) if there is a neighborhood base of xwhosemembers
have boundaries of cardinality ≤ n. If ordxX ≤ n and ordxX � n – 1 then we write
ordxX = n and say that x is of order n inX. A compact space is said to be rim-finite if
it has an open base formed by sets with finite boundaries. A rim-finite continuum is
usually called a regular continuum. Recall here that if X is a regular continuum then
X is hereditarily locally connected, thus a closed set A ⊆ X separates X between
two distinct points x,y ∈ X \A if and only if A cuts X between x and y if and only
if every arc from x to y intersects A.
In the next section we are going to use properties of Z-sets in the Hilbert cube

or in the Menger universal continuum Mn ([28] and [1] are good references). The
crucial facts are:

• the Z-set unknotting theorem: each homeomorphism between Z-sets in Q or
inMn extends to a homeomorphism of Q orMn, respectively, onto itself [28,
Theorem 5.3.7] and [1, Corollary 3.1.5],

• Z-approximation theorem: if B is a compactum such that dimB≤ n, then any
continuous map f : B→Mn can be approximated by a Z-embedding (i.e., by
an embedding such that f (B) is a Z-set inMn) [1, Theorem 2.3.8],

• each closed subset of a Z-set is a Z-set,
• the Hilbert cube as well as the Menger universal continua contain their
respective copies as Z-sets. In fact Q×{0} is a Z-set in Q× I .

For the definition and basic properties of the topological dimension and
continuum theory we refer the reader to [8, Chapter 7] and to [24], [28]
and [29].

§3. Main results. We present three classification results in theorems 6, 9, and 16.
Also there is one nonclassification result in Theorem 18. The following proposition
was first proved by Knaster and Reichbach [17, Théorèm 5]. It is also a consequence
of [14, Proposition 8.8] and the first sentence of its proof. It can be proved using the
back and forth argument.

Proposition 2. Let K ⊆ A,L ⊆ B be four nonempty compact metrizable spaces
such thatA\K and B\L are dense sets of isolated points inA and B respectively. Then
every homeomorphism of K onto L can be extended to a homeomorphism of A onto B.

The following lemma is a consequence of [7]; see [12, Theorem 2.6] for more
details. It will be extremely useful in the proof of Theorem 6.

Lemma 3. If X is a nondegenerate Peano continuum then there exists a homotopy
H : 2X × I → 2X for which

• H(A,0) = A for every A ∈ 2X ,
• H(A, t) is finite for every t> 0 and A ∈ 2X .

Recall that if Y ⊆X and ε > 0 we say that X is ε-deformable into Y if there exists
a continuous mapping ϕ : X × [0,1]→X such that ϕ(x,0) = x, ϕ(x,1) ∈Y and the
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diameter of ϕ({x}× [0,1]) is at most ε for every x ∈ X . The following proposition
was proved in [18, 1.1 and 1.3].

Proposition 4. Let X be a compact space such that for every ε > 0 there exists an
absolute neighborhood retract (absolute retract) Y ⊆ X for which X is ε-deformable
into Y. Then X is an absolute neighborhood retract (absolute retract, resp.).

The proof of Proposition 4 is based on the Lefschetz characterization of absolute
neighborhood retracts via extending partial realizations of finite polyhedra to their
full realizations. By restricting polyhedra of arbitrary dimensions to polyhedra
of dimension ≤ n, one gets a similar characterization of LCn–1-compacta (see [28,
Proposition 4.2.29]) and theproofworks forLCn–1 compacta. Soweget the following
analogue of Proposition 4.

Proposition 5. Let X be a compact space such that for every ε > 0 there exists an
LCn–1-compactum Y ⊆ X for which X is ε-deformable into Y. Then X is an LCn–1-
compactum.

Theorem 6. Compacta are continuously bireducible with absolute retracts.

Proof. Let us denote

Q0 =Q×{(0,0,0)},

Q1 =Q× I×{(0,0)},

Q2 =Q× I× I×{0},

Q3 =Q× I× I× I .

It follows that Qi are Hilbert cubes such that Qi is a Z-set in Qi+1 for i = 0,1,2.
We construct a reduction ϕ : 2Q → 2Q3 . Suppose that H : 2Q× I → 2Q is given by
Lemma 3 and let

ø(K) =
(

K×{(0,0,0)})∪
∞
⋃

n=0

H(K ,2–n)×{(2–n,0,0)}.

Hence ø(K) is a compact subspace of Q1 containing a homeomorphic copy of K
and a countable set of isolated points which is open and dense in ø(K). Denote

ϕ(K) =Q2∪
∞
⋃

n=0

H(K ,2–n)×{(2–n,0)}× [0,2–n].

Roughly speaking, ϕ(K) consists of the Hilbert cube Q2 to which a null sequence
(i.e., a sequence whose diameters converge to zero) of mutually disjoint segments
is attached. Therefore, by Proposition 4, ϕ(K) is an absolute retract. Continuity of
the mapping ϕ is straightforward so it only remains to prove that ϕ is a reduction.
Suppose first that K ,L ∈ 2Q and h : K → L is a homeomorphism. By

Proposition 2 there is a homeomorphism h1 : ø(K) → ø(L) extending the
homeomorphism h×{(0,0,0)}. SinceQ1 is aZ-set inQ2, there is a homeomorphism
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738 PAWEŁ KRUPSKI AND BENJAMIN VEJNAR

h2 : Q2→Q2which extends h1. Now, extend h2 to h3 : ϕ(K)→ϕ(L) on the remaining
arcs linearly. Hence ϕ(K) is homeomorphic to ϕ(L).
On the other hand suppose that ϕ(K) is homeomorphic to ϕ(L) by some

homeomorphism g. Since g as well as g–1 needs to map points of order two (local
cut points) to points of order two (local cut points, resp.) it follows that g is sending
the following countable set

∞
⋃

n=0

H(K ,2–n)×{(2–n,0,0)}

onto the set

∞
⋃

n=0

H(L,2–n)×{(2–n,0,0)},

because these sets are formed exactly by local cut points of ϕ(K) and ϕ(L),
respectively, which are not of order two. Since K × {(0,0,0)} forms the set of
cluster points of the first set and L× {(0,0,0)} forms the set of cluster points
of the second one, it means that g(K×{(0,0,0)}) = L×{(0,0,0)}. Hence K and L
are homeomorphic. ⊣

An n-dimensional analogue of the Hilbert cube is the universal n-dimensional
Menger continuum Mn which is characterized as an n-dimensional LC

n–1, Cn–1

continuum that satisfies the disjoint n-cells property [1]. Also, LCn–1 compacta are
natural analogues of compact absolute neighborhood retracts among compacta
of dimension ≤ n and LCn–1, Cn–1-continua of such dimensions correspond to
absolute retracts. Therefore a question arises whether the class Cn of all compacta of
dimension≤ n is continuously bireducible with the class Cn∩LC

n–1∩Cn–1 of at most
n-dimensional LCn–1, Cn–1 continua. Notice that Cn is a Gä-subset of 2

Q and, by a
Kuratowski’s result [20, Théorème A], the family LCn–1 is a one-to-one continuous
image of a complete space, so it is Borel. Unfortunately, it is unknown if the family
Cn∩LC

n–1∩Cn–1 is Borel for any n> 1 (for n= 1 it is known to be Fóä). We are able
to show the Borel bireducibility of Cn to Cn∩LC

n–1 continua. The strategy is first to
Borel reduce Cn to 2

Mn (here, we do not know if this can be done continuously) and
next, to proceed similarly as in the proof of Theorem 6.

Lemma 7. At most n-dimensional compacta in the Hilbert cube are Borel reducible
to compacta in the universal n-dimensional Menger continuum for each n ∈ N.

Proof. Let us denote byHp(Q,Mn) the set of all partial embeddings f : K→Mn
of compact subsets K ⊆Q. It is shown in [19] to be a Polish space with the topology
induced by the convergence

fk→ f ⇔ dH(dom fk,dom f )→ 0 and fk(xk)→ f (x)

for each sequence xk→ x, xk ∈ dom fk, x ∈ dom f , where dom denotes the domain
of the respective mapping. Consider the multivalued mapping Φ from Cn given by

Ö(K) = {f ∈Hp(Q,Mn) : dom f = K}.
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Claim 8. Ö is lower semicontinuous.

Indeed, let U be an open subset of Hp(Q,Mn). We are going to show that the set

{K ∈ Cn : Ö(K)∩U 6= ∅}

is open in Cn. Suppose it is not. Then there is an embedding f : K →Mn in U
such that a sequence Ki ∈ Cn exists satisfying Ki → K and Ö(Ki)∩U = ∅. By the
Z-approximation theorem forMn [1, Theorem 2.3.8], we can assume that f is a Z-
embedding. SinceK∪

⋃

iKi ∈Cn andMn is an absolute extensor for the class Cn, there

is a continuous extension f : K ∪
⋃

iKi →Mn of f. Again, by the Z-approximation

theorem, f can be approximated by Z-embeddings g : K ∪
⋃

iKi→Mn which agree
with f onK. It follows that mappings gi = g|Ki converge to f inHp(Q,Mn), so gi ∈U
for sufficiently large i. This contradicts the equality Ö(Ki)∩U = ∅.
By applying the Kuratowski and Ryll-Nardzewski selection theorem [21] to the

mappingÖwe get a Borel selectionmapϕ : Cn→Hp(Q,Mn). The required reduction
is the function Cn ∋ K 7→ ðϕ(K) ∈ 2Mn , where ð is the projection Q×Mn→Mn. ⊣

Theorem 9. At most n-dimensional compacta are Borel bireducible with at most
n-dimensional LCn–1-continua, for every n ∈ N.

Proof. By Lemma 7, it remains to continuously reduce the family 2Mn to the
family of at most n-dimensional LCn–1 continua in Q. Fix a pair Mn ⊆ M

′
n of

topological copies of the universal n-dimensional Menger continua in Q such that
Mn is aZ-set inM

′
n (clearly, this is possible by theZ-approximation theorem). Thus,

for each k ∈ N, there is a continuous mapping fk : M′
n→M

′
n \Mn such that

dsup(fk, idM′
n
)<
1

k
and fk+1(Mn)∩ fi(Mn) = ∅ for i < k+1.

Put f0 = idM′
n
. There is also a homotopy H : 2Mn × I → 2Mn through finite sets by

Lemma 3. Given K ∈ 2Mn , let

ø(K) = (K×{0})∪
∞
⋃

k=0

fk(H(K ,2
–k))×{0}

and define a continuous mapping

ϕ(K) = (M′
n×{0})∪

∞
⋃

k=0

fk(H(K ,2
–k))× [0,2–k].

Hence, ϕ(K) is the Menger continuumM′
n with a null sequence of mutually disjoint

segments attached, so it is n-dimensional. Moreover, observe that attaching to an
LCn–1-compactum finitely many disjoint arcs yields anLCn–1-compactum andϕ(K)
is ε-deformable into such a compactum for every ε> 0. Thus, by Proposition 5,ϕ(K)
is an LCn–1-continuum.
In order to show that ϕ is a reduction, suppose h : K → L is a homeomorphism

between K ,L ∈ 2Mn . Extend h(x,0) := (h(x),0), x ∈ K , to a homeomorphism
h1 : ø(K) → ø(L) by Proposition 2. Since ø(K) and ø(L) are Z-sets in M

′
n ×

{0}, there is a homeomorphism h2 : M
′
n × {0} → M′

n × {0} that extends h1
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[1, Corollary 3.1.5]. Finally, extend h2 to a homeomorphism h3 : ϕ(K)→ ϕ(L)
linearly over the attached segments.
Conversely, if g : ϕ(K)→ ϕ(L) is a homeomorphism then, as in the proof of

Theorem 6, we conclude that

g
(

∞
⋃

k=0

fk(H(K ,2
–k))×{0}

)

=
∞
⋃

k=0

fk(H(L,2
–k))×{0}

and, consequently, g(K×{0}) = L×{0}, hence K and L are homeomorphic. ⊣

Proposition 10. Let X be a standard Borel space, Y be a Polish space and A ⊆
X ×Y be a Borel set whose vertical sections are ó-compact. Then ðX (A) is Borel and
there exist Borel functions fn : ðX (A)→Y whose graphs are subsets ofA and such that
for every x ∈ ðX (A) the set {fn(x) : n ∈ N} is dense in the vertical section Ax.

Proof. Let {Bn : n ∈ N} be an open countable base of Y with B1 = Y . Notice
that A∩ (X ×Bn) has ó-compact vertical sections. Hence, for every n ∈ N we can
apply the Arsenin-Kunugui Uniformization Theorem [16, Theorem 35.46] to the
Borel set A∩ (X ×Bn) ⊆ X ×Y to get a Borel uniformization gn : Xn → Bn where
Xn = ðX (A∩ (X ×Bn)) is Borel in X. Now, it is enough to define

fn(x) =

{

gn(x), x ∈ Xn,

g1(x), x ∈ ðX (A)\Xn.

Clearly all the functions fn are Borel and the set {fn(x) : n ∈ N} is dense in Ax for
every x ∈ X . ⊣

If A ⊆ X is an arc with end points a and b such that A\{a,b} is an open subset
of X then A\{a,b} is called a free arc in X. If A\{a,b} is a free arc, then the union
of all free arcs in X containing A\{a,b} will be called a maximal free arc in X. Let
AX be the union of all free arcs in X.
Let us denote byR the set of all regular subcontinua of the Hilbert cubeQ and for

X ∈R, denote by BX the set of all branch points (i.e., points of order≥ 3) which are
also local cut points of X (i.e., cut points of some open connected neighborhoods).

Lemma 11. Let X be a regular continuum and let x,y ∈ X be distinct. Then there
is a finite set H ⊆ AX ∪BX which separates x from y. In particular, AX ∪BX is
dense in X.

Proof. Let F ⊆ X be a minimal finite set separating x and y. Each point of F is
a local cut point of X [29, Corollary 9.42]. Also, for every s ∈ F there is an arc from
x to y containing s (otherwise, F would not be a minimal separating set). Let T ⊆ F
be the set of points with order two. For every t ∈ T choose an arc At with end points
x and y containing t and an open connected neighborhood Ut of t whose closure
is disjoint from F \{t} and such that At ∩Ut is an arc without end points. We can
assume that t cuts Ut.
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Let bd(At∩Ut) = {a,b} and

M = {p ∈Ut∩At : p separates a and b in Ut}.

Notice that t ∈M since F separates x and y. It is enough to prove that at least one
of the following holds:

(1) there is a branch point z ∈ At∩Ut which separates a and b in Ut,
(2) there is a point z ∈ At∩Ut lying on a free arc which separates a and b in Ut.

Indeed, in both cases point t can be replaced by z, i.e., the set (F \{t})∪{z} separates
{x} and {y}; after finitely many such replacements we get desired set H.
So, suppose condition (1) is not satisfied. We prove that condition (2) holds true.

By our assumption every point ofM is a point of order two. One can easily prove
that

Claim 12. a) Every point inM is approximated by points inM from both sides
with respect to a natural order of At∩Ut. Another way of stating this is that no
point ofM is accessible from (At∩Ut)\M.

b) The setM is closed in At∩Ut.

Proof of a) If z ∈M then z is of order two. We consider two-point boundaries of
small neighborhoods of z contained in Ut. The boundary points separate a from b
in Ut and hence they are inM.
Proof of b) The limit of a sequence fromM is either outside Ut or it separates a

from b in Ut. Hence the limit must be inM as well.
SinceM 6= ∅, it follows by a) and b) thatM = At ∩Ut. Hence every point of Ut

is of order two and thus Ut is a free arc and t ∈ Ut separates a and b in Ut. Hence,
condition (2) is proved. ⊣

Definition 13. Suppose that X and Y are regular continua and let C ⊆ X and
D⊆Y . A bijection f : C→D is called separation preserving if, for every pair x,y∈C
and a finite set F ⊆ C, x and y are separated by F if and only if f (x) and f (y) are
separated by f (F).

Lemma 14. Let X and Y be regular continua and let C and D be dense subsets of X
and Y respectively, for which BX ⊆C ⊆ BX ∪AX and BY ⊆D⊆ BY ∪AY . Then every
separation preserving bijection f : C→ D can be extended to a homeomorphism of X
onto Y.

Proof. Since X and Y are compact there is only one uniformity on X and Y
respectively. Let us prove that f is uniformly continuous. Suppose for contradiction
that this is not the case. Then there exist ε > 0 and two sequences (xn), (yn) such
that the distances of xn and yn converge to zero, but the distance of f (xn) and f (yn)
is bigger than ε. Since X and Y are compact, we can assume that f (xn) converges
to some a ∈ Y , f (yn) converges to some b ∈ Y and both the sequence xn and yn
converge to the same point z ∈ X .
By Lemma 11 there is a finite set H1 ⊆ BY ∪AY separating a and b. By a small

adjustment of points in H1 ∩AY we can suppose that H1 ⊆ D. Similarly, there is
H2 with the same properties which is disjoint from H1. This follows, e.g., from [24,
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742 PAWEŁ KRUPSKI AND BENJAMIN VEJNAR

Proposition 10.18] where the “additive-hereditary system” is the family of finite
subsets of BY ∪AY andH2 is the boundary of a neighborhood of a disjoint fromH1,
slightly adjusted to be in D. There is i such that f –1(Hi) does not contain the point
z. Since X is locally connected, there is a connected neighborhood U of z which is
disjoint from f –1(Hi). For n sufficiently large, xn,yn ∈U and hence xn and yn are not
separated by f –1(Hi).
SinceY is locally connected there are connected neighborhoods of a and b disjoint

from Hi, hence it follows that for n sufficiently large, f (xn) and f (yn) are separated
by Hi. We get a contradiction, since the function f was supposed to be separation
preserving.
Since f is uniformly continuous it can be extended to a continuous mapping of

X to Y [8, Theorem 4.3.17]. Since, moreover, we can do the same with f –1, the
extended mapping is a homeomorphism. ⊣

For the purpose of the following lemma and Theorem 16 let us fix the sets

A= {(X ,a) : X ∈R,a ∈ AX}, B = {(X ,b) : X ∈R,b ∈ BX}.

Lemma 15. The sets A and B are Borel subsets of C(Q)×Q.

Proof. We will mostly follow a corresponding idea for dendrites from the proof
of [2, Lemma 6.4]. So, in order to show that the sets are Borel, we check that they
are both analytic and coanalytic. The proof for coanalyticity of B is exactly the same
for regular continua as for dendrites. To show that B is analytic we have to modify
the respective formula as follows:
(X ,b) ∈ B iff b ∈ X , X ∈ R and there exist arcs A1,A2,A3 ⊆ X such that b ∈

A1∩A2∩A3 and for every x ∈Q and every distinct i, j ∈ {1,2,3} if x ∈ Ai ∩Aj then
x= b.
Before considering A, let us first check that the set E := {(X ,e) : X ∈R,e ∈ EX},

where EX is the set of all points e ∈ X of order ordxX = 1, is Borel in C(Q)×Q.
Indeed, its analyticity can be shown as for the set ED in [2, Lemma 6.4]. To see that
it is coanalytic, one can characterize E in the following way:
(X ,e) ∈ E iff e ∈ X , X ∈ R and, for every two arcs A1,A2 ∈ C(Q), if e ∈ A1∩A2

and A1,A2 ⊆ X then there is x ∈Q such that x ∈ A1∩A2 and x 6= e.
It follows that the set O := {(X ,x) : X ∈ R,ordxX = 2} = {(X ,x) : X ∈ R,x ∈

X}\ (B∪E) is Borel.
Now, we are ready to characterize A:
(X ,a) ∈ A iff (X ,a) ∈ O and there exists k ∈ N such that, for each x ∈ Q, if

d(a,x)< 1
k and x ∈ X then (X ,x) ∈ O.

This shows coanalyticity ofA. On the other hand, the following description gives
its analyticity. Let {Bi : i ∈ N} be an open countable base in Q. Then
(X ,a) ∈ A iff a ∈ X , X ∈R and there is an arc A ∈ C(Q) such that a ∈ A, A⊆ X

and there is i such that a ∈ Bi, Bi ∩X ⊆ A. ⊣

Theorem 16. Regular continua are classifiable by countable structures.

Proof. We will assign to every regular continuum X a sequence (RXn )
∞

n=1 of
relations, such that RXn ⊆ Xn+2 for which (x,y,x1,x2, ... ,xn) ∈ R

X
n iff {x1, ... ,xn}
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separates x and y. Note that the sets AX are open in X and hence ó-compact, and,
by [29, p. 606], the sets BX are countable for X ∈ R. Notice that AX ∩BX = ∅ and
that AX ∪BX is dense in X by Lemma 11. Let RA, RB denote the sets of continua
X ∈R such that AX 6= ∅, BX 6= ∅, respectively.
Clearly

R= (R\RB)∪ (RB \RA)∪ (RB∩RA).

If we prove that each of the summands is Borel and it is classifiable by countable
structures, it will follow that R is classifiable by countable structures as well. The
class R\RB contains only three topological types of continua: a point, an arc and
a simple closed curve. By [26, Theorem 1] it follows that they are Borel. Hence
the set R\RB is easily classifiable by countable structures (this is even a smooth
equivalence relation). The case ofRB \RA can be handled similarly as the remaining
one, so we will skip it. In the rest we prove thatRB∩RA is classifiable by countable
structures.
The vertical sections of the set A are ó-compact and A is Borel by

Lemma 15. Hence, by Proposition 10 the set RA is Borel and there are Borel
mappings b2n–1 : RA → Q such that {b2n–1(X) : n ∈ N} is dense in AX . We can
suppose that every point of the dense set occurs infinitely many times.
The vertical sections of B are countable and B is Borel by Lemma 15. It follows by

the Lusin-Novikov Uniformization Theorem [16, Theorem 18.10] that RB is Borel
and there are countably many Borel mappings b2n : RB→Q such that {b2n(X) : n ∈
N}= BX . We can easily assume that every point occurs infinitely many times.
We define an (n+2)-ary relation SXn on N. For k, l,m1, ... ,mn ∈ N let

SXn (k, l,m1, ... ,mn) iff RXn
(

bk(X),bl(X),bm1(X), ... ,bmn(X)
)

,

and let

Ö(X) =
(

N, (SXn )n∈N

)

.

Roughly speaking, the mappings bn allow us to code relations R
X
n by relations on N

in a Borel way.
Let us check that Ö is a Borel reduction of RA ∩RB to countable structures.

Suppose that h : X → Y is a homeomorphism and X ,Y ∈ RA ∩RB. Clearly,
h(AX ) = AY and h(BX ) = BY . For any x ∈ BX , the sets {n ∈ N : b2n(X) = x} and
{n∈N : b2n(Y) = h(x)} are infinite. So letϕx be an arbitrary bijection between them.
Let A be a maximal free arc in X. Note that A is either an arc or a simple

closed curve. The set EX = {b2n–1(X) : n ∈ N}∩A is countable and dense in A. The
same is true for the set EY = {b2n–1(Y) : n ∈ N}∩ h(A) in h(A). Since the real line
is countable dense homogeneous, there is a homeomorphism øA : A→ h(A) such
that øA|(A \A) = h|(A \A) and øA(EX ) = EY . Now, for every x ∈ EX , the sets
{n ∈ N : b2n–1(X) = x} and {n ∈ N : b2n–1(Y) = øA(x)} are infinite, hence there is a
bijection ϕx between these sets. Let ϕ =

⋃

{ϕx : x ∈ bN(X)}. It is straightforward to
check that ϕ : Ö(X)→Ö(Y) is an isomorphism.
On the other hand, assume thatϕ : Ö(X)→Ö(Y) is an isomorphism.Let us define

h(bk(X)) = bϕ(k)(Y), which is a correct definition (not depending on k but only on
bk(X)). Indeed if bϕ(k)(Y) 6= bϕ(l)(Y), then using Lemma 11 we can find a finite
set {y1, ... ,yn} ⊆ bN(Y) separating bϕ(k)(Y) and bϕ(l)(Y). Suppose that yi=bmi(Y).
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Then SYn (ϕ(k),ϕ(l),m1, ... ,mn), thus S
X
n (k, l,ϕ

–1(m1), ... ,ϕ
–1(mn)), since ϕ is an

isomorphism. Hence the points bk(X) and bl(X) are separated and so they are
different points. Similarly, if bk(X) 6= bl(X), then bϕ(k)(Y) 6= bϕ(l)(Y).
Let C = bN(X) and let D = bN(Y). Clearly, h : C→ D is a separation preserving

bijection and hence, by Lemma 14, it can be extended to a homeomorphism of X
onto Y. ⊣

Let c0 = {x ∈ RN : xn→ 0}. For a set X of sequences of real numbers we denote
by X/c0 the equivalence relation for which two sequences are equivalent if and only
if their difference converges to zero.

Lemma 17. The equivalence relation IN/c0 is not classifiable by countable
structures.

Proof. By the proof of [15, Lemma 6.2.2] it follows thatRN/c0 is Borel reducible
to IN/c0. The equivalence relation RN/c0 is known to be turbulent and hence by
[13, Example 3.23] it is not classifiable by countable structures. Hence IN/c0 is not
classifiable by countable structures too. ⊣

Theorem 18. Rim-finite compacta are not classifiable by countable structures.

Proof. By Lemma 17, it is enough to prove that IN/c0 is Borel reducible to rim-
finite compacta. Let J = I×{0}. For n≥ 3 denote by Tn ⊆ R× (–∞,0)∪{(0,0)} a
simple n-od with diameter less than 2–n–1 whose vertex is located at the point (0,0).
For a,b ∈R denote Tn(a,b) = (a,b)+Tn. Let {qn : n ∈N} be a dense subset of (0,1)
enumerated without repetitions and let

L= J ∪ ∪
n∈N

Tkn
(

qn,0
)

,

where kn ∈N are odd, 3< k1 < k2 < ··· and Tkn(qn,0) is disjoint from Tkm(qm,0) for
m 6= n. For x ∈ IN define a compact subset of the plane

Ö(x) = L∪
⋃

n∈N

T2n+2(xn,2
–n).

Let us verify that Ö is a reduction. Suppose that x,y ∈ IN and x – y ∈ c0. There
are homeomorphisms hn : T2n+2(xn,2

–n)→ T2n+2(yn,2
–n), simply let hn(a,b) = (a –

xn+yn,b). It follows that we can define h : Ö(x)→Ö(y) in such a way that h is the
identity on L and h(z) = hn(z) if z ∈ T2n+2(xn,2

–n). One can easily check that h is
one-to one continuous and thus it is a homeomorphism.
On the other hand, suppose that h is a homeomorphism of Ö(x) and Ö(y) for

x,y ∈ IN. In Ö(x) as well as in Ö(y), there is at most one point of order n for every
n ≥ 4. Hence h needs to preserve these points, especially h|J equals the identity
on a dense subset of J and, by continuity, h|J is the identity. Moreover, we get
h(xn,2

–n) = (yn,2
–n). Since

|xn – yn|= ‖(xn,0) – (yn,0)‖ ≤ ‖(xn,0) – (yn,2
–n)‖= ‖h(xn,0) – h(xn,2

–n)‖,

we get x – y ∈ c0, by the uniform continuity of h.
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The reduction Ö is not only Borel, but even continuous. This easy verification is
left to the reader. ⊣

We should remark that in the preceding proof we used simple n-ods as countably
manymarkers in order to distinguish some points.We can even prove that compacta
of order at most two are not classifiable by countable structures. As in the preceding
proof we find a Borel reduction of IN/c0 to such compacta. For a sequence (xn)∈ I

N

we attach to I some compact countable spaces whose Cantor-Bendixson rank is
some countable ordinal number instead of simple n-ods (we can use e.g., the ordinal
ùn+1 with the order topology instead of the simple n-od Tn). So we get a compact
spaceÖ(x) with only one nondegenerate component all of whose points are of order
at most two. Hence we get the following result.

Theorem 19. Compacta of order at most two are not classifiable by countable

structures.

§4. Auxiliary results and questions. In this section we provide two simple ways
how to prove that continua are Borel bireducible with universal orbit equivalence,
once we know that compacta have this property. This simplifies the result of [4]
substantially. Also we prove that arc-like continua and hereditarily decomposable
continua are not classifiable by countable structures.

Fact 20. [6] There exists a nondegenerate continuum C such that for every
subcontinuumD⊆C any continuous map f : D→C is either the identity or a constant
map. Any continuum with these properties is called a Cook continuum.

A construction of the Cook continuum can be also found in [25, pp. 319–341].

Note 21. Below we present a simple construction of a continuous reduction of

compacta to continua.

LetC ⊆Q be a Cook continuum. Fix a point c ∈C. LetQ′ =Q×C/Q×{c} be the
quotient space ofQ×C whereQ×{c} is shrunk to a point and denote by q : Q×C→Q′

the corresponding quotient mapping. To everyK ∈ 2Q assignϕ(K) = q(K×C). Hence,
ϕ(K) can be viewed as a cone over K with the Cook continuum instead of an arc as

its fiber. Let us verify that ϕ : 2Q→ 2Q
′

is a reduction of the homeomorphism relation

of compacta to the homeomorphism relation of continua. It is obvious that if K
and L are homeomorphic, then ϕ(K) and ϕ(L) are homeomorphic. On the other
hand, assume that h : ϕ(K)→ ϕ(L) is a homeomorphism. Let q(x,a) ∈ ϕ(K) and
h(q(x,a)) = q(y,b) ∈ q(L×C). Suppose that a 6= b. Denote by ix : C→ q({x}×C)
the embedding given by ix(d) = q(x,d). Let ð̃2 : Q

′ →C be such that ð̃2 ◦q= ð2, where
ð2 is the projection of Q×C onto C. Consider the mapping ð̃2 ◦h◦ ix : C→ C which
maps the point a to b. Since these points are distinct, the preceding mapping needs to
be a constant map by the properties of the Cook continuum mentioned in Fact 20. It

follows that hmaps the set ix(C) into the set q(L×{b}). In particular, the point q(x,c)
is mapped to q(x,b). Since q(x,c) = q(x′,c) for every x′ ∈ K , it follows analogously
that h maps every set ix′(C) into the set q(L×{b}). Thus, h is not an onto mapping,
a contradiction. Consequently, h maps q(K ×{a}) onto q(L×{a}) for every a ∈ C.
Hence, K and L are homeomorphic. It is also easy to see that ϕ is continuous.
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Note 22. There are more simple ways of obtaining such a reduction. Let us sketch

the one which avoids a Cook continuum, but uses a nondegenerate arc-less continuum

B. Fix a point b ∈ B. To a compactum X assign its cone, cone(X) = X × I/X ×{1},
and attach X ×B to X ×{0} ⊆ cone(X) along X ×{b}. Thus obtained continuum
ϕ(X) has only one arc component with nonempty interior (namely the cone) and its
boundary is X×{0}. It follows easily that ϕ is a continuous reduction of all compacta
to continua.

Proposition 23. Neither arc-like continua nor hereditarily decomposable continua

are classifiable by countable structures.

Proof. Similarly to the proof of Theorem 18 it suffices to prove that IN/c0 is
Borel reducible to arc-like hereditarily decomposable continua. We describe the
idea just very informally. For a sequence (xn) ∈ I

N, consider a continuum in the
plane consisting of an arc I with a ray L approximating I from the left which
makes the arc rigid for self-homeomorphisms. From the other side take another
ray R approximating I with small two-sided sin(1/x)- curves inserted into small
neighborhoods of the points A1,A2, ... which encode sequence (xn). See the figure
below. ⊣

I

L

x1 A1

x2
A2

x3 A3

R

Note 24. Dendrites can be naturally coded either as a subset of the hyperspace

of the Hilbert cube or as the hyperspace of all subcontinua of the universal dendrite.

Fortunately both these codings are equivalent in the sense that the corresponding

homeomorphism equivalence relations are Borel bireducible one with the other. This

follows actually by the proof of [2]. Alternatively, one can Borel reduce countable linear
orders to dendrites in the universal dendrite. Since countable linear orders are Borel

bireducible with the universal S∞ orbit equivalence relation we obtain the same for
dendrites in the universal dendrite.

Question 25. Are there some Borel reductions decreasing the topological dimen-

sion?

Question 26. Is the universal orbit equivalence Borel reducible to rim-finite

compacta? Is it reducible to compacta of order at most two?
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