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The concept of informativeness of nonlinear plasma physics scenarios is explained.
Natural ideas of developing highly informative models of plasma kinetics are spelled
out. They are applied to develop a formula that governs the drift of long Langmuir
waves in spatial positions and wave vectors in a magnetized plasma due to the plasma
inhomogeneity. Together with previous findings (Erofeev, Phys. Plasmas, vol. 22,
2015, 092302), the formula evidences the need for an intelligent generalization of the
notion of wave energy density from usual homogeneous plasmas to inhomogeneous
ones.
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1. Introduction

The most important aspect of a physical theory is the extent to which its
predictions of the behaviour of evolving physical systems agree with real pictures
of their macrophysical evolutions. More specifically, the longer a theoretical scenario
objectively portrays the macrophysical evolution of a system, the better. For a clearer
characterization of this aspect of physical-theoretical scenarios, we have suggested
the use of the term informativeness (Erofeev 2011a, 2013, 2014, 2015a,b, 2016).

As applied to plasma physical studies, we mean that the longer the theoretical
scenario adequately depicts the real picture of the plasma macrophysical evolution,
the higher the estimate the researcher should suggest for the scenario informativeness.
Accordingly, increasing the informativeness of plasma scenarios should be one of the
most important motivations for the theory development.

However, the fundamentals of traditional plasma theory prevent researchers from
success in pursuing this motivation. Basically, the conventional machineries of
the theory provide scenarios of inappropriately low informativeness: most plasma
scenarios have an arbitrary correspondence with objective pictures of plasma
evolutions in respective physical situations. In other words, usual approaches of
the theory allow different and even incompatible versions of a specific plasma
phenomenon to be generated in an equally rigorous manner. A rich set of illustrations
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on this point is provided by the nonlinear effects of a weakly turbulent plasma
(Erofeev 2011a, 2013, 2015b).

We have long before clarified two basic reasons of the theory non-informativeness.
Here we will consider them again in a somewhat clearer exposition.

To develop scientifically sound ideas of physical phenomena in a high-temperature
ionized plasma, it is natural to start with considering the plasma as a mixture
of individual classical charged particles. Together with external sources, they
generate an electromagnetic field, which exerts Lorentz forces on the particles.
The entire variety of the corresponding motions of individual charged particles is
described by simultaneous Maxwell (1865) and Klimontovich–Dupree equations
(Klimontovich 1958, 1967; Dupree 1963): particle trajectories are characteristics
of these simultaneous partial differential equations. It is common to regard the
corresponding plasma kinetic model as a full plasma description.1

Naturally, the simultaneous integration of the great number of equations of motion
for individual particles is technically infeasible. This forces a theorist to employ a
model of plasma kinetics that is substantially simpler than the full plasma description.
In order for the respective plasma kinetic scenario to provide a fittingly informative
description of the plasma evolution, the above simplified plasma kinetic model should
be constructed by properly reducing the full plasma description. In view of this,
the researcher inevitably loses the ephemeral possibility of adequately modelling the
plasma evolution during an infinite time interval, since any of the possible schemes of
this reduction implies an essential reduction of the theory informational basis. Further,
the reduction inevitably involves the generation of some nonlinear perturbation theory.
In any such theory, an increase in the order of consideration entails a factorial increase
in the number of terms to be accounted for. Consequently, after a certain order of
consideration, the improvement in the accuracy of the scenario (which is the only
reason for the increase in the order of consideration!) will inevitably be superseded by
a reduction in accuracy: successive iterations begin to diverge due to a growth in the
number of summands. It is said that such a perturbation theory exhibits an asymptotic
character of convergence. Using respective perturbations, the researcher can equally
rigorously develop different scenarios of the plasma evolution from a specified initial
state by referring to various versions of leading-order approximation for this initial
state. The point is that when one takes different lowest-order approximations of the
employed nonlinear perturbation theory, its first sequential orders converge to different
conditional limits which correspond to different theoretical scenarios of the plasma
macrophysical evolution.

In such a way, the first reason of the non-informativeness of traditional plasma
kinetic scenarios is the lack of a proper understanding of the significance of the
asymptotic nature of the convergence of successive approximations to a plasma
scenario that one generates to reduce the full plasma description to a simpler model
of plasma kinetics.

The second reason for the theory non-informativeness is the fallacious tradition of
substituting real plasmas by probabilistic ensembles of plasmas. The common practice
is to draw, consciously or unintentionally, conclusions on the reciprocal influence of
some statistics of the plasma ensemble and to regard them as objective laws of
the plasma macrophysical evolution. The laws thus obtained depend substantially
on the composition of the ensemble which is defined in a somewhat sensible
manner only within the Gibbsian equilibrium statistical thermodynamics (Gibbs 1902).

1Conceptually, plasma kinetics is a branch of plasma physics theory that underlies all other branches of
this science.
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Wave drift in an inhomogeneous magnetized plasma 3

As for studies of the evolution of non-equilibrium physical systems, the ensemble
method is flatly useless: the laws derived in the above manner have nothing to do with
objective pictures of the macrophysical evolution of particular systems. (This implies
that non-equilibrium statistical mechanics is merely a technical discipline that cannot
suggest scientifically sound recipes for studying evolving physical systems (Erofeev
2004b). Meanwhile, it underlies all the traditional versions of plasma kinetics and
respective methods of plasma studies, and plasma theorists continue to rely upon its
approaches. Some recent papers where ensemble averaging is implied by the basic
equations are those by Yoon (2000, 2005a,b, 2006), Yoon & Fang (2008), Taguchi
(2010), Yoon et al. (2012, 2016), Ziebell et al. (2012), Plunk (2013), Wang (2013),
Hau-Riege & Weisheit (2017), Rozmus et al. (2017), Shi, Qin & Fisch (2017), Belyi
(2018) and Schoeffler, Loureiro & Silva (2018). Ensemble plasma averaging is also
implied by any hydrodynamic modelling of plasma phenomena, and recent examples
of such modelling were reported by Araki (2015), Bhattacharjee et al. (2015), Stawarz
& Pouquet (2015), Squire & Bhattacharjee (2015), Andrés & Sahraoui (2017) and
Viciconte, Gréa & Godeferd (2018). Implicitly, plasma ensemble substitutions are
present in many numerical plasma simulations (see, e.g. Banks et al. 2017; Keenan
et al. 2017; Hill & Kingham 2018).

The above two reasons of theory non-informativeness are inseparable from each
other. (Explanations on this point are given in Erofeev 2009, 2010, 2011b,c). They
dictate the following ideas of developing the most informative of possible plasma
scenarios.

First, the researcher should refrain from the plasma ensemble substitution. This
necessitates modifying the basic concepts of the theory, the plasma particle distribution
functions. The key concept of any constructive model of plasma kinetics is the
particle distribution which does not contain data on the positions and momenta
of individual particles. (In particular, this is typical of the distribution function in
the Vlasov plasma model (Vlasov 1945).) It differs in the latter respect from the
Klimontovich’s distribution function (Klimontovich 1958, 1967), which objectively
characterizes the distribution of charged particles in a classical ionized plasma,
Nα =

∑
n δ

3(r − rn(t))δ3(p − pn(t)). (Here the subscript n numbers the particles of
species α, either electrons (α 7→ e) or ions (α 7→ i), and the functions rn(t) and
pn(t) describe the trajectories of individual particles.) We call the latter distribution
a microdistribution. The tradition of plasma kinetic theory implies that the above
Vlasovian-type distribution function is obtained from the microdistribution via
ensemble averaging. The only possibility of avoiding ensemble averaging is to
replace it by a contextually oriented averaging in the phase space of the positions
and momenta of plasma particles.

Second, the researcher should directly integrate in time the intermediate evolution
equations obtained by reducing the full plasma description. It is this approach that
allows one to properly account for available information on the current plasma state
and its recent history, and, simultaneously, to diminish the effect of data on the
unknown plasma states that are remote in time.

Bearing in mind the above principles, we have developed a technique of highly
informative correlation analysis of plasma kinetics for constructing kinetic scenarios
of weakly turbulent plasmas (Erofeev 1997, 2009, 2011a,c, 2013). Initially, it was
formulated for plasmas with turbulent fields of potential waves (Erofeev 2011a). This
helped us to recover the concept of Langmuir wave collisionless dissipation through
stochastic plasma electron acceleration (Erofeev 2002a,b, 2004b, 2010), to highlight its
implications for the beginning of weak Langmuir turbulence theory (the impossibility
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of formation of the Langmuir condensate in weakly turbulent plasmas (Erofeev 2002a),
the impossibility of Langmuir wave collapse (Erofeev 2002b) and the impossibility of
Vedenov–Rudakov’s (long-wavelength) plasma modulational instability (Erofeev 2011a,
2004b)), and to highlight the shortcomings of the traditional understanding of wave
scattering by plasma electrons (Erofeev 2000, 2011b) and the electron kinetics in the
respective scattering process (Erofeev 2003).

An extension of the technique to the case of a macroscopically homogeneous
plasma with fields of waves possessing an arbitrary solenoidal component is presented
in Erofeev (2014). (See also chap. 2 of Erofeev (2013).) In that paper, we have
developed a maximally informative kinetic scenario of the nonlinear conversion of
Langmuir waves to electromagnetic ones. (This process is also known as Langmuir
wave coalescence (Willes, Robinson & Melrose 1996).) It has been shown that
the conventional interpretation of this phenomenon (Terashima & Yajima 1963;
Akhiezer, Danelia & Tsintsadze 1964; Al’tshul’ & Karpman 1965; Willes et al. 1996)
substantially distorts the picture of merging of Langmuir waves with long wavelengths.
With this, we have indicated the failure of the former ‘golden rule’.2

Finally, we have adapted our technique to developing highly informative kinetic
scenarios for inhomogeneous plasmas with weakly turbulent fields of arbitrary waves
(not only potential ones), see Erofeev (2015b). Specifically, it has been used to study
the inelastic scattering of electromagnetic waves on Langmuir waves. It has been
shown that this scattering is a further illustration of the failure of the ‘golden rule’.
At the same time, it has been shown that the linear drift of electromagnetic waves in
space and wave vectors in inhomogeneous plasmas is inconsistent with the traditional
understanding of this drift. As a matter of fact, the new rate of wave drift contains an
additional term as compared to its traditional counterpart. We have not perceived any
sound reason for the appearance of this term. The present study seeks to clarify this
issue. We have developed the rate of drift of Langmuir waves in an inhomogeneous
magnetized plasma. By Langmuir waves we mean the plasma oscillations pertaining
to the wave branch whereat the long-wavelength limit of the natural frequency is the
Langmuir frequency. Depending on the wave vector, there may be different ratios of
electric and magnetic field strengths in the waves, a property which is of advantage
for the study. We shall consider the drift of long waves in a cold, fully ionized
plasma using analytical approaches.

The main idea that we have extracted from the results of this research is that
there is no rigorous concept in usual plasma theory of the wave energy density in an
inhomogeneous plasma. We shall discuss this fact in greater detail at the end of the
paper.

The essentials of our technique were described in previous publications (Erofeev
2013, 2014, 2015b). In this paper, we clarify its cornerstones with a correction of
some previously advanced erroneous propositions regarding the consideration of the
plasma inhomogeneity effect. After that, we apply it to the new wave drift problem.

In § 2, we outline the specific features of the physical situation in question
and develop a plasma description using simultaneous equations for the evolution
of some of the two-time correlation functions involved. In accordance with the
adopted concept, it is natural to characterize such a description as some two-time
formalism. Its development is the first step in designing a highly informative plasma

2A description of this rule can be found, e.g. in Sagdeev & Galeev (1969, p. 23). It provided manual
incorporation of a specific symmetric construction from numbers Nσk of waves of a given type σ into the
wave collision integral. This gave the researcher an opportunity to calculate the ‘probability’ of wave interaction
based on some simple context and then to compose the wave collision integral for the general case.
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Wave drift in an inhomogeneous magnetized plasma 5

kinetic scenario. It is followed by reducing the formalism to a description of plasma
evolution in terms of functions depending on a single time variable. We shall expose
the essentials of the reducing procedure in § 3 via developing the rate of change of
the turbulence spectrum due to wave drift in usual space and in wavenumbers. The
implementation of this procedure for the case of Langmuir waves in a magnetized
plasma will be described in § 4. Final comments on the results obtained will be
formulated in § 5.

2. Logic of first step in designing highly informative plasma kinetic scenarios:
developing the two-time formalism

We re-emphasize that the concept of a highly informative kinetic plasma scenario
strongly depends on the specific features of the physical situation under consideration.
The obvious reason of this dependence is the choice of the scheme for averaging the
microdistribution in phase space. We shall consider the case of a classical ionized,
magnetized, collisionless, weakly turbulent plasma. Let the leading magnetic field
be directed along the z axis of a Cartesian coordinate frame. The plasma is weakly
inhomogeneous: the typical scale of spatial electron motions in the plasma, the Debye
length rD, is much smaller than the typical length of change in macroscopic plasma
density |∇(ln ne)|

−1. For simplicity, we assume that the level planes of the plasma
density are the yz planes.

A suitable characteristic of the distribution of charged plasma particles of a given
species in the plasma, fα(r, p, t), is their properly averaged microdistribution Nα. To
construct it, we do the following. We construct a six-dimensional parallelepiped with
centre at (r, p) and divide the number of particles in the parallelepiped by the volume
of the parallelepiped. Note that the relative variations in the obtained ratio due to the
discreetness of plasma particles that take place in wandering in the vicinity of a point
can be ignored provided that the volume of the parallelepiped is large enough. (For
simplicity, the parallelepipeds can be assumed to be identically shaped for all points
of the phase space of the given particles.) That is, the function fα then becomes a well-
defined statistic in the sense of mathematics for the bulk of the phase space occupied
by the particles. (This statistic does not possess reliability only in its momentum tails.)

It is noteworthy that in our situation, we do not need the gradations of fα in the
y and z variables. Therefore, the y and z dimensions of the averaging parallelepiped
can be chosen rather elongated, which permits obtaining sufficiently small gradations
of fα in x and in the components of the momentum p without loss of the distribution
reliability.

A key component of a highly informative plasma kinetic scenario is the evolution
law of the distribution function. It should be developed on the basis of the evolution
equation of the microdistribution. The latter is just the Klimontovich–Dupree
equation which is conceptually the continuity equation for particles of a given
species in their phase space. Using the integral consequences of this continuity
equation, one finds that the distribution function fα(r, p, t) is advanced in time
by the two-point correlation function 〈δNα(r, p, t)δF (r′, t′)〉. (Here δNα is the
difference Nα(r, p, t) − fα(r, p, t) and δF is the respective microstructural part of
the electromagnetic field tensor (EMF tensor) F (r, t).) The evolution law of the
given correlation function can also be developed using the Klimontovich–Dupree
equation: the two-point correlation function is advanced in time by the three-point
correlation function 〈δNα(r, p, t)δF (r′, t′) ⊗ δF (r′′, t′′)〉. Similarly, the three-point
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6 V. I. Erofeev

correlation function is advanced in time by the four-point correlation function
〈δNα(r, p, t)δF (r′, t′)⊗ δF (r′′, t′′)⊗ δF (r′′′, t′′′)〉, etc.3

Thus, the description of the evolution of the distribution function involves
integration of the evolution equations for the multipoint correlation functions that
constitute an infinite hierarchy. This equation hierarchy resembles the hierarchy of
evolution equations of multiparticle distribution functions in the well-known BBGKY
theory (Bogoliubov 1962; Born & Green 1949; Kirkwood 1946; Yvon 1935). We
emphasize that the BBGKY theory acquires the meaning of a technical tool suitable
for studying physical phenomena only within the framework of consideration of rather
specific plasma ensembles. Albeit the contents of the corresponding ensembles is never
discussed, they are assumed to possess a certain continuity in their distribution over
the 6N-dimensional phase space of an original N-body system, and averaging over
the ensemble is implied. Meanwhile, being taken out of the ideology of ensemble
averaging, Bogolyubov’s method of sequential integration of the ‘full’ N-particle
distribution function over the coordinates and momentums of individual charged
plasma particles gives no more than the Klimontovich’s distribution function Nα(r,p, t).
(The indistinguishability of particles of a given type is implied.) That is, the respective
procedure leads no further than to the starting positions in the problem of reducing
the full plasma description to informative plasma kinetic scenarios.

The development of somewhat informative scenarios on the basis of our equation
hierarchy is possible only when this hierarchy can be truncated at some reasonable
order. (In particular, this can be done in the case of a weakly turbulent plasma.) Then
the truncated hierarchy can be reduced to a couple of evolution equations: the above
evolution equation of the distribution function fα and the evolution equation of the the
two-time correlation function Φ(r, t, r′, t′)= 〈δF (r, t)⊗ δF (r′, t′)〉. (Here the averaging
is over the spatial projections of the above six-dimensional parallelepiped and again
with a fixed difference between the spatial variables of the two objects during the
averaging.) This completes the first step of developing the plasma kinetic model, i.e.
the formulation of the two-time formalism. In the next section, we specify aspects
important for reducing this formalism to the final kinetic scenario of wave drift in
space and wavenumbers.

3. Reduction of the two-time formalism: developing a general picture of wave
drift

Conceptually, the two-time correlation function Φ ijkl(r, t, r′, t′) behaves as the EMF
tensor from the viewpoint of both its entry (i.e. in dependence on the indices i
and j and the variables r and t) and exit (in dependence on the indices k and l
and the variables r′ and t′). That is, this tensor should satisfy Maxwell’s equations.
Accordingly, the properly written Maxwell’s equations describe the evolution of the
two-time correlation function. For definiteness, we consider the time advances of
the function Φ(r, t, r′, t′) from the viewpoint of its entry. In this sense, the tensor
Φ ijkl(r, t, r′, t′) = 〈δFij(r, t)δFkl(r′, t′)〉 satisfies the vacuum Maxwell equations with
the ‘external charge current’ calculated on the basis of the two-point correlation
functions 〈δNα(r, p, t)Fkl(r′, t′)〉. Note that in the above two-time 〈δFij(r, t)δFkl(r′, t′)〉

3The sign ⊗ denotes a direct tensor product; the averaging is over the above parallelepiped with centre
at the point (r, p) in all current and subsequent multipoint correlation functions. The spatial arguments of all
objects under the averaging sign vary synchronously with the spatial argument of δNα : differences between these
arguments are fixed in the averaging. Hence, our system of spatial arguments of multipoint correlation functions
is somewhat redundant: one of the spatial arguments might be omitted in the notation of each multipoint
correlation function when the plasma is homogeneous. We bear in mind this redundancy of the spatial arguments
of the functions and still use the respective system of variables because of its internal symmetry.
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and two-point 〈δNα(r, p, t)Fkl(r′, t′)〉 correlation functions, the second terms under the
averaging signs play the role of a statistical weight. Correspondingly, these correlation
functions can be coordinately convoluted at their exits with an arbitrary tensor: the
corresponding modification of the ‘EMF’ and the ‘charge distribution’ will not violate
their relationship given by the above-mentioned Maxwell equations.

Developing a plasma kinetic scenario, one should calculate the two-time correlation
function up to a desired accuracy of its representation. We suggest to select some
lowest-order approximation of the function and to refine it via iterations on the basis
of Maxwell’s equations. This supposes that one has at hand the expression for the
‘external charge current’ in terms of two-time correlation functions. That is, one
should express the two-point correlation function in terms of two-time correlation
functions. Conceptually, this can be done through integration of the time derivative
∂〈δNα(r, p, t)Fkl(r′, t′)〉/∂t (which is extracted from the evolution equation of the
function) from −∞ to the current entry time t. Integration of this type was performed
in Erofeev (1997). (See also Erofeev 2004a, 2011a, 2013.) We shall not repeat it
here. We only present its result in a linear approximation, which is certainly sufficient
for proper modelling of the wave drift. Namely, the two-point correlation function
〈δNα(r, p, t)Fkl(r′, t′)〉 in the integrals of the above ‘external charge current’ can be
substituted as follows:

〈δNα(r, p, t)δFkl(r′, t′)〉 =
∫

R m ·
α·γ (r, p, t, r1, t1) d3r1 dt1Φ

·γ kl
m··· (r1, t1,r′, t′). (3.1)

(Latin subscripts and superscripts are used for the co- and contravariant components of
4-vectors and tensors, and Greek letters are used for the spatial components of these
4-vectors and tensors. We also imply the Einstein summation convention. We employ
tensor notation just for simplicity of writing and interpreting formulae.)

The tensor Rα(r, p, t, r1, t1) is a response function. Its linear approximation is
sufficient for our study:

R m ·
α ·γ (r, p, t, r1, t1)u−

eα
c

∫
d3p1

0Gα(r, p, t, r1, p1, t1)v
m
1
∂

∂pγ1
fα(r1, p1, t1). (3.2)

The function 0Gα(r, p, t, r′, p′, t)′ is the bare Green function of particles of given
species α. It satisfies the causality principle: at t< t′, the function is identically zero.
In the domain t> t′, the function evolves according to the equation[

∂

∂t
+ vβ

∂

∂rβ
+

eα
c
vi

0F
iβ ∂

∂pβ

]
0Gα(r, p, t, r′, p′, t′)= 0, (3.3)

with the initial data
0Gα(r, p, t′ + 0, r′, p′, t′)= δ3(p− p′)δ3(r− r′). (3.4)

The tensor 0F denotes the part of EMF tensor that corresponds to the leading magnetic
field.

In view of the above approximation of the two-point correlation function, Maxwell’s
equations take the form

1
c
∂

∂t
Φ ··kl
βγ ··(r, t, r′, t′)=−

∂

∂rβ
Φ ··kl
γ 0··(r, t, r′, t′)+

∂

∂rγ
Φ ··kl
β0··(r, t, r′, t′), (3.5)

1
c
∂

∂t
Φβ0kl(r, t, r′, t′) = −

∂

∂rγ
Φβγ kl(r, t, r′, t′)

−
4π

c

∫
d3r1 dt1σ

βm·
··γ (r, t, r1, t1)Φ

·γ kl
m··· (r1, t1, r′, t′). (3.6)
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Here

σ βm·
··γ (r, t, r1, t1)=

∑
α

eα

∫
d3pvβR m ·

α·γ (r, p, t, r1, t1) (3.7)

has the meaning of the conductivity tensor.
Equation (3.5) describes the evolution of the two-time correlation function from the

viewpoint of its magnetic entry, and (3.6) describes its evolution from the viewpoint
of its electric entry.

In the case of a homogeneous plasma, the spatial Fourier transformation would
diagonalize equations (3.5,3.6) over the wave vectors. The spatial inhomogeneity of
the plasma leads to some interaction between the spatial harmonics of the two-time
function. We should take this into account in the lowest order in the ratio of the
typical wavelength in the plasma λ to the spatial scale of the plasma inhomogeneity
l ' L(x) = (d ln(ne)/dx)−1. For this, it is convenient to introduce respective Fourier
transforms as follows:

Φk(r, t, t′)=
∫

d3R
(2π)3

exp(−i(k ·R))Φ
(

r+
R
2
, t, r−

R
2
, t′
)
,

σ
βm·
k··γ (r, t, t′)=

∫
d3R exp(−i(k ·R))σ βm·

k··γ

(
r+

R
2
, t, r−

R
2
, t′
)
.

 (3.8)

With definition (3.8), the Fourier transform Φk(r, t, t′) is Hermitian self-adjoint,

Φk(r, t, t′)=Φu
k (r, t′, t)(i.e. Φ ijkl

k (r, t, t′)= [Φklij
k (r, t′, t)]∗), (3.9)

and it also possesses the property Φ
ijkl
k , (r, t, t′) = [Φ ijkl

−k (r, t, t′)]∗ (which stems from
the fact that the original is real valued).

In Fourier transforms, equations (3.5), (3.6) in our approximations take the form

1
c
∂

∂t
Φ ··kl

kβγ ··(r, t, t′)=−
(

ikβ +
1
2
∂

∂rβ

)
Φ ··kl

kγ 0··(r, t, t′)+
(

ikγ +
1
2
∂

∂rγ

)
Φ ··kl

kβ0··(r, t, t′),

(3.10)

1
c
∂

∂t
Φ
β0kl
k (r, t, t′)=−

(
ikγ +

1
2
∂

∂rγ

)
Φ
βγ kl
k (r, t, t′)

−
4π

c

∫
dt1

{
σ
βm·
k··γ (r, t, t1)Φ

·γ kl
km···(r, t1, t′)−

i
2
∂

∂kδ
σ
βm·
k··γ (r, t, t1)

∂

∂rδ
Φ
·γ kl
km···(r, t1, t′)

+
i
2
∂

∂rδ
σ
βm·
k··γ (r, t, t1)

∂

∂kδ
Φ
·γ kl
km···(r, t1, t′)

}
. (3.11)

The main contributors to the two-time correlation function in a weakly turbulent
plasma are natural oscillations. The initial idea of plasma natural oscillation arises
from the consideration of homogeneous plasmas where the terms with spatial
derivatives fall out of (3.10) and (3.11). Then these equations dictate the following
structure of the transform Φk(r, t, t′) at large time delays t− t′:

Φ
ijkl
k (t, t′)=

∑
s,σ

Fσ sij
k (t) exp

(
−i
∫ t

t′
ωσ s

k (τ ) dτ
)
(Aσ skl

k (t′))∗. (3.12)
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Wave drift in an inhomogeneous magnetized plasma 9

Here the superscript σ is introduced to characterize the polarization of the oscillation,
i.e. the type of wave: Langmuir, fast or slow electromagnetic, ion sound, etc.
The superscript s = ± is used to differentiate between the parts of the transform
Φk that correspond to waves propagating in opposite directions. The function
ωσ s

k (t)≡ sωσsk(t)− iγ σsk(t) is the complex natural frequency of the oscillation. The tensor
F σ+

k (t)≡ (F σ−
−k (t))

∗ is the wave polarization tensor. Without any loss in generality, it
can be normalized by unity,

Fσ sβ0
k (Fσ s·0

k β·)
∗
+

1
2 Fσ sβγ

k (Fσ s
k βγ )

∗
= 1. (3.13)

The natural frequency and the polarization tensor should be chosen to be rather
smooth functions of time. We note that Maxwell’s equations rigidly prescribe the
dependence on time only for the entire structure F σ s

k (t) exp(−i
∫ t

t′ ω
σ s
k (τ ) dτ). Thus,

there remains some arbitrariness in the distribution of this time dependence between
the polarization tensor and the natural frequency: the natural frequency is determined
up to the time derivative of the phase of F σ s

k . This arbitrariness can be removed by
specifying the character of the dependence of the phase of the wave polarization tensor
on time. Let us assume that the phase of the polarization tensor is independent of time,

(Fσ sβ0
k )∗

∂

∂t
Fσ s · 0

k β · +
1
2
(Fσ sβγ

k )∗
∂

∂t
Fσ s

k βγ = 0. (3.14)

This simplifies the calculations.
In spectra of weakly turbulent plasmas, the square root of the dispersion of the real

value of the wave natural frequency 1ω is great compared to the characteristic wave
damping rate γ σ . (The latter is a typical value of the wave damping rate γ σk (t).) We
clarify the above statement that the delay t− t′ is large: the asymptotics (3.12) of the
transform Φk(r, t, t′) holds in the time domain t− t′� (1ω)−1. (The latter restriction
arises from accounting for the nonlinear terms that we have omitted here, see Erofeev
2014, 2015b.)

For further clarification of parameters of natural oscillations, it is useful that the
conductivity tensor σk(r, t, t1) decays with increase of t − t1 on a time scale rather
small compared to (γ σ )−1. (The corresponding rate of tensor decay is of the order
1ω.) Correspondingly, using representation (3.12), one can expand the polarization
tensor F σ s

k (t1) in the second term of the right-hand side of (3.11) in powers of t1 − t
and the natural frequency ωσ s

k (τ ) in powers of τ − t. Then one can perform a direct
integration over the times τ and t1. This yields the following simultaneous equations
for the polarization tensor and the natural frequency:

−
iωσ s

k (t)
c

Fσ s
k βγ (t)+ ikβFσ s

k γ 0(t)− ikγFσ s
k β0(t)=−

1
c
∂

∂t
Fσ s

k βγ , (3.15)

−
iωσ s

k (t)
c

Fσ sβ0
k (t)+ ikγFσ sβγ

k (t)+
4π

c

[
Fσ s· γ

k m · (t)+
∞∑

n=1

∂nFσ s· γ
k m ·

∂tn

in

n!
∂n

∂ωn

]

× exp

(
−i

∞∑
n=1

∂nωσ s
k

∂tn

in+1

(n+ 1)!
∂n+1

∂ωn+1

)
σ

βm ·
kω · · γ (t)

∣∣∣∣∣
ω=ωσ s

k (t)

=−
1
c
∂

∂t
Fσ sβ0

k . (3.16)

https://doi.org/10.1017/S0022377818001320 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001320


10 V. I. Erofeev

Here we have defined the Laplace transform of the conductivity tensor as follows:

σ
βm ·

kω · · γ (t)=
∫ t

−∞

dt1σ
βm ·

k · · γ (t, t1) exp(iω(t− t1)). (3.17)

In conjunction with the requirements (3.13), (3.14), equations (3.15), (3.16) permit
obtaining of the leading approximations of the polarization tensor and the natural
frequency and their subsequent iterative refinement. In the present study, iterations are
not necessary, and also we can ignore the time variation of the polarization tensor.

Finally, we construct the leading order of the two-time correlation function:

0Φ
ijkl
k (t, t′)=

∑
s,σ

0Φ
σ sijkl
k (t, t′), (3.18)

0Φ
σ sijkl
k (t, t′)= Fσ sij

k (Fσ skl
k )∗


nσsk(t

′) exp
(
−i
∫ t

t′
ωσ s

k (τ ) dτ
)

t> t′,

nσsk(t) exp
(
−i
∫ t

t′
(ωσ s

k (τ ))
∗ dτ

)
t< t′.

(3.19)

(Here we took into account the property (3.9).) The function nσk is real valued and non-
negative (Erofeev 2014). We call it the wave spectral density and use it to describe
all the effects of plasma natural oscillations.

3.1. Accounting for the plasma inhomogeneity
Intending to adapt the leading-order approximation (3.19) to the case of an
inhomogeneous plasma, one discovers that this time all its constituents depend
on r. Accordingly, it becomes necessary to consider the terms of (3.10), (3.11) with
derivatives with respect to r and k. In view of this, the iterations of the two-time
correlation function should be modified. We again use the leading order of the
function in the form (3.19). Here the recipe for calculating the natural frequency
ωσ s

k and the polarization tensor F σ s
k does not need any modifications; the only thing

is that uncertainties appear in the choice of the dependencies of the phase of the
polarization tensor on r and k. (In homogeneous plasmas, this phase does not
influence the final expressions. Further, we shall show that the same is true within
the current physical content. However, this is hardly a common case for turbulent
wave fields in inhomogeneous plasmas.)

As a matter of fact, the terms with the r and k-derivatives of the approximation
0Φ

σ s
k (r, t, t′) within (3.10), (3.11) result in adding some correction δΦσ s

k (r, t, t′) to
this approximation. It is natural to regard it as a tensor of some ‘forced oscillations’.
Their most important part is the one that resembles 0Φ

σ s
k (r, t, t′) in tensorial structure.

It is the tensor 0δΦσ s
k (r, t, t′) = F σ s

k δΦ
σ s
k (r, t, t′) ⊗ (F σ s

k )
u, where δΦσ s

k (r, t, t′) is the
convolution of the tensor δΦΦΦσ s

k (r, t, t′) with the tensor (F σ s
k )

u at the entry and with
the tensor F σ s

k at the exit.4
From the point of view of carrying out iterations, it is desirable that the tensor

0δΦσ s
k (r, t, t′) should not compete, in the sense of its norm, with the tensor 0Φσ s

k (r, t, t′)

4By the convolution of the skew-symmetric tensors A and Bu we mean the sum of the scalar products
of their respective vectors (like E in the EMF tensor) and the pseudovectors (like B in EMF tensor), i.e. the
structure Aβ0(B · 0β·)

∗
+ Aβγ (Bβγ )∗/2. It is a scalar with respect to transformations of the coordinate frame in

usual three-dimensional space.
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for all values of the input and output time arguments. One can hope to achieve this
by properly choosing the time dependence of the wave spectral density nσk (r, t). To
analyse this possibility, it is necessary to devise a recipe for calculating δΦσ s

k (r, t, t′).
Conceptually, the simultaneous equations (3.10), (3.11) constitute a tensorial

equation for the evolution of the two-time correlation function Φk(r, t, t′). We
substitute the sum 0Φ

σ s
k (r, t, t′)+ F σ s

k ⊗ (F
σ s
k )

uδΦσ s
k (r, t, t′) for the function Φk(r, t, t′)

into this evolution equation and then convolute the equation entry with the tensor
(F σ s

k )
u and the equation exit with the tensor F σ s

k . This yields a scalar equation
that defines the derivative of δΦσ s

k (r, t, t′) over the entry time t. We use the result
of integration of this derivative from t = t′ to the current time t for the function
δΦσ s

k (r, t, t′) at t > t′. In the integration, the function 0Φ
σ s
k (r, t1, t′) can be well

approximated by the expression

0Φ
σ s
k (r, t1, t′)= F σ s

k ⊗ (F
σ s
k )
∗nσsk(t

′) exp
(
−i
∫ t

t′
ωσ s

k (τ ) dτ
)
. (3.20)

The point is that the time advances of δΦσ s
k (r, t, t′) at t> t′ depend only on the leading-

order approximation 0Φ
σ s
k (r, t1, t′) at time delays t1 − t′ &−(1ω)−1, due to the rapid

decay of the conductivity tensor σk(t, t1) with increase of t− t1. In the corresponding
time domain, the difference between the leading-order approximation and the above
approximate expression is insignificant.

Calculation in accordance with the above ideas yields the following formula for
function δΦσ s

k (r, t, t′) at t> t′:

δΦσ s
k (r, t, t′)= δΦ̃σ s

k (r, t, t′)nσsk(r, t′) exp
(
−i
∫ t

t′
ωσ s

k (r, τ ) dτ
)
, (3.21)

δΦ̃
σ s
k (r, t, t′)

=

∫ t

t′

dt̃
1+ 4πi(∂σ σ s

kω(r, t̃)/∂ω)

{
c
2

(
(Fσ sβγ

k )∗
∂

∂rβ
Fσ s

k0γ + (F
σ s
k0γ )

∗
∂

∂rβ
Fσ sβγ

k

)
+ cRe((Fσ sβγ

k )∗Fσ s
k0γ )

[
Fσ sξ0

k
∂

∂rβ
(Fσ s · 0

k ξ · )
∗
+

1
2

Fσ sξη
k

∂

∂rβ
(Fσ s

k ξη)
∗

]
− iscRe((Fσ sβγ

k )∗Fσ s
k0γ )

∫ t̃

t′

∂

∂rβ
ωσsk(τ ) dτ + cRe((Fσ sβγ

k )∗Fσ s
k0γ )

1
nσsk(t′)

∂

∂rβ
nσsk(t

′)

+ 2πi(Fσ s
k0β)

∗
∂

∂kδ
σ

βmγ
kω (r, t̃)

(
∂

∂rδ
Fσ s

kmγ + Fσ s
kmγ

1
nσsk(t′)

∂

∂rδ
nσsk(t

′)

)
+ 2πis(Fσ s

k0β)
∗
∂

∂ω

∂

∂kδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ
∂

∂rδ
ωσsk(t̃)

+ 2πs(Fσ s
k0β)

∗
∂

∂kδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ

∫ t̃

t′

∂

∂rδ
ωσsk(r, τ ) dτ

− 2πi(Fσ s
k0β)

∗
∂

∂rδ
σ

βmγ
kω (r, t̃)

(
∂

∂kδ
Fσ s

kmγ + Fσ s
kmγ

1
nσsk(t′)

∂

∂kδ
nσsk(t

′)

)
− 2πis(Fσ s

k0β)
∗
∂

∂ω

∂

∂rδ
σ

βmγ
k (r, t̃)Fσ s

kmγ
∂

∂kδ
ωσsk(t̃)

−2πs(Fσ s
k0β)

∗
∂

∂rδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ

∫ t̃

t′

∂

∂kδ
ωσsk(τ ) dτ + 2πi(Fσ s

k0β)
∗
∂

∂kδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ
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12 V. I. Erofeev

×

[
Fσ sξ0

k
∂

∂rδ
(Fσ s · 0

k ξ · )
∗
+

1
2

Fσ sξη
k

∂

∂rδ
(Fσ s

k ξη)
∗

]
− 2πi(Fσ s

k0β)
∗
∂

∂rδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ

×

[
Fσ sξ0

k
∂

∂kδ
(Fσ s · 0

k ξ · )
∗
+

1
2

Fσ sξη
k

∂

∂kδ
(Fσ s

k ξη)
∗

]}
ω=ωσ s

k (r,t̃)
. (3.22)

Here
σ σ s

kω(t)= (F
σ s · 0
k β · )

∗σ
βm ·
kω ·· γ (t)F

σ s · γ
k m· . (3.23)

In (3.22), we have replaced the natural frequency ωσ s
k under the signs of the k and

r-derivatives by its real part sωσsk since accounting for the corresponding wave damping
rates is inessential.

It is worth noting that, according to the logic of its formation, the sum 0Φ
σ s
k (r, t, t′)+

F σ s
k ⊗ (F σ s

k )
uδΦσ s

k (r, t, t′) surely satisfies (3.10), (3.11) only in the time domain
t − t′� (1ω)−1. The property (3.9) permits one to construct some approximation of
the two-time correlation function with the reverse sequence of the time arguments:
Φσ s

k (r, t, t′)= (Φσ s
k (r, t′, t))∗. One may hope that the wave spectral density nσk evolves

in such a way that the corresponding approximation is consistent with the bulk of the
real two-time correlation function in the corresponding time domain. This provides
the key idea for the derivation of the rate of change of nσk . Consider (3.10), (3.11)
in the asymptotic time domain t− t′�−(1ω)−1. Substitute the two-time correlation
function on the right-hand sides of the equations by the tensor

F σ s
k ⊗ (F

σ s
k )

u

[
nσsk(t) exp

(
−i
∫ t

t′
(ωσ s

k (τ ))
∗ dτ

)
+ (δΦσ s

k (r, t′, t))∗
]
. (3.24)

This yields expressions that contain time derivative of the wave spectral density nσk .
One can try to select a value of this derivative for which the ‘motive force’ of the
extra correction to structure (3.24) is orthogonal to the entry polarization tensor F σ s

k
throughout the domain.5 However, the kernel of the correction (3.22) contains some
integrals that might not permit such a selection. We mean the sum

−iscRe((Fσ sβγ
k )∗Fσ s

k0γ )

∫ t̃

t′

∂

∂rβ
ωσsk(τ ) dτ

+ 2πs(Fσ s
k0β)

∗
∂

∂kδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ

∫ t̃

t′

∂

∂rδ
ωσsk(r, τ ) dτ

− 2πs(Fσ s
k0β)

∗
∂

∂rδ
σ

βmγ
kω (r, t̃)Fσ s

kmγ

∫ t̃

t′

∂

∂kδ
ωσsk(τ ) dτ

∣∣∣∣∣
ω=ωσ s

k (r,t̃)

. (3.25)

If it does not turn to zero, none of the choices of the time dependence of wave
spectral density will provide a good approximation of the two-time correlation
function in the whole domain t′− t� (1ω)−1. Previously, we have tried to formulate
a recipe for circumventing the respective difficulty (Erofeev 2015b). It consisted
in adding an extra phase shift to the argument of the exponent in the leading-order
approximation 0Φ

σ s
k (r, t, t′) at t> t′. However, this recipe turned out to be inconsistent.

5For the case of homogeneous plasma, this provides the uniform smallness of the tensor norm of the
correction to the leading-order approximation Fσ s

k (t′)⊗ (Fσ s
k (t))unσsk(t) exp(−i

∫ t
t′ (ω

σ s
k (τ ))∗ dτ) as compared to

the norm of this approximation for all t− t′�−(1ω)−1, see Erofeev (2013, 2014).

https://doi.org/10.1017/S0022377818001320 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377818001320


Wave drift in an inhomogeneous magnetized plasma 13

It is more likely that the above sum always falls out, at least in its leading order.6
Note that just this took place in our previous study (Erofeev 2015b). The same
takes place in the current problem of drift of Langmuir waves in a cold ionized
magnetized plasma, which can be checked on the basis of further data on these
oscillations. However, currently, we do not have a full-scale proof of the hypothesis
that the nullification of the above problematic sum always takes place. We suspect
that such a proof can be developed on the basis of the following property of natural
oscillations (Erofeev 2014, 2015b),

ωσ s
k (t)− 2kγ cRe[(Fσ sβγ

k )∗Fσ s
k 0β] =−4πiσ σ s

kω(t)|ω=ωσ s
k (t). (3.26)

It arises from the convolution of the entries of the lowest-order approximations of the
simultaneous equations (3.15), (3.16) with the tensor (F σ s

k )
u.

If the above hypothesis is valid, it is easy to calculate the value of (∂nσk )/(∂t) for
which the driving force for the additional correction to the solution (0Φ

σ s
k (r, t′, t) +

0δΦ
σ s
k (r, t′, t))u is orthogonal to the polarization tensor of the natural oscillation.

Due to this, the above correction is automatically small compared to (0Φσ s
k (r, t′, t)+

0δΦ
σ s
k (r, t′, t))u at all times from the interval t − t′�−(1ω)−1. This is the general

recipe for developing the wave kinetic equation in inhomogeneous plasmas. It yields
the following rate of wave drift in phase space:

∂nσsk

∂t
=

2π

1+ 4πi(∂σ σ s
kω/∂ω)

{
c

2π
Re
[
∂

∂rβ
(Fσ s

k0γ (F
σ sβγ
k )∗)nσsk + 2(Fσ s

k0γ (F
σ sβγ
k )∗)

∂nσsk

∂rβ

]
− 2Im

[
(Fσ s

k0β)
∗
∂

∂kδ
σ

βmγ
kω

∂

∂rδ
Fσ s

kmγ nσsk + (F
σ s
k0β)

∗
∂

∂kδ
σ

βmγ
kω Fσ s

kmγ
∂nσsk

∂rδ

+ s(Fσ s
k0β)

∗
∂

∂ω

∂

∂kδ
σ

βmγ
kω Fσ s

kmγ nσsk
∂ωσsk

∂rδ
− (Fσ s

k0β)
∗
∂

∂rδ
σ

βmγ
kω

∂

∂kδ
Fσ s

kmγ nσsk

− (Fσ s
k0β)

∗
∂

∂rδ
σ

βmγ
kω Fσ s

kmγ
∂nσsk

∂kδ
− s(Fσ s

k0β)
∗
∂

∂ω

∂

∂rδ
σ

βmγ
k Fσ s

kmγ nσsk
∂ωσsk

∂kδ

+ (Fσ s
k0β)

∗
∂

∂kδ
σ

βmγ
kω Fσ s

kmγ

[
Fσ sξ0

k
∂

∂rδ
(Fσ s · 0

k ξ · )
∗
+

1
2

Fσ sξη
k

∂

∂rδ
(Fσ s

k ξη)
∗

]
nσsk

− (Fσ s
k0β)

∗
∂

∂rδ
σ

βmγ
kω Fσ s

kmγ

×

[
Fσ sξ0

k
∂

∂kδ
(Fσ s · 0

k ξ · )
∗
+

1
2

Fσ sξη
k

∂

∂kδ
(Fσ s

k ξη)
∗

]
nσsk

]}∣∣∣∣
ω=sωσsk(r,t)

. (3.27)

Equation (3.27) includes a term that contains the convolution of the tensor F σ s
k (t
′)

with the spatial derivative of the exit polarization tensor (F σ s
k )

u(t′) of the leading order
0Φ

σ s
k (r, t, t′). For our case of Langmuir waves, the dependence of the phase of the

polarization tensor on r can be adjusted so that this convolution vanishes:

Fσ sβ0
k

∂

∂rε
(Fσ s · 0

k β ·)
∗
+

1
2

Fσ sβγ
k

∂

∂rε
(Fσ s

k βγ )
∗
= 0. (3.28)

Conceptually, the latter restriction implies that the phase of the polarization tensor
does not depend on spatial coordinates.

6Its higher orders can be nullified by some minor modification of the calculation procedure.
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14 V. I. Erofeev

The situation is different for the dependence of the phase on the wave vector. Unlike
in our previous study of electromagnetic waves (Erofeev 2015b), no choice of this
dependence yields the vanishing of the corresponding convolution:

Fσ sβ0
k

∂

∂kε
(Fσ s · 0

k β ·)
∗
+

1
2

Fσ sβγ
k

∂

∂kε
(Fσ s

k βγ )
∗
6= 0. (3.29)

That is, the phase of the polarization tensor cannot be regarded as independent of k.
Still, terms with the derivative of the wave phase with respect to the wave vector fall
out of the wave drift velocity in our physical situation. This fact will be commented
in the next section.

We conclude this section by the following remark. We have mentioned above that it
is desirable that the tensor of forced oscillations δΦσ s

k (r, t′, t) be small in comparison
with the tensor 0Φ

σ s
k (r, t, t′). Meanwhile, with increase of time delay t − t′ in our

calculations, the forced oscillation tensor will ultimately override the tensor of the
leading-order approximation 0Φ

σ s
k (r, t, t′). Still, our leading-order approximation

0Φ
σ s
k (r, t, t′) represents the bulk of the two-time correlation function in a rather

wide piece of the domain t − t′ � (1ω)−1 provided that the plasma inhomogeneity
parameter λ/l is adequately small. Then the obtained picture of wave drift adequately
reflects the objective realities of this phenomenon: our calculation is meaningful.

4. Picture of drift in phase space for Langmuir waves

To adapt the above to the problem of drift of Langmuir waves in a magnetized
plasma, we first derive the parameters of Langmuir plasma oscillations, i.e. calculate
their polarization tensors and natural oscillations. For this, we need the conductivity
tensor; its linear approximation is sufficient for our purposes.

4.1. Conductivity tensor in a magnetized plasma
Following formulae (3.7) and (3.2),

σ βm·
· · γ (r, t, r1, t1)=−

∑
α

e2
α

c

∫
d3pvβ

∫
d3p1

0Gα(r, p, t, r1, p1, t1)v
m
1
∂

∂pγ1
fα(r1, p1, t1).

(4.1)
Bearing in mind that wave drift is due to the plasma inhomogeneity, we analyse the
effects of the inhomogeneity on this tensor. Let us assume that the magnetic pressure
in the plasma is great compared to the hydrodynamic plasma pressure, i.e.

β =
nTe

B2/(8π)
� 1. (4.2)

Then spatial changes in the conductivity tensor are predominantly due to inhomogenei-
ties of plasma density or (and) particle momentum distributions rather than due to the
inhomogeneity of the confining magnetic field B(r): either

|∇ ln(B)| � |∇ ln(ne)| (4.3)

or (and)
|∇ ln(B)| � |∇ ln(Te)|. (4.4)
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Therefore, we shall neglect the influence of spatial variations of the leading magnetic
field on the bare Green function 0Gα(r, p, t, r1, p1, t1). Let the z axis of the Cartesian
frame be directed along the external magnetic field B. Then integration of (3.3) yields
the following formula for the Fourier–Laplace transform of the bare Green function:

0Gαkω(p, p1)=−
1
ωBα

δ(pz
− pz

1)
δ(p⊥ − p⊥1 )

p⊥

[
1− exp

(
−2πi

ω− kzvz

ωBα

)]−1

× exp
[
−i
ω− kzvz

ωBα
(ϕ − ϕ1)+ i

k⊥v⊥

ωBα
(sin(ϕ − ϕ′)− sin(ϕ1 − ϕ

′))

]
. (4.5)

(The transform is defined as 0Gαkω(p,p′)=
∫
∞

t′ dt
∫

d3r0Gα(r,p, t, r′,p′, t′) exp(iω(t− t′)
− i(k · (r − r′))).) Here we use cylindrical coordinates. The azimuthal angles ϕ, ϕ1
and ϕ′ are the angles between the projections of the vectors p, p1 and k onto the
plane xy and the axis x, respectively. The sign ⊥ is used to denote the components
of the vectors perpendicular to the z axis. It is assumed that the difference ϕ − ϕ1
is within the interval [ 0, 2π [. The Larmor frequency of the particle is defined as
ωBα = eαB/(mαc). (We assume that the particles are non-relativistic in our plasma.)

Generally, taking account of the Larmor rotation of plasma particles in the leading
magnetic field, we assume that in our inhomogeneous plasma, the stationary particle
distribution fα has the following structure:

fα(r, p)= 0f α(x+ vy/ωBα, pz, p⊥). (4.6)

Here the notation p⊥ is used for the modulus of the component of the particle
momentum that is orthogonal to the magnetic field. The function 0f α(x, pz, p⊥)
characterizes the density of the particles with given p⊥ and pz that rotate in the
external magnetic field around centres located on the current level line of x. This
density does not depend on the phase of the rotation.

Taking into account the above structure of the particle distributions, we get

σ
βm ·

kω · · γ (t) = −
∑
α

e2
α

c

∫
d3p d3p1v

βvm
1

×

[
0Gαkω(p, p1)−

i
2
∂

∂kx

0Gαkω(p, p1)
∂

∂x

]
∂

∂pγ1

×

[(
1+

p1⊥ sin(ϕ1)

mαωBα

∂

∂x

)
0f α(x, p1z, p1⊥)

]
. (4.7)

The expression with the spatial gradient in the first square brackets accounts for the
direct effect of the spatial inhomogeneity of the distribution 0f α (i.e. its dependence
on x), and the term in the second square brackets accounts for the anisotropy of the
genuine particle distribution fα in the px–py plane that stems from the above Larmor
rotations of the particles.

The Larmor particle radii are presumably negligible compared to the spatial scale
of the plasma inhomogeneity in our cold ionized plasma. Due to this, the difference
between the expression in the second square brackets and the distribution 0f α can be
ignored. Then we can write

σ
βm ·

kω · · γ (r, t)=
[

1−
i
2
∂

∂kx

∂

∂x

]
0σ

βm ·
kω · · γ (r, t), (4.8)
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16 V. I. Erofeev

0σ
βm ·

kω · · γ (r, t)

=−

∑
α

e2
α

c

∫
d3p d3p1v

βvm
1

0Gαkω(p, p1)
∂

∂pγ1
0fα(x, p1z, p1⊥)

=

∑
α

e2
α

cωBα

∫
p⊥ dp⊥ dpzp1⊥ dp1⊥ dp1zδ(pz − p1z)

δ(p⊥ − p1⊥)

p⊥

∫ 2π

0
dϕ
∫ ϕ

ϕ−2π

dϕ1

×
exp[−i((ω− kzvz)/ωBα)(ϕ − ϕ1)+ i((k⊥v⊥)/ωBα)(sin(ϕ − ϕ′)− sin(ϕ1 − ϕ

′))]

1− exp(−2πi(ω− kzvz)/ωBα)

×


−

v⊥ cos(ϕ)
v⊥ sin(ϕ)

vz

⊗


c
v1⊥ cos(ϕ1)

v1⊥ sin(ϕ1)

v1z

⊗


−

(∂0fα)/(∂p1⊥) cos(ϕ1)

(∂0fα)/(∂p1⊥) sin(ϕ1)

(∂0fα)/(∂p1z)

 . (4.9)

The dependence of the tensor on the superscript β is represented in the left column
at the bottom of the rightmost side of the given chain of equalities, the dependence
on the superscript m is represented in the middle column and the dependence on the
subscript γ in the right column.

Within the convolution σ βm ·
kω · · γFσ s· γ

k m · , the summands with m 6= 0 are small compared
to the other summands and these quantities are related as the ratio of the mean
square electron velocity in the plasma (akin to the thermal velocity) to the speed of
light. In view of this, we can ignore all the summands in this tensor convolution
except for those with indices m = 0. Note also that plasma ions play only the role
of macroscopically neutralizing background in Langmuir plasma oscillations: these
oscillations depend exclusively on electrons.

Let us assume that the electron distribution 0f e is an isotropic Maxwellian
distribution with temperature Te that does not depend on x. Then the matrix of
the conductivity tensor takes the form

0σ
β0 ·

kω · · γ (x, t)=−
e2

ωBeTe

∫
∞

−∞

dpz

∫
∞

0
p⊥ dp⊥0fe(x, pz, p⊥)

×
−i exp(iπa)

2sin(πa)

∫ 2π

0
dϕ
∫ ϕ

ϕ−2π

dϕ1 exp[−ia(ϕ − ϕ1)+ iz(sin(ϕ − ϕ′)− sin(ϕ1 − ϕ
′))]

×

v
2
⊥

cos(ϕ) cos(ϕ1) v2
⊥

cos(ϕ) sin(ϕ1) vzv⊥ cos(ϕ)

v2
⊥

sin(ϕ) cos(ϕ1) v2
⊥

sin(ϕ) sin(ϕ1) vzv⊥ sin(ϕ)

vzv⊥ cos(ϕ1) vzv⊥ sin(ϕ1) v2
z

 . (4.10)

Here we have introduced the notation

a=
ω− kzvz

ωBe
, z=

kxv⊥

ωBe
. (4.11a,b)

The integration over azimuthal angles in formula (4.10) yields a somewhat more
advanced form of the conductivity tensor. However, it remains rather cumbersome in
the general case. We present it for the case ϕ′ = 0 (otherwise ky = 0). Then
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0σ
β0 ·

kω · · γ = i
e2

TeωBe

∫
d3pfe(x, pz, p⊥)

×

v
2
⊥
(−a(1+ aG)/z2) iv2

⊥
aG′/(2z) −v⊥vz(1+ aG)/z

−iv2
⊥

aG′/(2z) v2
⊥
(a(1+ aG)/z2

− (zG′)′/(2z)−G) iv⊥vzG′/2
−v⊥vz(1+ aG)/z −iv⊥vzG′/2 −v2

z G

.
(4.12)

Here

G(z) = −
1

2π

exp(iπa)
2sin(πa)

∫ 2π

0
dϕ
∫ ϕ

ϕ−2π

dϕ1 exp[−ia(ϕ − ϕ1)+ iz(sin(ϕ)− sin(ϕ1))]

= −

∞∑
n=−∞

J2
n(z)

a− n
≡−

π

sin (πa)
Ja(z)J−a(z), (4.13)

where Jn(z) is a first-kind Bessel function of integer order n and Jν(z) is a first-kind
Bessel function of irrational (generally, complex) order ν.

Since the electron thermal velocity is small, our waves have lengths much larger
than the typical electron Larmor radius ρe ≈ vTe/ωBe. Then argument z takes small
values, and the function G can be expanded in a series in z. For our case of cold
plasma, we do not need more than two first orders of the expansion:

G(z) = −
1
a

[
1−

1
2

z2

]
−

1
2

a
a2 − 1

z2
− · · · ≡−

1
a

[
1+

1
4

(
1

a− 1
−

1
a+ 1

)
z2
+ · · ·

]
= −

1
a
−

z2

2a(a2 − 1)
− · · · . (4.14)

In this case, the tensor 0σ
β0 ·

kω · · γ becomes

i
ω2

pe

4π

 ω/(ω2
−ω2

Be) −iωBe/(ω
2
−ω2

Be) 0
iωBe/(ω

2
−ω2

Be) ω/(ω2
−ω2

Be) 0
0 0 1/ω

 . (4.15)

We see tensor 0σ
β0 ·

kω · · γ does not depend on k, so that the tensor σ β0 ·
kω · · γ does not differ

from it. It is also invariant with respect to rotation of the coordinate plane kx–ky,
and this justifies the fact that we have focused our analysis of formula (4.10) on the
particular case ky = 0.

The tensor (4.15) is known from the traditional linear hydrodynamic theory of
plasma oscillations.

4.2. Natural frequency and polarization tensor of Langmuir waves
We first clarify the term long as applied to our Langmuir waves. Here we mean
that the wave vector k is small compared to the following three characteristic inverse
lengths: ωp/c, |ωBe|/c and

√
|ω2

p −ω
2
Be|/c. The natural frequency of a Langmuir wave

is then

ωls
k = sωp

(
1+

1
2

k2
⊥

c2

ω2
p

+
1
2

k2
⊥

c2k2
z c2

ω4
p

−
1
8

k4
⊥

c4

ω4
p

+O

(
k6c6

ω6
p

))
. (4.16)
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Here k⊥ denotes the wave vector component that is orthogonal to the leading magnetic
field.

The ‘electric’ components of the polarization tensor are

Fls
kx0

Fls
ky0

Fls
kz0

=



−
kxkzc2

ω2
p

− is
kykzc2

ωpωBe
+O

(
k4c4

ω4
p

)

−
kykzc2

ω2
p

+ is
kxkzc2

ωpωBe
+O

(
k4c4

ω4
p

)

1−
1
2
(k2

x + k2
y)c

2

ω2
p

+
7
8
(k2

x + k2
y)

2c4

ω4
p

−
1
2
(k2

x + k2
y)k

2
z c4

ω4
p

(
3+

ω2
p

ω2
Be

)
+O

(
k6c6

ω6
p

)


,

(4.17)
and the ‘magnetic’ components are

Fls
kyz

Fls
kzx

Fls
kxy

=



s
kyc
ωp

(
1−

(k2
x + k2

y − k2
z )c

2

ω2
p

)
− i

kxk2
z c3

ω2
pωBe

−s kxc
ωp

(
1−

(k2
x + k2

y − k2
z )c

2

ω2
p

)
− i

kyk2
z c3

ω2
pωBe

i
(k2

x + k2
y)kzc3

ω2
pωBe


+O

(
k5c5

ω5
p

)
. (4.18)

The tensor σ β0γ
kω has a simple spatial derivative,

∂

∂rδ
σ

β0γ
kω = σ

β0γ
kω

∂

∂rδ
ln(ne). (4.19)

Hence, not only can we omit the terms with derivatives of the conductivity tensor with
respect to wave vectors in (3.27), but we can also make the substitutions

(Fσ s
k0β)

∗
∂

∂rδ
σ

β0γ
kω Fσ s

k0γ = σ
σ s
kω
∂

∂rδ
ln(ne),

(Fσ s
k0β)

∗
∂

∂rδ
∂

∂ω
σ

β0γ
k Fσ s

k0γ =
∂

∂ω
σ σ s

kω
∂

∂rδ
ln(ne).

 (4.20)

Calculations yield

σ σ s
kω =

iω2
p

4π

[
1
ω

(
1−

k2
⊥

c2

ω2
p

+ 2
k4
⊥

c4

ω4
p

−
k2
⊥

k2
z c4

ω4
p

(
3+

ω2
p

ω2
Be

))

+
k2
⊥

k2
z c4

ω4
p

ω− 2sωp +
(
ωω2

p/ω
2
Be

)
ω2 −ω2

Be
+O

(
(kc)6

ω7
p

)]
. (4.21)

We see that this feature is purely imaginary. Note that the vector

Fσ sβ0
k

∂

∂kε
(Fσ s · 0

k β ·)
∗
+

1
2

Fσ sβγ
k

∂

∂kε
(Fσ s

k βγ ) (4.22)

is also purely imaginary, so that the dependence of the phase of the wave polarization
tensor on k does not affect the kinetics of wave drift in phase space (see (3.27)).
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Finally,

∂

∂ω
σ σ s

kω

∣∣∣∣
ω=sωσsk(r,t)

=−
i

4π

[
1− 2

k2
⊥

c2

ω2
p

+ 4
k4
⊥

c4

ω4
p

− 4
k2
⊥

k2
z c4

ω4
p

+O

(
(kc)6

ω6
p

)]
. (4.23)

For the purpose of the calculation, it is also convenient to use the following
consequence of the wave dispersion law (4.16):

d
dx

ln(ne)=
2
ωp

∂ωl
k

∂x

[
1+

1
2

k2
⊥

c2

ω2
p

+
3
2

k2
⊥

k2
z c4

ω4
p

−
1
8

k4
⊥

c4

ω4
p

+O

(
(kc)6

ω6
p

)]
. (4.24)

Based on the above, we can derive the final equation of Langmuir wave drift.

4.3. Final equation of Langmuir wave drift
The rate of change of the spectral density of Langmuir waves due to their drift in
phase space is given by

∂nl
k

∂t
=

dωl
k

dx
∂nl

k

∂kx
−
∂ωl

k

∂kδ

∂nl
k

∂rδ
− nl

k
dωl

k

dx
kxc2

ω2
p

(
3
2
−

5
2

k2
⊥

c2

ω2
p

+
5
2

k2
z c2

ω2
p

)
+O

(
nl

k
kxk4c6

lω5
p

)
.

(4.25)
The reader is reminded that the traditional weak plasma turbulence theory highlights

a certain wavenumber density Nσ
k instead of our wave spectral density nσk . Our

predecessors believed that the use of the concept of wavenumber density provides
descriptions of the evolution of wave spectra of turbulent plasmas that are maximally
adequate to plasma realities.

As a matter of fact, this concept was elaborated for problems of homogeneous
plasma wave turbulence. The definition of Nσ

k stems from the idea that the energy
density of a turbulent wave field can be interpreted as the sum of the energies
of individual wave quanta (see e.g. Tsytovich 1970). This clarifies the following
relationship between the wavenumber density Nσ

k and the wave spectral density nσk :

Nσ
k =

2π2

h̄ωσk

1
ω

∂

∂ω
(ω2(ε

βγ

kω )
H)

∣∣∣∣
ω=ωσk

[nσk (F
σ+
k 0β)

∗Fσ+
k 0γ ]. (4.26)

Here (εεεβγkω )
H is the Hermitian component of the dielectric permittivity tensor, (εβγkω )

H
≡

δβγ + 4πi(σ β0γ
kω )A/ω.

As we have already noted, addressing the traditional wavenumber densities and
understanding of their mutual influence lead away from highly informative nonlinear
scenarios of weakly turbulent plasmas (recall failures of the golden rule). The use of
wavenumber densities is even less intelligent in descriptions of wave drifts than in
problems of nonlinear dynamics of weak wave turbulence of a homogeneous plasma.
A major problem here is a generalization of the definition of plasma wave energy to
inhomogeneous plasmas. Suppose that we have developed an adequate description of
the energy density of the weakly turbulent wave field in an inhomogeneous plasma
and that the distribution of the energy density is given by a function Wσ

k (r, t). Then
the understandings of geometrical optics yield the following continuity equation of
wave energy drift in space and wave vectors:

∂Wσ
k

∂t
=
∂ωσk

∂rδ
∂Wσ

k

∂kδ
−
∂ωσk

∂kδ

∂Wσ
k

∂rδ
. (4.27)
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Here the wave natural frequency is considered as a Hamiltonian that governs the
time transformations of the coordinates of the wave package (spatial position) and
the conjugated momentum components (leading wave vector of the package). The
equation neglects wave dissipation, which is consistent with our physical situation.

It would have been quite natural to use as the wavenumber density Nσ
k the ratio

Wσ
k (r, t)/(h̄ωσk (r)). Provided that the recipes of geometrical optics are sufficiently

correct, we then would have got

∂Nσ
k

∂t
=
∂ωσk

∂rδ
∂Nσ

k

∂kδ
−
∂ωσk

∂kδ

∂Nσ
k

∂rδ
. (4.28)

However, we have no adequate idea of the wave energy density. We have fairly
logically developed the notion of the wave spectral density nσk (r, t), but how to
express the wave energy density Wσ

k (r, t) in its terms?
Suppose that the usual formula for the wave energy in homogeneous plasmas is

suitable for inhomogeneous plasmas. Then relation (4.26) should have held. In our
situation, it reduces to the equality

N l
k =

4π2

h̄ωp
nl

k

(
1−

3
2

k2
⊥

c2

ω2
p

−
5
2

k2
⊥

k2
z c4

ω4
p

+
23
8

k4
z c4

ω4
p

+O
(

kc
ωp

)6
)
. (4.29)

Correspondingly, equation (4.25) yields

∂N l
k

∂t
=

dωl
k

dx
∂N l

k

∂kx
−
∂ωl

k

∂kδ

∂N l
k

∂rδ
+

1
2

N l
k
dωl

k

dx
kxc2

ω2
p

(
1− 3

k2
⊥

c2

ω2
p

+ 3
k2

z c2

ω2
p

)
+O

(
N l

k
kxk4c6

lω5
p

)
.

(4.30)
We have got an equation that differs from (4.28) by an extra term on the right-hand
side. It provides insight into the above-mentioned problems with the definition of the
wave energy density. Note that the greater the y-component of the magnetic field in
the wave, the larger this term. It comprises some piece of the curl of the magnetic
field in the wave that generates a piece of electric field in the wave. Undoubtedly, this
suggests some contribution to the wave energy density that the relation (4.26) does not
take into account.

5. Conclusions
In this paper, we have once again highlighted the logic of developing highly

informative plasma kinetic scenarios. It was used to develop an equation that describes
the drift of long Langmuir waves in a weakly turbulent inhomogeneous magnetized
plasma (4.25). The equation uses the wave spectral density nl

k which is suggested
as the most natural characteristic of a weakly turbulent wave field. Analysis of this
equation has shown that the traditional theory does not contain a concept of energy
density suitable for the wave field in an inhomogeneous plasma. We hope that the
awareness of this fact will motivate the development of such a concept.
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