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We study surface tension effects for two-dimensional Darcy flow with a free boundary in

a corner between two non-parallel walls. The analytic solution is based on two governing

expressions constructed in an auxiliary parameter domain, namely a complex velocity and

a derivative of the complex potential. These expressions admit a general solution for the

problem in a corner geometry for the flow generated by a source/sink at the corner vertex or

at infinity. We derive an integral equation in terms of the velocity modulus and angle at the

free surface, determined by the dynamic boundary condition. A numerical procedure, used to

solve the obtained system of equations, and numerical results concerning the effect of surface

tension on the time evolution of the free boundary, are discussed.

1 Introduction

Two-dimensional flows with a free boundary governed by Darcy’s law have been the

subject of much research during the past few decades. This is due to the wide range of

physical phenomena (e.g. crystal growth or dissolution [3], directional solidification or

melting [38], electrochemical machining or forming [30], flow through a porous medium

and filtration [2], Hele–Shaw flow [15]) whose interface dynamics (in appropriate physical

limits) are governed by this mathematical model, subject to the same interface conditions.

A classical experimental setup for studying fluid motions under Darcy’s law is the Hele–

Shaw cell [17]: two parallel plates of glass or perspex, with a narrow gap between them.

A syringe can be used to inject viscous fluid into, or suck fluid out of, the gap between

the plates; or alternatively, air can be injected into a region already filled with viscous

fluid. In the famous experiment of Saffman & Taylor [39] air is injected into one end

of a rectangular Hele–Shaw cell already filled with viscous liquid, and the free boundary

between the air and the viscous fluid is seen to form a travelling-wave “finger”. The same

experiment can be carried out in a radial geometry (either with [42, 29] or without [35, 42]

confining wedge boundaries), and analogous radial fingering patterns, complicated by tip-

splitting instabilities, are observed. The linear stability of the unconfined radial problem

was first carried out by Bataille [1], and can explain the onset of the experimentally-

observed fingering pattern; and the weakly nonlinear stability of Miranda & Widom [32]
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predicts the onset of tip-splitting in these initial fingers. More general questions about

the patterns observed in nonlinear fingering in the wedge geometry (with reference to the

experiments of Thomé et al.) were addressed by Combescot & Ben Amar [8, 10].

It has long been known that the zero-surface-tension (ZST) Hele–Shaw problem in

which a more viscous fluid is displaced by a less viscous one, such as air (the so-called

“suction problem”, since typically the more viscous fluid is being “sucked out”), is ill-posed

(see [13]; also Howison et al. [24] and references therein). Arbitrarily small differences in

initial interface shapes generally lead to radically different interface shapes even a short

time later. Typically, though not always, solutions to the ZST suction problem undergo

finite-time blow-up, developing singularities (usually cusps) in the free boundary [24];

examples of such blow-up solutions go back to 1945 [14, 36]. However, there are a large

number of explicit analytical solutions, obtained by expressing the flow domain as the

image under a conformal mapping of a fixed canonical domain, usually the unit disk, using

ideas from complex analysis [14, 36] (conformal maps that are rational or log-rational

functions can provide explicit solutions to the ZST free boundary problem). Most relevant

for the present study is the family of explicit radial fingering solutions found by Howison

[21] which, for appropriate choices of the parameters, can mimic beautifully the complex

fingering patterns (including tip-splitting) observed by Paterson [35].

Another type of explicit (self-similar) solution to the ZST problem was proposed by

Howison & King [23], who reduced the problem to the Poisson equation, eliminating time

by applying the Baiocchi transformation [28], and then made use of a complex variable

method due to Polubarinova-Kochina, originally developed to solve the dam seepage

problem [37]. These solutions again express the free boundary in terms of a conformal

mapping from a known auxiliary domain, but the conformal mapping is here given in

terms of hypergeometric functions. Ben Amar [4, 5] also derived a family of explicit

similarity solutions of this kind in a wedge geometry, though using different methods. Ben

Amar’s self-similar solutions, again for appropriate choices of the parameters, mimic the

shapes (prior to tip-splitting) of the experimental fingers [42, 29].

Both these classes of fingering solutions [21, 4, 5] exist for all time. Their drawback

from the physical point of view is that, within the ZST framework, there is no criterion

for “selecting” which member of the solution family should be observed in a given

experimental situation. The accepted “selection mechanism” for such cases is to introduce

small positive (regularising) surface tension into the dynamic boundary condition, which

reduces the continuum of solutions to a discrete set, one of which is the physically-relevant

one. The procedure is known as regularisation because the modified suction problem,

although still unstable, is no longer ill-posed. Solving for the regularised problem can be

done numerically (as was done by McLean & Saffman [31] for the classical Saffman-Taylor

finger), or using ideas from asymptotics “beyond all orders” (see elsewhere [19, 9, 41]

for the Saffman–Taylor problem, and [8, 10, 6] for the radial fingering solutions of Ben

Amar [4, 5]). Small surface tension acts as a singular perturbation to the ZST problem,

and selection of solutions from a continuum of ZST solutions is governed by terms that

are transcendentally small in the surface tension parameter.

For non-zero surface tension (the NZST problem), almost no analytical solutions exist,

and the only way to generate solutions has been via sophisticated numerics. There have

been several recent numerical studies investigating the regularising effect of surface tension
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in the suction problem, and the tip splitting of fingers. The most commonly used approach

is the boundary integral method used by Kelly & Hinch [25], Nie & Tian [33], Ceniceros

et al. [7] and Dai & Shelley [12], who all investigated the interface dynamics of the

unstable suction problem. Numerical results confirm the generally accepted hypothesis

as to the behaviour of the fluid once surface tension forces are included: the solution

exists well beyond the time of cusp formation for the corresponding zero surface tension

problem, with the interface remaining smooth.

In this article we present a semi-analytical solution method for NZST Hele-Shaw flow

in a corner (wedge), which allows us to solve the general problem for the flow generated

by a source or sink at the corner vertex or at infinity. Our solution method follows

that proposed by Zhukovskii [43] for steady jet flows of an ideal fluid, the key step

being the analytical construction of two governing functions: the complex velocity, and

the derivative of the complex potential defined in an auxiliary parameter domain. The

problem is formulated in § 2, where these governing functions are derived. The expression

for the complex velocity depends on the variation of the velocity modulus along the free

boundary, and the derivative of the complex potential contains a function representing

the angle that the velocity forms with the free surface. Both functions are given in terms

of the auxiliary parameter variable u, which lies in a quarter-space corresponding to the

physical flow domain. For a given initial free boundary shape we derive the integro-

differential equation for the velocity modulus along the free boundary. This integral

equation must be solved numerically to complete the solution. In § 3 the method of

successive approximations adopted for solving the integral equation is outlined. Sample

numerical results are given for the cases of a source and a sink at the corner vertex, and

at infinity, for various values of the surface tension parameter.

The results for the ZST problem show the expected finite-time blow-up for the suction

problem. However, for small positive surface tension, the calculation process is stable

beyond the breakdown time of the corresponding ZST solution, and shows finger form-

ation. With a sink at infinity, the finger grows faster as the surface tension is decreased,

in line with linear stability analysis [1, 35], which predicts that the wavelength of the

fastest-growing finger increases as surface tension is increased.

2 Statement of the problem

We consider the flow of viscous incompressible fluid in a wedge-shaped Hele-Shaw

cell, generated by a homogeneous source/sink of constant strength Q in the vertex or

at infinity, as shown in Figure 1. The flow region Ω(t) is a simply-connected domain

bounded by the fixed walls CO and AC , and we denote the moving free boundary by

Γ (t), along which the pressure P varies according to the dynamic boundary condition.

We assume that passive air, at ambient pressure Pa(t), lies adjacent to Γ (t) outside Ω(t).

We take the origin of Cartesian coordinates (x, y) to lie at the corner vertex, such that

the positive x-axis contains one of the wedge walls. The range of positive corner angles

0 < α < 2π corresponds to the source/sink lying at the corner vertex (see Figure 1(a)),

and the negative range (−2π) < α < 0 corresponds to the source/sink lying at infinity (see

Figure 1(b)).
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Figure 1. The flow region (a) in a bounded corner with the source/sink at the corner vertex; and

(b) in an infinite corner with source/sink at infinity.

If the gap width in the Hele–Shaw cell is h, the flow averaged across the gap is governed

by Darcy’s law

Ū = −K∇P , (2.1)

in the flow region Ω(t), where Ū = (U1, U2) is the fluid velocity in the plane of the

cell averaged across the gap (satisfying ∇ · Ū = 0 for an incompressible fluid), and the

permeability K = h2/(12µ). (The relation (2.1) is also satisfied by flow in a porous medium

with constant permeability K .) The surface tension affects the pressure jump across the

interface according to the dynamic boundary condition

P − Pa(t) = Σχ on Γ (t),

where Σ is the coefficient of surface tension and χ is the local curvature of Γ (t) in the

plane of the Hele-Shaw cell.

It is usual to work with the dimensionless variables p = (K/(L∗U∗))(P − Pa) and

ū = U∗Ū , where L∗ is a typical horizontal lengthscale of the flow, and U∗ is a typical

horizontal velocity scale, which will be given by U∗ = |Q∗|/(|α|L∗) in our problem (|Q∗| is

a typical source/sink strength). Then, in dimensionless variables,

ū = −∇p, (2.2)

and p satisfies

∆p = 0 in Ω(t)\{0}, with (2.3)

p ∼ −q

α
log r as r → 0 for source/sink at origin, or (2.4)

p ∼ −q

α
log r as r → ∞ for source/sink at infinity; (2.5)

(a) p = σκ, (b)
∂p

∂n
= −vn on Γ (t), (2.6)

∂p

∂n
= 0 on the wall sides OC and CA, (2.7)

where q = Q/|Q∗| is the dimensionless source/sink strength, r is radial distance from the

wedge apex, σ = ΣK/(L∗2U∗) is a dimensionless coefficient of surface tension, κ = L∗χ

is the dimensionless curvature of the interface (positive if Ω(t) is convex), and vn is the
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Figure 2. Parameter domain in the u-plane.

normal component of the (dimensionless) velocity of a liquid particle at the moving

boundary.

The evolution of the free boundary Γ (t) is determined by the kinematic condition (2.6).

At the points A and O Γ (t) meets the walls with contact angle γ (see figure 1), assumed

to be constant and given by the physics of interaction of the fluid with the material of

the walls. In the case of zero surface tension, σ = 0, γ must take the value π/2.1

Following [36, 14] (and many subsequent authors), we introduce a complex analytical

potentialW (z, t) = −p(x, y, t)+iψ(x, y, t), where ψ(x, y, t) is the stream function conjugating

−p(x, y, t) harmonically. Then if ū = (v1, v2), equation (2.2) can be written as

v1 + iv2 =
∂W

∂z
,

thus ∂W/∂z is a complex conjugate velocity.

Instead of finding the mapping function W = W (z, t) explicitly, we follow the method

proposed by Zhukovskii [43], i.e. find two functions defined in an auxiliary parameter

domain u: the complex conjugate velocity ∂W/∂z, and the derivative of the complex

potential, ∂W/∂u. Then the function z = z(u, t) mapping the domain in the u-plane onto

the physical plane is obtained via

z(u, t) = z(0, t) +

∫ u

0

∂W

∂u
/

∂W

∂z
du, (2.8)

allowing us to find the solution in parametric form.

We choose the first quadrant of the u-plane to correspond to the physical domain Ω(t),

where the complex variable u = ξ + iη. A conformal mapping allows us to fix the three

points O, A and C as shown in figure 2, so that the interval 0 � ξ � 1 of the real axis

corresponds to the wall AC and the interval 1 � ξ � ∞ corresponds to the wall CO. The

imaginary η-axis of the parameter domain corresponds to the free boundary OA. Since

the actual ranges of the complex velocity and complex potential are unknown a priori, an

1 If σ = 0 then p is constant on Γ (t), thus ū is perpendicular to Γ (t), and the tangential velocity

component is zero along Γ (t), including at the wall intersection points A and O. On the other hand,

at these points the velocity must be directed along the walls by the no-flux condition (2.7). It follows

that when σ = 0, γ = π/2.
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explicit conformal transform of the first quadrant onto the complex velocity and complex

potential planes is a difficult problem. At this stage, to find these functions, we assume

that the velocity modulus and angle at the free boundary are known as functions of the

parameter variable η.

2.1 Explicit expression for the complex velocity

We map implicitly the first quadrant of the u-plane onto the complex conjugate velocity

plane using Chaplygin’s singular point method [16]. It can be seen that the velocity at the

point C tends to infinity (Figure 1(a)) or zero (Figure 1(b)), therefore at C the mapping

is not conformal. With passage around C on an infinitesimal semicircle in the u-plane,

the argument of (u − 1) changes by π (Figure 2), while the corresponding change in

the argument of ∂W/∂z is (−α). The same property is possessed by (u − 1)−α/π. With

unidirectional flow driven from a single point singularity, there can be no other stagnation

points, or points where the fluid velocity is infinite, in the flow domain. Thus, the complex

velocity function ∂W/∂z has the singularity (u− 1)−α/π in the parameter domain, and no

others.

We next assume that the velocity modulus on the free boundary is known; call it ν(η, t).

Also, let the velocity modulus at the particular point O be νO(t). By the above observation

about singularities, the function

F(u, t) :=
sgn(αq)

νO(t)

(
u− 1

u+ 1

)α/π
∂W

∂z
(u)

is analytic on the first quadrant of the u-plane. On the boundary u = iη,

|F(u, t)|u=iη =
ν(η, t)

νO(t)
.

The function G(u, t) = −i lnF(u, t) is then also a complex analytic function of u, whose

real and imaginary parts g1(ξ, η) and g2(ξ, η) are harmonic functions, with g2(0, η) =

− ln |F | = − ln(ν/νO), which we assume is known, and which decays at infinity by choice

of the normalising factor νO(t). The function G′(u, t) = g1ξ + ig2ξ ≡ g2η − ig1η is also a

complex analytic function, whose harmonic real and imaginary parts satisfy the Cauchy-

Riemann equations, with

g2η = − ∂

∂η
(ln ν) on ξ = 0.

By the assumption that the contact angle made by the free boundary with the wall at the

point O is constant, we must have ∂ν/∂η = 0 at η = 0 (Appendix A). Thus we may extend

the function ν(η, t) into η < 0 as an even function (so ∂(ln ν)/∂η is an odd function), and

solve for functions on the entire half-plane ξ � 0.

In general, for a harmonic function a1(ξ, η) that decays as ξ2 + η2 → ∞, with boundary

data a1(0, η) = α1(η), η ∈ (−∞,∞) that is known to be odd in η, standard techniques [34,

p.176] give the solution as

a1(ξ, η) =
ξ

π

∫ ∞

0

α1(η
′)dη′

ξ2 + (η′ − η)2
− ξ

π

∫ ∞

0

α1(η
′)dη′

ξ2 + (η′ + η)2
.
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Figure 3. Plane of the complex potential. The image of the wall CA lies along ψ = q.

If a2 denotes a harmonic conjugate function to a1, such that a1 and a2 satisfy the

Cauchy-Riemann equations, then a2 is given by

a2(ξ, η) =
1

π

∫ ∞

0

(η′ − η)α1(η
′)dη′

ξ2 + (η′ − η)2
+

1

π

∫ ∞

0

(η′ + η)α1(η
′)dη′

ξ2 + (η′ + η)2
.

Thus, for odd boundary data α1(η), the complex analytic function A(u) such that A′(u) =

a1(ξ, η) + ia2(ξ, η) may be seen to satisfy

A(u) =
1

π

∫ ∞

0

α1(η
′) ln

(
u− iη′

u+ iη′

)
dη′,

up to an additive constant.

We apply this result to obtain the solution for the function G(u, t) defined above, using

the fact that g2η(0, η), the boundary data for the real part of G′(u), must be an odd

function of η. It follows that

G(u, t) = − 1

π

∫ ∞

0

∂(ln ν)

∂η′ ln

(
u− iη′

u+ iη′

)
dη′,

and hence, using the definition of G = −i lnF , that

∂W

∂z
= sgn(αq)νO(t)

(
u+ 1

u− 1

)α/π

exp

(
−i
π

∫ ∞

0

∂(ln ν)

∂η′ ln

(
u− iη′

u+ iη′

)
dη′

)
(2.9)

(the term sgn(αq) generalizes both cases (a) and (b) shown in figure 1).

2.2 Explicit expression for the complex potential

The imaginary part of the complex potential ψ changes from zero along the wall CO up

to the value ψ = q along CA. Therefore, the flow region in the W -plane takes the form

shown in figure 3, while the regions in the z- and u-planes are as in Figures 1 and 2. The

complex potential W (u) thus has singularities at the points u = 0, 1, ∞, where it has the
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Figure 4. Definition sketch of the angles θ and β in the case of a source at the wedge vertex

(q > 0, α > 0), and the velocity vector at the free surface. The other cases for q and α may be

sketched similarly.

local behaviour

W ′(u) ∼ −λAu2γ/π−1 as u → 0 (A),

W ′(u) ∼ λOu
−2γ/π−1 as u → ∞ (O),

W ′(u) ∼ q

π(u− 1)
as u → 1 (C),

(2.10)

for real positive functions of time λA, λO . This behaviour is readily deduced by considering

the local form that the conformal mapping between Figures 2 and 3 must take at each of

these singular points. There are no other points in the u-plane where the mapping is not

conformal.

To analyse the behaviour of W along the free surface it is useful to introduce the unit

vectors n = (n1, n2) and τ = (τ1, τ2), normal (in the direction away from the fluid) and

tangential (in the direction of increasing arclength s in Figure 1) respectively to the free

surface. Let θ denote the angle between the velocity vector ν on the free surface and the

unit vector τ , such that the normal and tangential components of velocity at the free

surface, νn and νs, are given by

νn = ν sin θ, νs = ν cos θ. (2.11)

For the case q > 0, the angle θ varies between the values γ and (π − γ), with θA = γ and

θO = π − γ, as is sketched in Figure 4 for the case α > 0. For q < 0 the situation is slightly

different; θ varies between (γ− π) and −γ, with θA = γ− π and θO = −γ. (θ is negative in

this case as the velocity component νn is in the opposite direction to the defined outward

normal vector, and hence is negative, while the velocity modulus ν is always positive.) We

also introduce the angle β made by the velocity vector at the free surface with the wall

CO, again indicated in Figure 4 for the case α > 0, q > 0.

In complex form, τ1 + iτ2 = ∂z/∂s and n1 + in2 = −i∂z/∂s, where ∂z/∂s = exp(i(β + θ))

(s is arclength along the free boundary as denoted in Figure 1), and in terms of the

conformal mapping,

∂z

∂s
= iz′(iη)

dη

ds
= − iz′(iη)

|z′(iη)| (2.12)
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(we know that |∂z/∂s| = 1, and that dη/ds is real and negative). The complex conjugate

velocity at the free boundary is given by

dW

dz

∣∣∣∣
bdy

= νe−iβ . (2.13)

It follows, using (2.12) and the remarks preceding it, that

W ′(iη) = W ′(z)|bdy z′(iη) = iνeiθ|z′(iη)|. (2.14)

For the moment we assume that θ is a known function of the parameter variable η.

Consider the complex function

H(u) = log

[
M

∂W

∂u
(u2 − 1)u1−2γ/π

]
,

for some real positive M. From (2.10) it follows that H is complex analytic on the

first u-quadrant, and if H(u) = H1(ξ, η) + iH2(ξ, η) and H ′(u) = h1(ξ, η) + ih2(ξ, η), then

h1 = H1ξ = H2η , and h2 = H2ξ = −H1η . To fix ideas, suppose we have the case of a point

source at the origin (other cases follow similarly). On 1 < ξ < ∞, the wall CO, the flow

velocity is parallel to the wall along the positive x-axis, thus the complex conjugate velocity

∂W/∂z ∈ �+. Consideration of the local conformal map gives ∂z/∂u = ∂z/∂ξ ∈ �+, and

so we have

∂W

∂u
=

∂W

∂z

∂z

∂u
∈ �+, 1 < ξ < ∞.

On 0 < ξ < 1, the wall AC , the complex conjugate velocity is of the form

∂W/∂z =(+ve)e−iα, while the local conformal map is of the form z ∼(+ve)(u − 1)α/π.

Thus

∂W

∂u
=

∂W

∂z

∂z

∂u
∈ �−.

It follows that H2, the imaginary part of H , is constant on each portion of the ξ-axis,

and hence that h2(ξ, 0) = 0 for ξ ∈ �+, ξ� 1, and hence that h1η(ξ, 0) = 0. We can thus

extend h1η(ξ, η) into η < 0 as an odd function of η, and h1(ξ, η) as an even function of η,

and solve on the half-plane ξ > 0 if we also extend the boundary data h1(0, η). Using the

result (2.14) we find that

H(iη) = log
[
(+ve)ei(θ−γ)]

(the angle θ as defined in (2.11)), and hence H2(0, η) = θ − γ, and

h1(0, η) =
∂θ

∂η
.

In general, for a complex analytic function A(u) = A1(ξ, η) + iA2(ξ, η), if A2η is an even

function then standard techniques [34, p.177] give the solution for A on the half-space
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ξ > 0 as

A(u) =
1

π

∫ ∞

0

∂A2

∂η
(0, η′) ln(u2 + η′2) dη′.

Applying this result (assuming θ is a known function of η), we obtain the solution for the

complex analytic function H(u) as

H(u) =
1

π

∫ ∞

0

∂θ

∂η′ ln(u2 + η′2) dη′,

giving the derivative of the complex potential as

∂W

∂u
=
Nu2γ/π−1

(u2 − 1)
exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln(u2 + η′2) dη′
)
. (2.15)

The scale factor N = 1/M is as yet arbitrary here; we fix it by imposing the residue

theorem condition

2iq =

∮
∂W

∂u
du = iNπ exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln(η′2 + 1) dη′
)
,

where the complex integral is taken along any contour surrounding the point u = 1 (but

excluding points u = 0, −1) in the parameter plane. The conformal map W (u) from the

parameter domain onto the corresponding domain in the complex potential plane can be

obtained, if required, by integration of (2.15).

By substituting from (2.9) and (2.15) in (2.8) we can find the function z(u, t) mapping

the first quadrant onto the flow domain Ω(t) in the physical plane,

z(u, t) = zA(t) +

∫ u

0

∂z

∂u
du, (2.16)

where zA(t) is the location of the point A, and

∂z

∂u
=

∂W

∂u

/
∂W

∂z

=
|N|sgn(α)

νO(t)(u2 − 1)

(
u− 1

u+ 1

)α/π

exp

(
i

π

∫ ∞

0

∂(ln ν)

∂η′ ln

(
u− iη′

u+ iη′

)
dη′

)
(2.17)

exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln(η′2 + u2)dη′
)
.

The function z = z(u, t) obtained from (2.16), (2.17) depends on the unknown functions of

the velocity modulus ν(η, t) and velocity angle θ(η, t) on the free boundary, which must be

determined from the given initial shape of the free boundary and dynamic and kinematic

boundary conditions.

2.3 Basic integral equation

To determine the instantaneous free boundary shape, we set u = iη. The complex conjugate

velocity is given by (2.13) at the free boundary, where β = β(η, t) is defined in Figure 4.
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From equations (2.9) and (2.13) it follows that

β(η, t) =
π

2

(
1 − sgn(αq)

)
+ α− 2α

π
tan−1 η +

1

π

∫ ∞

0

∂(ln ν)

∂η′ ln

∣∣∣∣η − η′

η + η′

∣∣∣∣ dη′. (2.18)

By setting u = iη in (2.15) and using the boundary condition θ(0, t) = γ (for q > 0) to

evaluate the integral containing the imaginary part of the logarithm, we obtain

∂W

∂η
= −N η

2γ
π −1

(1 + η2)
exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln
∣∣η′2 − η2

∣∣ dη′ + iθ(η, t)

)
. (2.19)

For the point sink case q < 0 the condition θ(0, t) = γ − π leads to the factor iθ(η, t) in

(2.19) being replaced by iθ(η, t) + iπ, and hence the whole expression changes sign in this

case. Thus the two cases can be combined by replacing (−N) on the right-hand side by

(−|N|). The interface shape is determined by equation (2.16) on the free boundary,

z(iη, t) = zA(t) +

∫ η

0

∂z

∂η′ dη
′, (2.20)

where (combining both q > 0 and q < 0 results and noting that sgn(N) ≡ sgn(q))

∂z

∂η
=

∂W

∂η

/
∂W

∂z
= − |N|η 2γ

π −1

ν(1 + η2)
exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln
∣∣η′2 − η2

∣∣ dη′
)
ei(β+θ). (2.21)

Writing δ = β + θ for the free boundary slope, we have ∂z/∂s = eiδ , and we can recast

the last expression as

∂z

∂η
=

∂s

∂η
eiδ , (2.22)

where

∂s

∂η
= − |N|η 2γ

π −1

ν(1 + η2)
exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln
∣∣η′2 − η2

∣∣ dη′
)
. (2.23)

If the velocity modulus ν is known, then equation (2.20) determines the free boundary.

Suppose the shape of the free boundary is given by the slope δ(s, t), then the velocity

modulus ν(η, t), is determined as follows. Since s = s(η, t), differentiating the expression

δ = β + θ with respect to η we have

∂β

∂η
+

∂θ

∂η
= κ

∂s

∂η
, (2.24)

where κ = ∂δ/∂s is the curvature of the free boundary. Substituting for ∂β/∂η (from (2.18))

and ∂s/∂η (from (2.23)) in (2.24), we obtain the following integral equation, including two

unknown functions, ∂(ln ν)/∂η and ∂θ/∂η:

2

π

∫ ∞

0

∂(ln ν)

∂η′
η′

η′2 − η2
dη′ = − 2α

1 + η2
+

∂θ

∂η
+

κ|N|η 2γ
π −1

ν(1 + η2)
exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln
∣∣η′2 − η2

∣∣ dη′
)
, (2.25)
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where

ν(η, t) = νO(t) exp

(
−

∫ ∞

η

∂(ln ν)

∂η′ dη′
)
.

2.4 Dynamic boundary condition

The surface tension leads to the pressure jump across the interface Γ (t) according to

condition (2.6(a)), which in terms of the complex potential is


 [W (iη)] = −σκ.

Assuming isotropic surface tension, differentiating with respect to η and using (2.19)

(generalised to both source and sink cases) gives

|N|η 2γ
π −1 cos θ

1 + η2
exp

(
1

π

∫ ∞

0

∂θ

∂η′ ln |η′2 − η2|dη′
)

= σ
∂κ

∂η
= σ

∂κ

∂s

∂s

∂η
,

or

(a) ν cos θ = −σ ∂κ

∂s
, (b) ν sin θ = sgn(q)

√
ν2 − σ2

(
∂κ

∂s

)2

, (2.26)

where (2.23) was used to obtain (2.26(a)). Recalling (2.11), this is equivalent to νs =

−σ(∂κ/∂s), i.e. the tangential component of the velocity is determined by the derivative

of the curvature along the free boundary. At the contact points, θA = γ and θO = π − γ

(q > 0), and θA = γ − π, θO = −γ (q < 0). Equation (2.26(a)) thus gives the relations

∂κ

∂s
= ∓sgn(q)

ν cos γ

σ
at

{
A

O.
(2.27)

Note that, if the contact angle γ = π/2, then ∂κ/∂s = 0 at the intersection points.

Differentiating the function

θ = arccos

(
−σ

ν

∂κ

∂s

)

with respect to η using (2.26(b)) gives

∂θ

∂η
=
σsgn(q)

ν sin θ

(
∂2κ

∂s2
∂s

∂η
− ∂(ln ν)

∂η

∂κ

∂s

)
, (2.28)

and substituting (2.28) into (2.21) we can reduce the boundary value problem (2.3)–(2.7) to

an integral equation for the velocity modulus ν(η, t), if the curvature κ = κ(s, t) (determined

by the flow kinematics) is known at each instant of time.
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Figure 5. Explicit scheme of time integration.

2.5 Kinematic boundary condition

The velocity of a point of the free boundary must be equal to the velocity of the fluid at

that point of the free boundary. This condition can be expressed as follows:

dz

dt
=

∂z

∂t
+

∂z

∂η

dη

dt
= νeiβ on Γ (t), (2.29)

or, considering the free boundary position as z = z(s(η, t), t) and using ∂z/∂s = eiδ ≡ ei(β+θ),

∂z

∂t
= νeiβ − ∂s

∂η

dη

dt
ei(β+θ) on Γ (t), (2.30)

from which we obtain the ‘Polubarinova-Galin’ type equation [36, 14]

�
[
e−iθ

(
∂z

∂t

/
∂W

∂z
− 1

)]
= 0 on Γ (t). (2.31)

This equation (2.31) taken together with (2.9) and (2.20) leads to a rather complicated

integral equation. Instead of solving this equation numerically, we use the kinematic

boundary condition in Lagrangian form (2.29), as sketched in Figure 5. Let the ηi,

i = 1, . . . , n be a fixed set of points distributed along the imaginary axis of the parameter

domain. Equation (2.20) determines the corresponding points z(k)
i = z(k)(ηi, t) of the free

boundary at time t(k). The liquid particles associated with points z(k)
i move with the known

velocity ν(k)
i e

iβ
(k)
i , and at time t(k+1) = t(k) + ∆t (where ∆t is the time step) take position

z
′(k+1)
i = z

(k)
i + ν

(k)
i e

iβ
(k)
i ∆t. (2.32)

The free boundary shape at time t(k+1) is given by the set of points z′(k+1)
i . Applying an

approximation procedure (splining, in our case) to these points, and differentiating the

obtained function z(k+1) = z(s(k+1), t) with respect to s, we can determine the curvature

and its first and second derivatives at time t = t(k+1), which appear in the right-hand

side of integral equations (2.25) and (2.28). Solving these equations for the functions

∂(ln ν)/∂η and ∂θ/∂η, we can determine the velocity modulus ν(η, t), and the velocity

direction β(η, t) from equation (2.18), for time t = t(k+1). The new position of the points
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z
(k+1)
i = z(k+1)(ηi, t) can be determined either by integrating equation (2.20), or by using

the obtained approximation z
(k+1)
i = z(s(k+1)

i , t), where the coordinates si are determined

as follows

s
(k+1)
i =

ηi∫
0

∣∣∣∣ ∂z

∂η

∣∣∣∣
(k+1)

dη.

The unknown velocity νO(t(k+1)) in equation (2.25) (it appears via the expression for ν(η, t))

is determined from the condition

S (k+1) = s(k+1)
n , (2.33)

where S (k+1) is the total length of the free boundary for time t = t(k+1).

It should be noted that the applied explicit time integration method requires a smaller

time step, ∆t < C∆s2i , than implicit methods of higher orders [20]. On the other hand,

the explicit time integration method allows us to solve only the integral equation (2.25) at

each time step, for which we have developed an effective numerical procedure (presented

in the following section). In addition, the number of iterations for solving (2.25) decreases

linearly with decreasing the time step, since the right-hand side of the equations changes

more slowly. Thus, the total time of calculations depends only weakly on the choice of

time step.

3 Numerical method and results

In discrete form the solution is enforced on a fixed set of points ηi, i = 1, . . . , n distributed

along the imaginary axis of the parameter domain with η1 = 10−6 and ηn = 106 so

as to provide a uniform distribution of points zi along the boundary in the physical

plane (this is important for a precise approximation of the free boundary). During time

evolution of the free boundary the points zi move along the boundary, which may lead to

a differential clustering of points along the boundary. At such times a new set of points ηi
are re-generated, to provide again a uniform distribution points zi. The total number of

points was chosen in the range n = 220 — 440 to check the convergence of the solution of

equation (2.25). For all calculated examples here the difference between the results for the

indicated ranges of n and time step is smaller than could be distinguished in the figures.

The curvature κ, and its derivatives ∂κ/∂s and ∂2κ/∂s2, were calculated numerically by

applying a spline approximation of tenth order to the discrete points z′
i forming the free

boundary at time t = t(k+1). The boundary conditions at the intersection points O and A,

i.e. the given value of the contact angle γ and the condition (2.27), were enforced, and

we were able to obtain a precise enough approximation with the number of spline nodes

m = n/10. This relation represents a compromise between the precision of approximation

of the free boundary, and its smoothing which is necessary to compute the curvature and

its derivatives numerically.

The solution of equations (2.25) and (2.28) was found using the method of successive

approximations, applying the Hilbert transform to determine the (k+ 1)th approximation

(
∂(ln ν)

∂η

)(k+1)

=
4

π2

∫ ∞

0

K (k)(η′, t)
η′dη′

(η′2 − η2)(1 + η′2)
, (3.1)
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where

K (k)(η, t) = −2α+ (1 + η2)

(
∂θ

∂η

)(k)

+
κ|N|
ν(k)

η
2γ
π −1 exp

(
1

π

∫ ∞

0

(
∂θ

∂η′

)(k)

ln
∣∣η′2 − η2

∣∣ dη′
)
,

(
∂θ

∂η

)(k)

= − σsgn(q)

ν(k) sin θ

((
∂(ln ν)

∂η

)(k)
∂κ

∂s
− ∂2κ

∂s2

(
∂s

∂η

)(k) )
,

(
∂s

∂η

)(k)

= −
∣∣N(k)

∣∣ η
2γ
π −1

ν(k)(1 + η2)
exp

(
1

π

∫ ∞

0

(
∂θ

∂η′

)(k)

ln
∣∣η′2 − η2

∣∣ dη′
)
,

ν(k)(η, t) = νO(t) exp

(
−

∫ ∞

η

(
∂(ln ν)

∂η′

)(k)

dη′
)
.

The selected numerical calculations presented here were carried out for initial shapes of

the form

z(s, 0) = zA(0) +

∫ s

0

eiδ(s
′)ds′, (3.2)

with the free boundary slope given by

δ(s) = α
(
1 − s/smax

)
+ C sin

(
2πks/smax

)
, (3.3)

where the value of the coefficient C and the wave number k are given in the figure

captions. The chosen initial shapes satisfy (2.27) and are symmetric about the wedge

centreline. They should remain so at future times, which provides us with some check on

the accuracy of the results.

The solution presented generalizes both source and sink cases at the corner vertex or

at infinity; however, we present only calculations for the more interesting suction cases

(for the injection case the free boundary tends to a circle [40]).

Figure 6 shows the initial shape of the free boundary given by equations (3.2), (3.3) with

C = 0.4 and k = 2, and the corresponding initial velocity distribution with and without

surface tension for the case of a sink at infinity. It can be seen that the surface tension

force increases the velocity modulus near the intersection points and at the fjord (the

wedge centreline where the curvature is maximum), and decreases the velocity at the tips

of fingers. At the inflection points (where the derivative of the curvature is maximum) the

surface tension leads to maximum deviation of the velocity direction.

We may compare our numerical results with the experimental results of Lajeunesse &

Couder [29]. These authors studied viscous fingering in the Hele–Shaw cell with corner

geometry, and the same tip-splitting phenomenon was observed as in the earlier radial

experiments of Paterson [35] and Thomé [42]. Figure 7 shows (a) the calculated and

(b) the experimental evolution of the free boundary, for the corner angle α = −5π/9.

Although the initial shapes differ at the points of intersection with the wedge boundary,
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Figure 6. Effect of surface tension on the initial velocity distribution with a sink at infinity. The

initial boundary is given by equations (3.2) and (3.3), with C = 0.4 and α = −π. The thin and thick

arrows correspond to σ = 0 and 0.03 respectively.

both show two small fingers, which develop during the evolution. Figure 7(c) shows the

curvature at the (initial) fingertips (s/smax = 0.25, 0.75). This curvature, which is initially

negative, decreases for 0 < t < 0.4 and then increases for all later times. At some time it

becomes zero, heralding the tip-splitting with the appearance of two new fjords, exactly at

the tips of the old fingers. Despite the difference in initial conditions, the numerical simu-

lation is qualitatively very similar to the experimental results reproduced in Figure 7(b).

It is worth noting that the plot of the derivative of the curvature versus dimensionless

arc length along the free boundary, shown in Figure 7(d), has invariant “nodes” where

∂κ/∂s is zero, corresponding to maxima or minima of the curvature, i.e. finger tips or

fjords in the physical plane. The behaviour of the curvature and its derivative at earlier

times near these nodes can forecast the tip-splitting. For two ‘waves’ (k = 2 in (3.3)) we

have four symmetric intervals of the free boundary, which persist in time in Figure 7(a),

(c), (d). From Figure 7(c) and (d) we can see the difference between the interface dynamics

at the finger-tips and at the fjords. The finger-tips are negative curvature minima (the

fluid interface is locally concave), while the fjords are positive curvature maxima (fluid

interface locally convex). At the fjords (s/smax = 0, 0.5, 1) the second derivative of the

curvature (the slope of ∂κ/∂s in Figure 7(d)) is positive initially and increases further over

all calculated time, thus these initial fjords persist. At the finger-tips (s/smax = 0.25, 0.75)

the second derivative of the curvature is negative initially but also increases over time,

and so becomes positive. Thus at the finger-tips |∂2κ/∂s2| decreases in the time interval

0 < t < 0.4, becomes zero at t ≈ 0.4, and then starts to increase. Such behaviour leads

to the appearance of new curvature maxima (fjords), or more precisely, the curvature

minima at s/smax = 0.25, 0.75 become curvature maxima, passing first through inflection

points. Necessarily, two new curvature minima (fingertips) are created on either side of

these new curvature maxima. These new minima of the curvature increase, as do the

curvature maxima at s/smax = 0.25, 0.75, causing the finger-tips to flatten. This continues

until these maxima pass through zero and become positive, at which instant the interface

becomes locally convex at these two points; the finger-tips split and become new fjords,

https://doi.org/10.1017/S0956792506006759 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792506006759


Free boundary Darcy flows with surface tension 623

(b)

(c) (d)

Figure 7. Effect of surface tension in the corner α = −5π/9 (a) the evolving free boundary for

σ = 0.005 (time interval 1.0 between successive contours); (b) experimental results of Lajeunesse

and Couder [29];(c) evolution of the curvature ; and (d) derivative of the curvature, illustrating the

fixed “nodes” at which ∂κ/∂s = 0. The initial free boundary is given by (3.2), (3.3) with C = 0.1α

and k = 2.

surrounded on either side by two new finger-tips corresponding to the curvature minima in

the intervals s/smax ∈ (0, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1), and the process is repeated.

Figures 8 and 9 show the effect of different values of surface tension: a larger value

of σ slows the finger development, as predicted by the linear stability analysis of an

expanding bubble in a radial Hele–Shaw cell [1, 35]. Such analysis for the problem laid

out in (2.3)–(2.7) (for the sink at infinity) reveals that small perturbations to an expanding

circular bubble with boundary r = R0(t), pressure p = p0(r, t), where

p0(r, t) = − q
α
log

(
r

R0(t)

)
− σ

R0(t)

R0(t) =
(

2qt
α

+ R0(0)
)1/2

⎫⎪⎬
⎪⎭ (q < 0, α < 0),
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Figure 8. Effect of surface tension on the evolving free boundary in the corner α = −π/6, with the

sink q = α at infinity σ = 0.002 (· · ·) and σ = 0.005 (—). The initial shape corresponds to C = 0.1α

and k = 1 in equations (3.2), (3.3).

(a )

(b) (c)

Figure 9. Flow in the corner α = −5π/9: (a) evolution of the free boundary for σ = 0.005 (solid

curves) and σ = 0.01 (broken curves), with time interval 1.0 between successive contours; and the

corresponding curvature (b) and its derivative (c) for σ = 0.01. The initial free boundary is given

by equations (3.2), (3.3) with C = 0.1α and k = 3.
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of the form r = R0(t) + εB(t) cos nθ + O(ε2), satisfy

dB

dt
=

(n− 1)

R2
0

(
q

α
− n(n+ 1)σ

R0

)
B (3.4)

(c.f. Paterson [35] equation (11)). Thus the growing interface is unstable if R0 > n(n +

1)σα/q ≡ n(n+1)σ, if, as we do for convenience, one takes |q| = |α|. For our calculations the

appropriate wavenumber is n = 2πk/|α| (since we are in a wedge rather than unconfined

radial geometry this is not necessarily an integer), and for most of our examples the

instability criterion is satisfied at the outset, thus fingers develop from the start, those with

higher values of σ exhibiting slower growth as anticipated by (3.4). For the calculation of

Figure 9 however, |α| = 5π/9, k = 3 and σ = 0.005 gives R0 > 0.637 as the criterion for

instability, while |α| = 5π/9, k = 3 and σ = 0.01 gives R0 > 1.27 as the criterion, and in

this case we do observe that, while the lower value of surface tension is unstable from the

start, the higher value is clearly stabilised initially.

Figure 9(a) shows evolution in the same corner α = −5π/9, for two larger values of

the surface tension. The initial shape is given by (3.2), (3.3) with amplitude C = 0.1α and

wave number k = 3. It can be seen that fingers develop for σ = 0.005, while for σ = 0.01

the free boundary smooths, as explained by the earlier remarks about linear stability. This

smoothing is also apparent from the plot of curvature versus arc length in Figure 9(b).

The initial maximum/minimum of the curvature decreases rapidly in magnitude at first,

and then changes more weakly with time as the stability threshold is reached. We note

again the fixed nodes in ∂κ/∂s in Figure 9(c), showing that the central (starlike) symmetry

of the free surface is preserved in time. Consideration of the plots of κ and ∂κ/∂s for

σ = 0.01 here reveals that we are far from the tip-splitting phenomenon in this example.

The evolution for σ = 0.01 and the “asymmetric” initial shape (relative to the nodes

where ∂κ/∂s = 0) given by (3.2) with slope

δ(s) = α
(
1 − s/smax

)
+ C sin

(
2π(3s)/smax

)
+ C sin

(
2π(2s)/smax

)
, (3.5)

is shown in Figure 10. The harmonic with wave number 3 is rapidly suppressed (this

harmonic is stable for R0 < 1.27), and only two fingers develop (the unstable n = 2

mode). The points s/smax = 0, 0.5, 1 where ∂κ/∂s = 0 (corresponding to the three initial

fjords) maintain their positions for all time, while those points corresponding to the tips

rapidly change position for 0 < t < 1. As tip-splitting is approached, these curvature

extrema approach the locations (s/smax ≈ 0.25, 0.75), and once they have changed type

from fingertips to fjords, they remain essentially fixed at these positions. An asymmetry

of the fingers can be seen in Figure 10(a), and also in the corresponding curvature (and

derivative) in Figures 10(b) and (c).

Finally, results for the case of a sink at the corner vertex are shown in Figure 11. The

initial shape is given by equation (3.2), (3.3) with C = −0.1α (the the dash-dotted line

in the figure is a circular arc, included for comparison). Although the chosen values of

surface tension, σ = 0.005 and σ = 0.05, differ by a factor of 10, and the interface is
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(a)

(b)

(c)

Figure 10. Flow in the corner α = −5π/9 with σ = 0.01: (a) free boundary evolution, with time

interval 0.5 between successive contours; and the corresponding evolution of the curvature (b) and

its derivative (c). The initial shape of the free boundary is given by equation (3.5) with C = 0.1α.

clearly unstable right from the start2, until time t ≈ 1.6 the calculated interface shapes

are almost the same. Once the central finger has started to form, with the interface

2 In this case linear stability analysis leads to an interface growth rate

Ḃ

B
=
n+ 1

R2
0

(
(−q)
α

− σn(n− 1)

R0

)

replacing (3.4).
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Figure 11. Evolution of the free boundary in the corner α = 3π/4 with the sink at the vertex with

σ = 0.005 (solid) and σ = 0.05 (dashed). The initial free boundary is given by equations (3.2) and

(3.3) with C = −0.1α, and the time interval between successive contours is 0.5.

becoming non-convex, the finger with the lower surface tension value grows fastest, as

expected.

For completeness we note that similar results based on sophisticated numerical methods

were obtained by Ceniceros et al. [7], Kelly & Hinch [25] and Nie & Tian [33], who studied

the related problem of an initially-circular fluid domain with off-centre suction. In these

papers also a finger forms in the evolving interface as suction proceeds, and for very

small values of the surface tension parameter it is found that the finger tip (the free

boundary) approaches the sink in the form of a wedge (the angle of which appears to

be uniquely selected as the surface tension parameter goes to zero). Similarity solutions

to the zero surface tension sink problem in the corner geometry (the appropriate local

problem to study for this wedge-like free boundary behaviour) were found by Ben Amar

[4, 5] who, with Combescot [8], later investigated the wedge angle selection issue. This

was also later considered by Cummings & King [11], who provided some analysis of

the solution breakdown mechanics in this problem. Although for small surface tension

the free boundary is wedge-like as the sink is approached, it turns out that ultimately

nonzero surface tension, however small, is always important (indeed, dominant), and in

fact solution breakdown must occur via the free boundary moving in towards the sink in

a locally flat (straight line) configuration.

3.1 Different contact angles γ� π/2

Finally, we briefly mention the case of different (acute) contact angles γ � π/2 within

the fluid. This is not a major focus of our study, so we provide just one example, for

completeness and to demonstrate that our methods can be extended to this case also. A

simulation in a wedge of angle α = −5π/9 (an air bubble at the wedge apex with suction

of fluid from infinity) is given in Figure 12, for the initial free boundary given by (3.2)

with slope δ(s) given by

δ(s) = α+ γ + (π − α− 2γ)s/smax + C sin(2πks/smax),

with C = 0.1α and k = 2. In this case the velocity at the contact points turns out to be

very small from the outset, thus for convenience in this simulation the reference velocity
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Figure 12. Evolution of the free boundary in a wedge of angle α = −5π/9 with contact angle

γ = π/10 and surface tension parameter σ = 0.005.

νO(t) that appears in formulae (2.9), (2.25) was changed to be the velocity of the free

boundary on the centreline of the wedge. This scenario may be compared to the ZST

free boundary problem studied by King et al. [26]. These authors consider flow driven by

suction (or blowing) from infinity in a fluid domain initially in the shape of an infinite

wedge of internal angle φ at the apex A. If one identifies the centreline of their fluid

wedge with a rigid impermeable wall then their problem is a ZST local analogue of ours

near the contact line between fluid and wall, with wedge half-angle φ/2 corresponding to

our contact angle γ. The case we present in Figure 12 corresponds to an angle φ ∈ (0, π/2)

in their analysis, in the suction case, for which they conjecture3 the following result: “(S1)

For 0 < φ � π/2 it is possible for the solution to exist. The boundary Γ continues to have

a corner of angle φ at A.” (That is, the free boundary does not move away from the point

A under the suction.) Our numerical observations at small surface tension (σ = 0.005) for

the NZST problem are thus entirely consistent with this ZST conjecture.

4 Conclusion

We have presented a new method for solving the free-boundary problem of unsteady

Hele–Shaw flows with surface tension, driven by injection or suction mechanism in a

corner geometry. Our method allows for either a source or a sink, located at the origin

or at infinity. Our approach is based on the determination of two governing functions:

the complex velocity, and the derivative of the complex potential defined in an auxiliary

parameter domain. The analytical expression for the (time-dependent) function mapping

the parameter domain onto the physical domain is found using these governing functions.

Using the obtained mapping function we derived an integral equation for the function

of the velocity modulus on the free boundary, which shows that the velocity modulus is

determined by the curvature of the free boundary (and its first and second derivatives) at

each moment of time.

3 Their conjectures for the suction case are based on time-reversal arguments from the blowing

problem, for which they present formal asymptotic results.
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The numerical results presented show the interface dynamics for various initial shapes

of the free boundary in both converging and diverging channels for unstable sink-driven

flow. For a sink at infinity, the results confirm the linear stability analysis of Paterson

[35] and in the nonlinear regime, reproduce the development of radial fingering and

tip-splitting, as seen in earlier experiments [29, 35, 42].

Our approach may be compared with that taken by Dai & Shelley [12] and Hou et al.

[20]. These authors used the Plemelj formulae for the complex velocity, and obtained a

Birkhoff-Rott integral in which the vortex sheet strength is determined from a Fredholm

integral of the second kind. At each timestep (using an implicit timestepping scheme) they

need to solve the Fredholm integral equation, and evaluate the Birkhoff–Rott integral

using a Hilbert transform. In our method, on the other hand, the obtained integral

equation (2.25) was solved just by direct application of the Hilbert transform. The price

of this simplicity and ease of implementation is the need for a smaller timestep of

integration, as we can use only an explicit time integration method. To apply an implicit

method we would need to derive an integral equation with respect to the time derivative of

the velocity modulus on the free boundary, from the kinematic equation in the parametric

plane, (2.31). We note, however, that the stability constraint on the timestep for our

explicit scheme is not a limitation for long-time predictions. For a smaller timestep, a

smaller number of iterations are required to solve the nonlinear integral equation, so in

fact the total calculation time depends only weakly on the timestep.
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Appendix A Demonstration that ∂ν/∂η = 0 at wall intersection points

Consider the flow local to the contact point O, sketched in figure A 1. Let vb = νeiβ be

the local (complex) free boundary velocity, then

vb = żb

for points zb(s, t) on the boundary. The complex tangent vector along Γ (t) satisfies

∂zb
∂s

= ei(π−γ) = −e−iγ .

Thus,

∂

∂s
(żb) = − d

dt
(e−iγ) = iγ̇e−iγ =

∂vb
∂s
,

and it follows that, if γ̇ = 0 as we assume, then ∂vb/∂s = 0, and hence ∂ν/∂s = 0 at O

(and A). Since ∂/∂η = (ds/dη)∂/∂s, and |ds/dη| < ∞ in the conformal mapping near O,
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s

O

Γ(t)

γ

Figure A 1. Local behaviour near the contact point O.

we deduce that

∂ν

∂η
= 0 at the point O, (A 1)

as claimed.
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