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A software release game was formulated by Zeephongsekul and Chiera [Zeephongsekul, P.
& Chiera, C. (1995). Optimal software release policy based on a two-person game of timing.
Journal of Applied Probability 32: 470–481] and was reconsidered by Dohi et al. [Dohi, T.,
Teraoka, Y., & Osaki, S. (2000). Software release games. Journal of Optimization Theory
and Applications 105(2): 325–346] in a framework of two-person nonzero-sum games. In
this paper, we further point out the faults in the above literature and revisit the Nash
equilibrium strategies in the software release games from the viewpoints of both silent and
noisy type of games. It is shown that the Nash equilibrium strategies in the silent and
noisy of software release games exist under some parametric conditions.
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1. INTRODUCTION

One of the most important issues for a software developer is to determine an economic timing
to release a software product with the satisfactory reliability requirement in the market.
Since software testing cost is, in general, expensive through the development process, the
software developer wishes to reduce the testing period as short as possible. On the other
hand, if software testing is not sufficient and software failures caused by software faults
occur in the market or the user side, the large amount of fixing and/or penalty costs may
incur. Hence, the trade-off relationship between the above two cost components motivates
us to seek the best timing to release the software. This problem is called the software release
problem and has been extensively studied in software engineering [15,21,32]. In most cases,
the software release problem is formulated as a minimization of the expected total software
cost with some constraints, by taking account of the above trade-off relationship, and can
be reduced to a simple deterministic optimization problem.
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On the other hand, since the market of commercial software is always competitive, the
software development project is rather influenced by an external environment such as the
marketing behavior by a competitive developer. In such a situation, it is not enough to
determine the software release timing based on only the developer’s own cost minimization.
Because the competitor may release his or her software in an earlier phase and may occupy
the market of the similar software product. Zeephongsekul and Chiera [35] formulated this
problem as a silent type of two-person nonzero-sum game of timing [1,14,25,29] and gave a
Nash equilibrium strategy for two software developers. However, since their strategy holds
in a very limited case, it can be easily shown that the corresponding strategy is not the Nash
equilibrium in general cases. Dohi et al. [8] pointed out this fatal problem and revisited the
original software release game. They further considered two noisy type of software release
games as well.

The main purpose of this paper is to show that even the mixed strategies by Dohi
et al. [8] are not also the Nash equilibrium strategies. We revisit the silent type of Nash
equilibrium strategies in [8]. More specifically, under some parametric conditions, we show
the existence of the Nash equilibrium strategies of software release game. Also, we revisit
the noisy type of Nash equilibrium strategy in [8] in a similar way and derive the Nash
equilibrium strategy in the noisy type of software release game.

The remaining part of this paper is organized as follows. Section 2 overviews the related
work on software release problems. In Section 3, we formulate a standard software release
problem to minimize the expected total software cost and the original silent-type software
release game [8,35]. Section 4 gives two counterexamples of the silent type of Nash equi-
librium strategies in [8,35]. Section 5 concerns the silent-type software release game and
derives the Nash equilibrium strategies revisited and their associated value functions. In
Section 6, we give the correct results in the noisy-type software release game where each
player can know whether the opponent player has already acted or not. That is, each player
can postpone his or her release action until the best timing if the opponent acts earlier
and fails in the noisy-type game. Numerical examples are given in Section 7 to investigate
the dependence of some model parameters on the game-theoretic software release decisions.
Finally, the paper is concluded with some remarks in Section 8.

2. RELATED WORKS

Software release problem was first formulated by Okumoto and Goel [21] to determine the
best timing to release the software after testing. Later, Koch and Kubat [15] and Yamada
and Osaki [32] formulated different cost minimization problems from the seminal work in
[21] and derived the different optimal software release policies. Along with the similar line,
Wee [30], Ozekici et al. [22], Ho et al. [12], Hou et al. [13], Pham and Zhang [23], Xie et
al. [31], Yang et al. [33], Chiu et al. [3], Sgarbossa and Pham [26], and Boland and Chuivi
[2] also considered many software release problems with different cost functions, different
constraints, and different stochastic models to describe the software debugging. However,
it should be worth mentioning that all the software release problems formulated in the
above literature are static problems in nature by minimizing the relevant expected costs
with constraints and are categorized into an elementary optimization problem. Zheng [36]
formulated the software release problem by means of a Markov decision process and proved
that the optimal policy is threshold type.

On the one hand, several mathematical statisticians concerned the similar problems
from the viewpoints of statistical perspective. Forman and Singpurwalla [10,11] dealt with
the software release problems as hypothesis testing. Ross [24] also proposed a stopping
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rule of software testing by means of a control chart. Dalal and Mallow [4] formulated the
software release problem as a sequential Bayesian decision model. Later, the same authors
developed several graphical procedures to decide how much software should be tested before
releasing in [5]. Dalal and McIntosh [6] presented a stochastic and economic framework to
deal with systems that change as they are tested, and integrated the stopping rule [4] and the
graphical approach [5]. Singpurwalla [28] proposed an interesting decision-making approach
to maximize the expected utility. In these ways, much attentions have been paid in software
engineering, mathematical statistics, and decision theory.

In software engineering perspective, several approaches to treat software release prob-
lems have been studied. The recent and most important paradigm shift in software
engineering was the spread of open-source software. It is computer software with the source
code available with a license in which the copyright holder provides the rights to study,
change, and distribute the software to anyone and for any purpose. Since the reduction of
software development cost is possible through the effective utilization of open-source soft-
ware, it has been often used in the actual industry. Liu and Chang [17], Li et al. [16], Luo
et al. [18], Yang et al. [34], Singh et al. [27], and Zhu and Pham [37] considered multiple
release and version up problems of open-source software, which are rather different from
the seminal works in [15,21,32]. The direct application of the machine learning technique,
such as neural networks, is also becoming popular to predict the number of software bugs in
system testing. Dohi et al. [7,9] and Momotaz and Dohi [19,20] studied the optimal software
release decision via artificial neural networks.

As we have mentioned in Section 1, almost all authors ignored the existence of rival
company in the software product market and just considered a single optimization problem
to minimize the expected cost or to maximize the expected profit. In that sense, the soft-
ware release games in [8,35] are quite interesting to understand the competitive marketing
behavior by the software developers. Since these authors’ results involve theoretical faults
in terms of the Nash equilibrium strategies, the challenge in this paper seems to play a
significant role in the software release engineering.

3. MODEL DESCRIPTION

The standard software release problem aims at determining the optimal release time which
minimizes the expected total software cost. Suppose that there are two software development
companies, which are labeled by Player i = 1, 2. Define the following notation:

TLC: software life cycle
Ni(t): expected cumulative number of software faults detected/corrected by time t in

company i (= 1, 2)
Ci(t): expected total software cost when company i (= 1, 2) releases the software at time t
c1i: cost of testing per unit time incurred in the testing phase for company i
c2i: cost of removing a software fault in the testing phase for company i
c3i: cost of removing a software fault in the operational phase for company i.

Without any loss of generality, we assume that c3i > c2i for i = 1, 2. This means that
the cost of removing a software fault in the operational phase is much more expensive than
that in the testing. Under this plausible assumption, the expected total software cost for
company i (= 1, 2) is given by

Ci(t) = c1it+ c2iNi(t) + c3i{Ni(TLC) −Ni(t)}, 0 ≤ t ≤ TLC,
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where Ni(t) is differentiable with respect to t and is an increasing function with Ni(0) = 0.
Suppose that the function Ci(t) is a strictly convex function in t and that there exists a
uniquely minimum value in t = γi ∈ (0, TLC), where

γi =
{
t ≥ 0

∣∣∣∣ inf
0<t<TLC

Ci(t)
}
, i = 1, 2

for company i. If Ci(t) is a concave function, then it is optimal to continue the software test
without release. In this sense, this assumption is trivial.

In the software release game, we assume that there exist only two rival players, Player 1
and Player 2, in the software product market. Each player wishes to maximize the expected
total profit by his or her software development project and considers the optimal release
timing. To simplify the analysis, we assume that each software product has the almost
similar quality on functionalities. This implies that the life cycle of the software (TLC)
developed by each player is assumed to be the same. Also, we assume that the success of
a monopoly of market by selling the software released to the market is probabilistic, so
that the success probability for each player is given by Ai(t) for an arbitrary release time
t (> 0) by Player i (= 1, 2). If Player i wins the software release game, then he or she can
occupy the market, but the opponent, Player 3 − i (i = 1, 2), loses it. Since it is common
to consider that the release timing to maximize the success probability is different from the
profit-effective timing by maximizing the expected total profit, we assume that the success
probability Ai(t) is also a strictly concave function with Ai(0) = Ai(TLC) = 0 and has a
uniquely maximum value in t = ηi ∈ (0, TLC), where

ηi =
{
t ≥ 0

∣∣∣∣ sup
0<t<TLC

Ai(t)
}
, (1)

for Player i [35]. This assumption motivates us to release the software by taking account of
the opposite player. It would be appropriate because the success probability in the market
increases first and decreases just after the unimodal point is attained.

Let pi be the net profit by selling the software products by Player i (= 1, 2). Then, the
expected total profit for Player i is given by

gi(t) = piAi(t) − Ci(t).

We call gi(t) the expected total reward. Note that the function gi(t) is a strictly concave
function because Ai(t) and Ci(t) are strictly concave and convex in t, respectively, so that
there exists a unique timing τi ∈ (0, TLC) satisfying

τi =
{
t ≥ 0

∣∣∣∣ sup
0<t<TLC

gi(t)
}
, i = 1, 2. (2)

Similarly, the expected total profit for Player i when the opponent player releases his
or her software earlier and fails in the market is given by

ψi(ti, t3−i) = piAi(ti)A3−i(t3−i) − Ci(ti), i = 1, 2,

where Ai(t) = 1 −Ai(t).
Let (x, y) denote the pure (non-probabilistic) strategies expressing the release times of

software products for Player 1 and Player 2, respectively. Also, let Mi(x, y) be the expected
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total profit for Player i when Player 1 and Player 2 release at time x and y, respectively.
Zeephongsekul and Chiera [35] formulate the expected total profit as follows:

M1(x, y) =

{
g1(x) = p1A1(x) − C1(x), x < y,

ψ1(x, y) = p1A2(y)A1(x) − C1(x), x ≥ y,
(3)

M2(x, y) =

{
g2(y) = p2A2(y) − C2(y), y < x,

ψ2(y, x) = p2A1(x)A2(y) − C2(y), y ≥ x.
(4)

We call the game given in Eqs. (3) and (4) silent-type game. In the silent-type game,
we assume that each player cannot know whether opponent’s action has already been taken
or not.

Here, let (X,Y ) ∈ [0, TLC] × [0, TLC] be the sets of pure strategies for each Player i (=
1, 2). Define the mixed (probabilistic) strategy for each player:

F1 = F1(x) = Pr{X ≤ x} ∈ [0, 1],

F2 = F2(y) = Pr{Y ≤ y} ∈ [0, 1].

This implies that Player i (= 1, 2) triggers the software release at the random timing
with the probability distribution function Fi. If Player i takes the mixed strategy Fi, then
the expected total profit for Player i is given by

Mi(F1, F2) =
∫

X

∫
Y

Mi(x, y) dF1 dF2,

where

M1(x, F2) =
∫

Y

M1(x, y) dF2,

M2(F1, y) =
∫

X

M2(x, y) dF1.

(5)

The sets of mixed strategies (F ∗
1 , F

∗
2 ) are called the mixed equilibrium strategies or Nash

equilibrium strategies if they satisfy

M1(F ∗
1 , F

∗
2 ) ≥M1(F1, F

∗
2 ), (6)

M2(F ∗
1 , F

∗
2 ) ≥M2(F ∗

1 , F2). (7)

The expected total profit Mi(F ∗
1 , F

∗
2 ) is called the value function. Hence, the challenge

here is to find the Nash equilibrium strategies and their associated value functions.
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4. TWO COUNTEREXAMPLES

4.1. Counterexample in [35]

For the game in Eqs. (3) and (4), Zeephongsekul and Chiera [35] derived the following mixed
strategy:

F ∗
1 (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ x < a1,∫ x

a1

q1(t) dt, a1 ≤ x ≤ μ1,

1, μ1 < x ≤ TLC,

(8)

F ∗
2 (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ y < a2,∫ y

a2

q2(t)dt, a2 ≤ y ≤ μ2,

1, μ2 < y ≤ TLC,

(9)

where

μi = sup{t > 0 | qi(t) > 0},
ai (i = 1, 2) is the unique root of the equation:∫ μi

ai

qi(t) dt = 1,

and

qi(t) =
A′

3−i(t){C3−i(t) + g3−i(ai)} − C ′
3−i(t)A3−i(t)]

p3−i{A3−i(t)}2Ai(t)
.

Dohi et al. [8] gave a counterexample for the above strategy and showed that it holds in
an only limited case. If a1 �= a2 and/or μ1 �= μ2, then it is obvious that the mixed strategies
in Eqs. (8) and (9) are not optimal. From Eqs. (3) and (4), we have

M1(x, F ∗
2 ) =

⎧⎪⎪⎨
⎪⎪⎩
p1A1(x) − C1(x), 0 ≤ x < a2,
g1(a2), a2 ≤ x ≤ μ2,

A1(x)
C1(μ2) + g1(a2)

A1(μ2)
− C1(x), μ2 < x ≤ TLC,

M2(F ∗
1 , y) =

⎧⎪⎪⎨
⎪⎪⎩
p2A2(y) − C2(y), 0 ≤ y < a1,
g2(a1), a1 ≤ y ≤ μ1,

A2(y)
C2(μ1) + g2(a1)

A2(μ1)
− C2(y), μ1 < y ≤ TLC.

That is,

M1(x, F ∗
2 )

⎧⎨
⎩
< g1(a2), 0 ≤ x < a2,
= g1(a2), a2 ≤ x ≤ μ2,
< g1(a2), μ2 < x ≤ TLC,

M2(F ∗
1 , y)

⎧⎨
⎩
< g2(a1), 0 ≤ y < a1,
= g2(a1), a1 ≤ y ≤ μ1,
< g2(a1), μ1 < y ≤ TLC.
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If a1 < a2 and μ1 > μ2, then

M1(F ∗
1 , F

∗
2 ) =

∫ a2

a1

M1(x, F ∗
2 ) dF ∗

1 +
∫ μ1

a2

M1(x, F ∗
2 ) dF ∗

1

<

∫ a2

a1

g1(a2) dF ∗
1 +

∫ μ1

a2

g1(a2) dF ∗
1 ,

M1(F ∗
1 , F

∗
2 ) =

∫ μ2

a1

M1(x, F ∗
2 ) dF ∗

1 +
∫ μ1

μ2

M1(x, F ∗
2 ) dF ∗

1

<

∫ μ2

a1

g1(a2) dF ∗
1 +

∫ μ1

μ2

g1(a2) dF ∗
1 ,

and we find that

M1(F ∗
1 , F

∗
2 ) < g1(a2).

On the other hand, if a2 < a1 and μ2 > μ1, then

M2(F ∗
1 , F

∗
2 ) < g2(a1).

These facts imply that both players always have to set a1 = a2 and μ1 = μ2, and that
the mixed strategies in Eqs. (8) and (9) are not optimal if a1 �= a2 and/or μ1 �= μ2.

4.2. Counterexample in [8]

Define

η = min(η1, η2),

ȧ = max(ȧ1, ȧ2),

where ηi (i = 1, 2) is already defined in Eq. (1) and ȧi (i = 1, 2) is the unique root a of the
equation: ∫ η

a

fi(t; a) dt = 1, (10)

where

fi(t; a) =
A′

3−i(t){C3−i(t) + g3−i(a)} − C ′
3−i(t)A3−i(t)

p3−i{A3−i(t)}2Ai(t)
.

Dohi et al. [8] proposed the following mixed strategy in the silent-type game:

F ∗
1 (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ x < ȧ,∫ x

ȧ

f1(t; ȧ) dt+ α
[ȧ,η]
1 Iη(x), ȧ ≤ x ≤ η,

1, η < x < TLC,

(11)

F ∗
2 (y) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ y < ȧ,∫ y

ȧ

f2(t; ȧ) dt+ α
[ȧ,η]
2 Iη(y), ȧ ≤ y ≤ η,

1, η < y < TLC,

(12)
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where

Ij(z) =
{

1, z = j,
0, otherwise, (13)

α
[ȧ,η]
i = 1 −

∫ η

ȧ

fi(t; ȧ) dt, (14)

and the parameters α[ȧ,η]
i (i = 1, 2) represent the mass parts of Player i’s mixed strategy.

In their solution, the game value satisfying Eqs. (6) and (7) is given by

Mi(F ∗
1 , F

∗
2 ) = gi(ȧ).

We show that the mixed strategies in Eqs. (11) and (12) do not satisfy the Nash inequal-
ities in Eqs. (6) and (7). For Player 1, we consider the case of η < x < TLC. From Eq. (12),
the probability density function (p.d.f.) for Player 2’s mixed strategy is given by

f∗2 (y) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ y < ȧ,
f2(y; ȧ), ȧ ≤ y < η,

α
[ȧ,η]
2 , y = η,

0, η < y < TLC.

(15)

Using Eqs. (3) and (15), we obtain

M1(x, F ∗
2 ) =

∫ η

ȧ

{p1A2(y)A1(x) − C1(x)} dF ∗
2

= p1A1(x) − C1(x) − p1A1(x)
{∫ η−0

ȧ

A2(y)f2(y; ȧ) dy +A2(η)α
[ȧ,η]
2

}

=
C1(η) + g1(ȧ)

A1(η)
A1(x) − C1(x) − p1A1(x)A2(η)α

[ȧ,η]
2 . (16)

Define G2(x) = {C1(x) + g1(ȧ)}/A1(x). From Eq. (16), we have

g1(ȧ) −M1(x, F ∗
2 )

A1(x)
= G2(x) −G2(η) + p1A2(η)α

[ȧ,η]
2 . (17)

By differentiating G2(x) with respect to x, we find

G′
2(x) =

−{A′
1(x){C1(x) + g1(ȧ)} − C ′

1(x)A1(x)}
{A1(x)}2

= −p1A2(x)f2(x; ȧ). (18)

From Eq. (18), Eq. (17) can be rewritten as follows:

g1(ȧ) −M1(x, F ∗
2 )

p1A1(x)
= −

∫ x

η

A2(t)f2(t; ȧ) dt+A2(η)α
[ȧ,η]
2 . (19)

If ȧ = ȧ2, then it holds α[ȧ,η]
2 = 0 from Eqs. (10) and (14). Also, since fi(t; ȧ) is the

p.d.f., it must hold that fi(η; ȧ) ≥ 0. Hence, in this situation, Eq. (19) is possible to take a
negative value. From the above case, for an arbitrary x, it holds that

M1(x, F ∗
2 ) ≥ g1(ȧ).

The case of Player 2 is similar. Hence, it is shown that the mixed strategy F ∗
i in Eqs.

(11) and (12) is not always the Nash equilibrium strategy.
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5. SILENT-TYPE GAME

We reconsider the solutions of the silent-type game. In Eqs. (5) and (6), the first-order
conditions of optimality are given by

∂

∂x
M1(x, F2) = 0, (20)

∂

∂y
M2(F1, y) = 0. (21)

We suppose that there exists the first derivative of the function Fi(t) satisfying Eqs.
(20) and (21), that is,

hi(t) =
dFi(t)
dt

, i = 1, 2.

For the function hi(t), define the parameter μ̃i satisfying

μ̃i = sup{t > ã|hi(t) > 0}, i = 1, 2,

where

ã = max(ã1, ã2), (22)

and ãi (i = 1, 2) is the unique root a of the equation:

∫ μ

a

hi(t) dt = 1,

where

μ = min(μ̃1, μ̃2). (23)

Hence, the function hi(t) is regarded as a p.d.f.
In the silent-type game, we define the p.d.f. of the Nash equilibrium strategy:

f∗i (t) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ t < ã,
hi(t), ã ≤ t < μ,

β
[ã,μ]
i , t = μ,

0, μ < t ≤ TLC,

(24)

where

β
[ã,μ]
i = 1 −

∫ μ

ã

hi(t) dt, (25)

and

hi(t) =
A′

3−i(t){C3−i(t) + g3−i(ã)} − C ′
3−i(t)A3−i(t)

p3−i{A3−i(t)}2Ai(t)
(26)

is the function that satisfies the first-order conditions of optimality in Eqs. (20) and (21).
In the silent-type game, we assume that only one Player i takes the mixed strategy which
has the mass part β[ã,μ]

i , that is, β[ã,μ]
1 β

[ã,μ]
2 = 0.
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In the silent-type software release game, we make the following three assumptions:

Assumption 1: If μ = μ̃3−i, then

Ai(μ)β[ã,μ]
i ≥

∫ μ̃i

μ

Ai(t)hi(t) dt, i = 1, 2.

Assumption 2: For arbitrary t (≥ 0),

Ci(t) + gi(ã) ≥ 0, i = 1, 2.

Assumption 3: For i = 1, 2,

ã ≤ τi,

where τi is already defined in Eq. (2).

It should be noted that β[ã,μ]
i (i = 1, 2) are the probabilities that Player i releases the

software product at time μ. In Assumption 1, we implicitly assume that the product of β[ã,μ]
i

and the success probability at time μ, Ai(μ), is greater than the accumulation of hi(t)Ai(t)
in the range (μ, μ̃i). In Assumption 2, the function gi(ã) represents the expected total profit
when Player i releases the software product as early as possible. Since the expected total
software cost Ci(t) is strictly positive, this is plausible and can be validated intuitively.

If we assume ã > τi, then each player selects not to release at the best timing τi which
maximizes the expected total profit in the situation where the opponent player does not
release the software yet. This action is not rational, so it can be seen that Assumption 3 is
also plausible. This nontrivial case results that no Nash equilibrium strategy may be found.
Unfortunately, it is not easy to see that what combination of pi, Ai(t) and Ci(t) leads to
the condition of ã ≤ τi. However, as shown in the numerical examples, the condition can be
checked numerically.

Lemma 1: For i = 1, 2, hi(ã) ≥ 0.

Proof: For Player 1, since the denominator of h1(t) in Eq. (26) is always positive, it is
enough to show the fact that the numerator is also positive when ã ≤ τi. Substituting t = ã
into the numerator of h1(t) yields

A′
2(ã){C2(ã) + g2(ã)} − C ′

2(ã)A2(ã) = A2(ã)g′2(ã) ≥ 0.

Since the case of Player 2 is similar, under Assumption 3, hi(ã) ≥ 0. �

Lemma 2: The function satisfying Eqs. (20) and (21) is given by

f∗i (t) =

⎧⎨
⎩

0, 0 ≤ t < ã,
hi(t), ã ≤ t < μ,
0, μ ≤ t ≤ TLC.
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Proof: When Player 1 releases at ã ≤ x ≤ μ, we obtain

M1(x, F ∗
2 ) =

∫ μ

ã

M1(x, y) dF ∗
2

= p1A1(x) − C1(x) −
∫ x

ã

{p1A1(x)A2(y)} dF ∗
2 . (27)

By differentiating Eq. (27) with respect to x and setting it equal to zero, we have

1
p1

· ∂C1(x)
∂x

=
∂

∂x

[
A1(x)

{
1 −

∫ x

ã

A2(y) dF ∗
2

}]
. (28)

Integrating both sides of Eq. (28) yields

A1(x)
{

1 −
∫ x

ã

A2(y) dF ∗
2

}
=
C1(x) +D

p1
, (29)

where D is the constant of integration. By substituting x = ã into Eq. (29), we have D =
g1(ã) and

h2(t) =
A′

1(t){C1(t) + g1(ã)} − C ′
1(t)A1(t)

p1{A1(t)}2A2(t)
, ã ≤ t < μ.

The proof for Player 2 is made in the similar way. �

Theorem 1: The Nash equilibrium strategies for the silent-type software release game are
given by

F ∗
1 (x) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ x < ã,∫ x

ã

h1(t) dt+ β
[ã,μ]
1 Iμ(x), ã ≤ x ≤ μ,

1, μ < x ≤ TLC,

(30)

F ∗
2 (y) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ y < ã,∫ y

ã

h2(t) dt+ β
[ã,μ]
2 Iμ(y), ã ≤ y ≤ μ,

1, μ < y ≤ TLC,

(31)

where Iμ(t), ã, μ, β[ã,μ]
i , hi(t) are given in Eqs. (13), (22), (23), (25), and (26), respectively.

Theorem 2: The value functions of the silent-type software release game are given by

Mi(F ∗
1 , F

∗
2 ) = gi(ã), i = 1, 2,

so that the Nash equilibrium strategies are given by F ∗
i (t) in Eqs. (30) and (31).
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Proof: For Player 1, we consider four cases: (i) x < ã, (ii) ã ≤ x < μ, (iii) x = μ, and (iv)
μ < x ≤ TLC. In Case (i), from Eq. (5) and Assumption 3, we have

M1(x, F ∗
2 ) = p1A1(x) − C1(x) = g1(x) < g1(ã).

In Case (ii), the function M1(x, F ∗
2 ) is constant for all x since F ∗

2 satisfies the first-order
condition of optimality. Substituting x = ã into Eq. (27) leads to

M1(ã, F ∗
2 ) = p1A1(ã) − C1(ã) = g1(ã).

In Case (iii), using Eqs. (3) and (24), we obtain M1(x, F ∗
2 ) as follows:

M1(x, F ∗
2 ) =

∫ μ

ã

{p1A2(y)A1(x) − C1(x)} dF ∗
2

= p1A1(x) − C1(x) − p1A1(x)
{∫ μ−0

ã

A2(y)h2(y) dy

+A2(μ)β[ã,μ]
2

}

=
c1(μ) + g1(ã)

A1(μ)
A1(x) − C1(x) − p1A1(x)A2(μ)β[ã,μ]

2 . (32)

From Eq. (32), it can be seen that

M1(μ, F ∗
2 ) = g1(ã) − p1A1(μ)A2(μ)β[ã,μ]

2 ≤ g1(ã).

In Case (iv), we have

M1(x, F ∗
2 ) =

∫ μ

ã

{p1A2(y)A1(x) − C1(x)} dF ∗
2

=
c1(μ) + g1(ã)

A1(μ)
A1(x) − C1(x) − p1A1(x)A2(μ)β[ã,μ]

2 . (33)

For G2(x) = {C1(x) + g1(ã)}/A1(x), from Eq. (33), we obtain

g1(ã) −M1(x, F ∗
2 )

A1(x)
= G2(x) −G2(μ) + p1A2(μ)β[ã,μ]

2 . (34)

By differentiating G2(x) with respect to x, we find that

G′
2(x) =

−{A′
1(x){C1(x) + g1(ã)} − C ′

1(x)A1(x)}
{A1(x)}2

= −p1A2(x)h2(x). (35)

If μ = μ̃2, then β
[ã,μ]
2 = 0 and h2(x) < 0. From Eqs. (34) and (35), it is seen that

M1(x, F ∗
2 ) ≤ g1(ã). On the other hand, if μ = μ̃1, then β

[ã,μ]
2 > 0. Based on Assumption

1, we have

G2(x) −G2(μ) + p1A2(μ)β[ã,μ]
2 ≥ 0. (36)

From Eqs. (34) and (36), it is seen that M1(x, F ∗
2 ) ≤ g1(ã).
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From the above cases (i)–(iv), it is shown for all x that

M1(x, F ∗
2 ) ≤ g1(ã).

In this game, β[ã,μ]
1 β

[ã,μ]
2 = 0 always holds by definition of ã and β[ã,μ]

i . Hence, the value
function is given by

M1(F ∗
1 , F

∗
2 ) =

∫ μ

ã

M1(x, F ∗
2 ) dF ∗

1

= g1(ã) − p1A1(μ)A2(μ)β[ã,μ]
1 β

[ã,μ]
2 = g1(ã).

The proof for Player 2 is made in the similar way. �

6. NOISY-TYPE GAME

Next, we consider the case where each player can know whether the opponent player has
already released his or her software or not. This type of game is called noisy-type game.
Each player can postpone his or her release time until the best timing if the opponent
releases earlier and fails in the market, where the best timing means the time when the
expected total reward gi(t) (i = 1, 2) is maximized. For the noisy-type game, let (x, r1(y))
denotes the pure strategy for Player 1, such that Player 1 selects time x and then acts at
best timing r1(y) if Player 2 has acted at time y before time x, or acts at time x if Player 2
has not acted before time x. Similarly, let (y, r2(x)) be the pure strategy for Player 2. Also,
let (Fi, ri) be a mixed strategy such that Player i releases at best timing ri if Player 3 − i
has already released and failed under the condition that Player i has not acted yet. Nash
equilibrium strategies and value functions can be defined in a similar way to the silent-type
game. We define

M1((x, r1(y)), (y, r2(x)))

=
{
p1A1(x) − C1(x), x < y,
ψ1(r1(y), y) = p1A1(r1(y))A2(y) − C1(r1(y)), x ≥ y,

M2((x, r1(y)), (y, r2(x)))

=
{
p2A2(y) − C2(y), y < x,
ψ2(r2(x), x) = p2A2(r2(x))A1(x) − C2(r2(x)), y ≥ x,

(37)

where Mi((x, r1(y)), (y, r2(x))) is the expected total profit for Player i and ri(t) is the best
reaction timing for Player i when Player 3 − i releases at time t first.

Define
τ = min(τ1, τ2).

For an arbitrary time t ∈ (bi, τ ], let

θi(t) =
g′i(t)

gi(t) − ψi(τi, t)
,

where the parameter bi is the minimum root of the following equation:

gi(bi) = ψi(τi, bi), i = 1, 2.

In the noisy-type software release game, we make the following assumption:
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Assumption 4: If τ = τ3−i, then

gi(τ3−i) ≥ ψi(τi, τ3−i), i = 1, 2.

The function gi(τ3−i) represents the expected total profit for Player i in the situa-
tion when he or she releases the software at time τ3−i before the opponent’s release. Let
ψi(τi, τ3−i) denotes the expected total profit for Player i when he or she releases the soft-
ware at time τi after opponent’s release at time τ3−i. If gi(τ3−i) < ψi(τi, τ3−i) holds, then
Player 3 − i wishes to release at time τ3−i and Player i selects to release software at time
τi after opponent’s release. In this case, the existence of opponent player does not influence
the strategies of both players. Hence, we do not consider this trivial case.

Lemma 3: The cumulative distribution function satisfying Eqs. (20) and (21) is given by

F ∗
i (t) =

⎧⎨
⎩

0, 0 ≤ t < b,
1 − exp{− ∫ x

b
θ3−i(t)dt}, b ≤ x < c,

1, c ≤ x ≤ TLC,

where b = max(b1, b2) and c are the arbitrary real numbers satisfying b < c ≤ τ .

Proof: When Player 1 releases at b ≤ x ≤ c, we obtain

M1((x, τ1), (F ∗
2 , τ2)) = g1(τ1)

∫ x

b

dF ∗
2 − p1A1(τ1)

∫ x

b

A2(y) dF ∗
2

+ g1(x)[1 − F ∗
2 (x)]. (38)

From the first-order condition of optimality, we have

f2(x)
F ∗

2 (x) − 1
= − g′1(x)

g1(x) − ψ1(τ1, x)
= −θ1(x). (39)

Integrating both sides of Eq. (39) yields

F ∗
2 (t) = 1 +D exp

{
−

∫ x

b

θ1(t) dt
}
, b ≤ t < c, (40)

where D is the constant of integration. By substituting x = b into Eq. (40), we find D = −1.
The proof for Player 2 is made in the similar way. �

Theorem 3: Let b = b2. The Nash equilibrium strategies for the noisy-type software release
game are given by ((F ∗

1 , τ1), (F
∗
2 , τ2)), where

F ∗
1 (x) =

{
0, 0 ≤ x < b,
1, b ≤ x ≤ TLC,

F ∗
2 (y) =

⎧⎪⎪⎨
⎪⎪⎩

0, 0 ≤ y < b,

1 − exp
{
−

∫ y

b

θ1(t) dt
}

+ γ
[b,c]
2 Ic(y), b ≤ y ≤ c,

1, c < y ≤ TLC,

c ≤ τ and the parameters γ[j1,j2]
i (i = 1, 2) are given by

γ
[j1,j2]
i = exp

{
−

∫ j2

j1

θ3−i(t) dt
}
.

https://doi.org/10.1017/S0269964820000352 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964820000352


NASH EQUILIBRIUM STRATEGIES REVISITED IN SOFTWARE RELEASE GAMES 119

The value functions of the noisy-type software release game are given by

Mi((F ∗
1 , τ1), (F

∗
2 , τ2)) = gi(b), i = 1, 2.

Proof: For Player 1, we consider four cases: (i) x < b, (ii) b ≤ x < c, (iii) x = c, and (iv)
c < x ≤ TLC. In Case (i), from Eq. (5) and b < τ , we have

M1((x, τ1), (F ∗
2 , τ2)) = g1(x) < g1(b).

In Case (ii), the function M1((x, τ1), (F ∗
2 , τ2)) is constant for all x, since F ∗

2 satisfies the
first-order condition of optimality. Substituting x = b into Eq. (38) leads to

M1((b, τ1), (F ∗
2 , τ2)) = g1(b)[1 − F ∗

2 (b)] = g1(b).

In Case (iii), from Eq. (37), we obtain M1((x, τ1), (F ∗
2 , τ2)) as follows:

M1((c, τ1), (F ∗
2 , τ2)) =

∫ c−0

b

{p1A1(τ1)A2(y) − C1(τ1)} dF ∗
2

+ {p1A1(c)A2(c) − C1(c)}γ[b,c]
2

= g1(b) − p1A1(c)A2(c)γ
[b,c]
2 ≤ g1(b).

In Case (iv), under Assumption 4, we get M1((x, τ1), (F ∗
2 , τ2)) as follows:

M1((x, τ1), (F ∗
2 , τ2)) =

∫ c−0

b

{p1A1(τ1)A2(y) − C1(τ1)} dF ∗
2

+ {p1A1(τ1)A2(c) − C1(τ1)}γ[b,c]
2

= g1(b) − {g1(c) − ψ1(τ1, c)}γ[b,c]
2 ≤ g1(b).

From the above cases (i)–(iv), it is shown for all x that

M1((x, τ1), (F ∗
2 , τ2)) ≤ g1(b).

On the other hand, for Player 2, we consider two cases: (i) y < b and (ii) b ≤ y < TLC.
In Case (i) from Eq. (5) and b < τ , we have

M2((F ∗
1 , τ1), (y, τ2)) = g2(y) < g2(b).

In Case (ii), we obtain M2((F ∗
1 , τ1), (y, τ2)) as follows:

M2((F ∗
1 , τ1), (y, τ2)) = ψ2(τ2, b) = g2(b).

From the above cases (i) and (ii), it is shown for all y that

M2((F ∗
1 , τ1), (y, τ2)) ≤ g2(b).

Therefore, in the noisy-type software release game, the value functions are given by

M1((F ∗
1 , τ1), (F

∗
2 , τ2)) =

∫ τ

b

M1((x, τ1), (F ∗
2 , τ2)) dF

∗
1

= g1(b)
∫ τ

b

dF ∗
1 = g1(b),

M2((F ∗
1 , τ1), (F

∗
2 , τ2)) = g2(b).

The proof is completed. �
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Theorem 4: Let b = b2 and τ = τ1. The Nash equilibrium strategies for the noisy-type
software release game are also given by ((F ∗

1 , r1), (F
∗
2 , τ2)), where

F ∗
1 (x) =

{
0, 0 ≤ x < b,
1, b ≤ x ≤ TLC,

r1(y) =
{
τ1, 0 ≤ y ≤ τ,
y, τ < y ≤ TLC,

F ∗
2 (y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ y < b,

1 − exp
{
−

∫ y

b

θ1(t) dt
}
, b ≤ y < τ,

1 − exp
{
−

∫ τ

b

θ1(t) dt
}

+ γ
[b,τ ]
2 Id(y), τ ≤ y ≤ d,

1, d < y ≤ TLC,

and d is an arbitrary real number satisfying τ < d ≤ TLC. Then, the value functions of the
noisy-type software release game are given by

Mi((F ∗
1 , r1), (F

∗
2 , τ2)) = gi(b), i = 1, 2.

Proof: The expected total profit for Player 1 in the noisy-type game is given by

M1((x, r1), (F ∗
2 , τ2)) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g1(x), 0 ≤ x < b,
g1(b), b ≤ x ≤ τ,

g1(b) − {g1(τ) − g1(x)}γ[b,τ ]
2 , τ < x < d,

g1(b) − {g1(τ) − ψ1(d, d)}γ[b,τ ]
2 , x = d,

g1(b) − {g1(τ) − ψ1(x, d)}γ[b,τ ]
2 , d < x ≤ TLC.

On the other hand, the expected total profit for Player 2 is also given by

M2((F ∗
1 , r1), (y, τ2))) =

⎧⎪⎪⎨
⎪⎪⎩
g2(y), 0 ≤ y < b,
ψ2(b, b), y = b,
ψ2(τ2, b) = g2(b), b < y < d,
g2(b), d ≤ y ≤ TLC.

From the above equations, it is shown for all x and y that

M1((x, r1), (F ∗
2 , τ2)) ≤ g1(b),

M2((F ∗
1 , r1), (y, τ2))) ≤ g2(b).

The value functions of Player i are given by

Mi((F ∗
1 , r1), (F

∗
2 , τ2)) = gi(b), i = 1, 2.

The proof is completed. �

7. NUMERICAL ILLUSTRATIONS

In this section, we give simple numerical examples for both silent-type and noisy-type
software release games. Table 1 presents the dependence of the net profit pi on the value
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Table 1. Value functions for the silent-type software release game

p1 = p2 ã1 [ã] ã2 μ̃1 [μ] μ̃2 g1(ã) g2(ã)

10,000 65.691 65.250 421.452 421.754 2,584.81 2,497.04
12,000 67.826 67.491 441.908 442.106 3,192.08 3,105.25
14,000 69.496 69.230 457.468 457.606 3,801.65 3,715.47
16,000 70.834 70.616 469.697 469.799 4,412.76 4,327.06
18,000 71.928 71.744 479.560 479.638 5,024.95 4,939.61

Figure 1. Comparison of silent strategies for both players.

function gi(ã) (i = 1, 2) in the silent-type software release game, where

N1(t) = 34(1 − e−0.06t), N2(t) = 50(1 − e−0.06t),

A1(t) = A2(t) = 0.055t0.4(1 − 0.0005t),

c11 = c12 = 1, c21 = c22 = 5,

c31 = c32 = 30, TLC = 2000.

From Table 1, we can see that both value functions gi(ã) increase monotonously as the
net profit p1 = p2 increases. Since the software of Player 1 includes a little expected initial
number of faults, say 34, the value function for Player 1 is greater than that for Player
2. In Figure 1, the behavior of the Nash equilibrium strategies for the silent-type software
release game in the case p1 = p2 = 10,000 is shown. From this figure, it is observed that the
probability density functions for both players monotonously decrease between ã and μ, and
that only the probability density function of Player 2 has the mass part at time μ.

Next, we compare the Nash equilibrium strategy of the silent-type software release game
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Table 2. The supports and value functions of each strategy

ã μ g1(ã) g2(ã)

Silent-type game 118.52 1,198.13 4,019.2 674.3
b τ g1(b) g2(b)

Noisy-type game 178.01 1,031.82 12,691 .4 7,826.5

Figure 2. The behavior of the Nash equilibrium strategies of Player 1.

with that of the noisy-type software release game, where

N1(t) = N2(t) = 0.256t,

A1(t) = 0.0055t(1 − 0.0005t),

A2(t) = 0.0045t(1 − 0.0005t)

p1 = p2 = 30, 000,

c11 = c12 = 1, c21 = c22 = 5,

c31 = c32 = 30, TLC = 2000.

In Table 2, we calculate the supports and value functions for each strategy. Since each
player can know an opponent action and release at advantageous timing in the noisy-type
game, the value functions of the noisy-type game are greater than those of the silent-type
game. In addition, the success probabilities of both players are influenced by the value
functions. Figures 2 and 3 show the behavior of the Nash equilibrium strategies of Player 1
and 2. From these figures, it is observed that the support b of the Nash equilibrium strategy
for the noisy-type software release game is shifted to the right compared with the support
ã of the silent-type software release game, and that both players of the silent-type software
release game take the mixed strategies but one player takes the mixed strategy and another
player takes the pure strategy in the noisy-type software release game.
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Figure 3. The behavior of the Nash equilibrium strategies of Player 2.

Table 3. Dependence of the mean release time E[T1] = E[T2] on the expected cumulative
number of software faults N1(t) = N2(t)

N1(t) = N2(t) ã μ g1(ã) = g2(ã) E[T1] = E[T2] τ1 = τ2

0.25 97.185 1,039.654 72,834 186.450 1,031.818
0.75 96.944 1,048.348 55,731 161.791 1,031.818
1.25 96.358 1,062.456 38,629 138.504 1,031.818
1.75 96.432 1,090.987 21,527 119.472 1,031.818

Tables 3–6 present the dependence of some parameters on τi (i = 1, 2) and E[Ti] (i =
1, 2), where E[Ti] denotes the mean release time which is calculated using the Nash equilib-
rium strategy and τi indicates the best release timing for Player i (= 1, 2) in the situation
where there is only one player in the market. In these tables, we set model parameter
ã2(t) = 0.0055t(1 − 0.0005t), and other parameters are set as the same values in the case of
Table 2. From Tables 3–6, we can see that both players tend to release earlier in the compet-
itive market as the net profit p1 = p2, the expected cumulative number of software faults
N1(t) = N2(t) or the cost of removing/fixing a fault in the operational phase, c31 = c32,
increases. On the other hand, each player has to release later to take the best strategies
as the cost of testing per unit time c11 = c12 or the cost of removing/fixing a fault in the
testing phase c21 = c22 increases.

8. CONCLUSION

In this paper, we have revisited the original software release games and corrected the Nash
equilibrium strategies in both silent and noisy type of software release games. Under some
parametric conditions, the correct Nash equilibrium strategies have been given. Also, some
Nash equilibrium strategies have been illustrated in numerical examples. Although we have
considered two static software release games in this paper, they will be extended to the
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Table 4. Dependence of the mean release time E[T1] = E[T2] on the cost of testing per
unit time c11 = c12

c11 = c12 ã μ g1(ã) = g2(ã) E[T1] = E[T2] τ1 = τ2

1 97.185 1,267.462 72,834 186.450 1,031.818
3 97.173 1,215.417 70,770 189.068 1,031.818
5 97.153 1,182.621 68,706 191.943 1,031.818
7 97.133 1,159.440 66,643 194.948 1,031.818

Table 5. Dependence of the mean release time E[T1] = E[T2] on the cost of removing a
fault in the testing phase c21 = c22

c21 = c22 ã μ g1(ã) = g2(ã) E[T1] = E[T2] τ1 = τ2

5 97.185 1,267.462 72,834 186.450 1,031.818
10 97.179 1,231.778 71,544 188.044 1,031.818
15 97.168 1,205.960 70,254 189.770 1,031.818
20 97.155 1,186.079 68,964 191.575 1,031.818

Table 6. Dependence of the mean release time E[T1] = E[T2] on the cost of removing a
fault in the operational phase c31 = c32

c31 = c32 ã μ g1(ã) = g2(ã) E[T1] = E[T2] τ1 = τ2

30 97.185 1,267.462 72,834 186.450 1,031.818
90 96.786 910.914 58,311 156.366 1,031.818
150 96.034 738.640 43,788 130.803 1,031.818
210 96.598 896.173 29,265 107.460 1,031.818

dynamic version by means of Markov games. Also the software release games under con-
sideration should be reformulated from the standpoint of the Bayesian decision-making in
order to treat the Bayesian inference.
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