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Fluid motion has two well-known fundamental processes: the vector transverse process
characterized by vorticity, and the scalar longitudinal process consisting of a sound
mode and an entropy mode, characterized by dilatation and thermodynamic variables.
The existing theories for the sound mode involve the multi-variable issue and its
associated difficulty of source identification. In this paper, we define the source of
sound inside the fluid by the objective causality inherent in dynamic equations relevant
to a longitudinal process, which naturally favours the material time-rate operator
D/Dt rather than the local time-rate operator ∂/∂t, and describes the sound mode by
inhomogeneous advective wave equations. The sources of sound physical production
inside the fluid are then examined at two levels. For the conventional formulation
in terms of thermodynamic variables at the first level, we show that the universal
kinematic source can be condensed to a scalar invariant of the surface deformation
tensor. Further, in the formulation in terms of dilatation at the second level, we
find that the sound mode in viscous and heat-conducting flow has sources from rich
nonlinear couplings of vorticity, entropy and surface deformation, which cannot be
disclosed at the first level. Preliminary numerical demonstration of the theoretical
findings is made for two typical compressible flows, i.e. the interaction of two
corotating Gaussian vortices and the unsteady type IV shock/shock interaction. The
results obtained in this study provide a new theoretical basis for, and physical insight
into, understanding various nonlinear longitudinal processes and the interactions
therein.

Key words: compressible flows, mathematical foundations

1. Introduction
It is well known that the motion of a compressible fluid of uniform property

has two well-known fundamental processes, revealed by applying the Helmholtz
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decomposition to the momentum equation, namely taking its curl and divergence: the
vector transversal process (VTP) characterized by the vorticity ω = ∇ × u, u being
the velocity, and the scalar longitudinal process (SLP) characterized kinematically
by dilatation ϑ = ∇ · u and dynamically by other scalars such as the pressure
p, the density ρ, the enthalpy h, the temperature T and the entropy s, etc. In a
viscous complex flow, including coexistence and strong interactions of shear layers,
concentrated vortices, sound waves, shocks and entropy variation, as well as their
interactions with a solid boundary, the two processes are coupled both inside the
fluid due to nonlinearity and at the boundary of the flow due to the no-slip condition.
The physical sources of each process are contained in these couplings, of which the
identification is of crucial importance in practical flow management. For reviews of the
existing theories and some applications of process splitting and coupling, see e.g. Wu,
Ma & Zhou (2015) and Wu, Liu & Liu (2018). Of course, this complex-flow diagnosis
tool can by no means replace computational and experimental fluid dynamics (CFD
and EFD) that can resolve increasingly complicated gas flows and turbulence. Rather,
its role can be fully exhibited only when high-quality flow-field data from CFD/EFD
are available, to explain in detail the physics behind the evolution of these structures,
and their mutual generation/modulation.

The general theory for VTP is nothing but the vorticity and vortex dynamics. Its
foundation has been well established, including the nonlinear evolution, production at
the boundary and inside the fluid of the vorticity field due to its self-nonlinearity and
couplings with SLP, so that it has become a powerful diagnosis tool in the study of
turbulent coherent structures. In contrast, however, a well-structured systematic theory
for SLP is still lacking. To orient our goals, below we first briefly review the existing
relevant theories and some of their difficulties.

1.1. The development and difficulties of longitudinal-process theories
Modern development of SLP theory grew from the classic gas dynamics (e.g. Courant
& Friedrichs 1948; Liepmann & Roshko 1957; Emmons 1958), which laid down a
firm basis for high-speed aerodynamics. But since there the main body of the flow is
assumed to be inviscid and irrotational, as well as mostly steady, this classic theory
can only be applied to simple attached flow.

The theory for splitting a linearized Navier–Stokes (NS) flow into VTP and SLP
was pioneered by Lagerstrom, Cole & Trilling (1949), with heat conduction being
added by Wu (1956). Along this direction, Kovásznay (1953) calls the VTP the
vorticity mode, and proposed that the SLP consists of a sound mode and an entropy
mode due to their different governing equations, as seen by the dispersion relations
of the linearized NS equations (e.g. Pierce 1981; Tam, Webb & Dong 1993). Mao,
Shi & Wu (2010) further proved that, for a small disturbance to an unbounded fluid
otherwise at rest, the linearized equation for the three modes can be fully decoupled.
The linearized triple-mode decomposition was generalized to nonlinear viscous gas
flow by Chu & Kovásznay (1958) in an iterative perturbation formulation, where the
differential operators remain to be linearized.

Since the entropy mode shown below is quite simple, one focus on SLP is the
theory of sound mode, for which two approaches have been developed first with
different subjects and objectives, although they partly overlap. One focus is on the
acoustics in moving inhomogeneous media (AMIM) pioneered by Blokhintzev (1946)
with many following studies as documented by Ostashev (1997). Another is on the
famous acoustic analogy theory initiated by Lighthill (1952) aimed at predicting
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noise production and propagation in a turbulent jet. The latter signified the birth of
modern aeroacoustics (e.g. Goldstein 1976) and, combined with CFD, has led to an
active field of computational aeroacoustics (e.g. Wang, Freund & Lele 2006). Then,
another significant advance of SLP in the 1950s came also from Lighthill (1956), a
unified theory of the nonlinear evolution and annihilation of a finite-amplitude sound
wave in viscous and heat-conducting flow, including the formation of shock layers.
When the Reynolds number of the flow is high, diffusion and heat conduction are
significant only in shocks (Lighthill 1956) and the linearized far field (Mao et al.
2010; Liu 2018).

The above theoretical advances, although all in the same field of SLP and partly
overlapping, have been considered different branches with respective subjects and
objectives (e.g. Ostashev 1997). The acoustic analogy is not mentioned in the book
of Whitham (1974) and only briefly touched upon in Lighthill (1978). These advances,
if put together, are still insufficient to form a unified SLP theory as a competitive
counterpart to vorticity dynamics for VTP due to their inherent limitations. Difficulties
appeared mostly with the sound mode. On the one hand, the precise identification
of the physical source of sound has never been well addressed in either AMIM or
aeroacoustics. In the former, the main concern is the sound propagation in complex
moving media rather than its physical production, while in the latter, which should
address the sound production by fluid motion, the issue has remained a longstanding
controversial problem (e.g. Ffowcs Williams 1977; Jordan & Gervais 2008). One
of the key issues involved here is the alternative choice of time-rate operators, the
Eulerian operator ∂/∂t (the ∂t-form for short) versus the Lagrangian operator D/Dt
(the D-form for short). While in AMIM one usually uses the D-form, in the acoustic
analogy the ∂t-form is the orthodox approach, until Phillips (1960) turned to the
D-form with ‘a reluctant abandonment of the acoustic analogy’, followed by the
well-known work of Lilley (1974), among the others.

On the other hand, Lighthill’s theory on viscous and finite-amplitude sound waves
was analytically developed, because only one-dimensional plane waves as a function
of (x, t) are considered. Its extension to higher dimensions within the potential-flow
framework is called nonlinear acoustics (e.g. Enflo & Hedberg 2002). But neither
of these permits the coupling with VTP in real complex compressible vortical flows,
although the vorticity has been found to be a major source of noise in turbulence.

In view of these limitations and difficulties with existing theories, Mao et al.
(2011) initiated a study of fully nonlinear and viscous equations for the sound
mode. Specifically, owing to the perfect kinematic correspondence between vorticity
and dilatation, they left the conventional thermodynamic-variable formulation and
derived for the first time the governing equations of dilatation ϑ for the sound mode,
expressed with both D-form and ∂t-form. They also demonstrated the consistency of
these equations with and relevance to various existing SLP theories in aforementioned
fields. But the identification of SLP sources remained an open issue.

1.2. The approach and main findings of this study
The present paper is a direct continuation of Mao et al. (2011). The basic and main
findings of this paper are as follows.

Firstly, we argue that a clear source identification for the sound mode can be sorted
out by observing the causality relationship inherent in various dynamic equations
relevant to SLP. The physical cause of a process or variable, which can produce that
process or variable from nothing as the effect, should be identified as the source. For
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a moving fluid, this causality naturally requires using a nonlinear operator D rather
than ∂t; while for waves propagating on that fluid, it naturally favours the advective
hyperbolic (AH) wave operator D2

− c2
∇

2 rather than ∂2
t − c2

∇
2, with c being the

wave speed relative to the fluid.
Secondly, we confine ourselves to working on real physical quantities and do not

introduce auxiliary variables such as the velocity potential and vector streamfunction.
Then, the formulations of SLP dynamics can be made at two levels. The first level
has been widely analysed, which works on the thermodynamic variables p, ρ, T, s,
etc. For the sound mode, each variable is governed by an AH wave equation. Their
source terms can be clearly identified and are neat. The multiple-formulation issue has
its roots in the combination of the continuity equation and thermodynamic relations.
In contrast, at the second level that is our main concern, one works on a single
kinematic variable, the dilatation ϑ . Its governing AH wave equation for viscous and
heat-conducting flows, obtained by Mao et al. (2011) by raising the order of D by
one, is improved here and thoroughly explored. The order raising of D produces rich
nonlinear couplings among the vorticity mode, entropy mode, sound mode as well as
a purely universal kinematic mechanism (see below) not seen at the first level. These
couplings affect the AH wave operator and bring in various sources for viscous and
heat-conducting flow, indicating that the practical value of the AH wave equation for
ϑ is its guidance in pinpointing the leading-order SLP sources in complex flows.

Thirdly, at both levels we follow the approach in fine-scale turbulence studies,
to extend the vector momentum equation for Du to an equation for DA, where
A ≡ ∇u is the velocity gradient tensor, see, e.g. Meneveau (2011) and Wilczek &
Meneveau (2014) for incompressible flow, and Wang & Lu (2012) and Chu & Lu
(2013) for compressible flow, as well as references cited therein. This approach is not
only neat in algebra but also opens a wider view for understanding the SLP: it is the
processes solely derived from the trace of A. In particular, SLP has a universal source
tr(A2)(= ∇A : ∇A), which is outside the three modes but inherent in the kinematic
nonlinearity of A. Then, we find that tensor A and its traces can be replaced by
the surface deformation tensor B(= ϑ I − AT) and its traces, respectively, where I
is the unit tensor and the superscript T denotes transpose. Unlike A that covers
wide kinematic mechanisms, B has a single meaning as an elementary kinematic
mechanism, such that the source in terms of the invariants of B is a concentrated
representative compared to that of A.

Finally, as a sharp scalpel, the basic concept of process splitting and couplings will
be implemented throughout our entire study. The results of this study will be tested
and exemplified by a low Mach flow with interaction of two co-rotating Gaussian
vortices and a complex hypersonic flow with type IV shock/shock interactions.

1.3. The contents of this paper
This paper is organized as follows. As preparation, § 2 reviews the D-form fundamental
equations of compressible viscous flow, including using the dynamic tensor equation
for A(=∇u). A causality loop is thereby identified to distinguish the cause and effect
in each equation, which is the basis of identifying the physical sources of sound
mode. As comparison, the evolution equation for vorticity responsible for VTP and
the anti-symmetric contraction of the A-equation, is briefly reviewed.

Section 3 revisits the set of AH wave equations for the sound mode at the first
level. Their sources consist of a common universal kinematic source tr(A2), which we
find can be condensed to a scalar β ≡∇ · (B · u), a pseudo-work rate done by fluid
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Longitudinal processes in compressible flows 893 A23-5

surface deformation, along with entropy sources. Of these mathematically equivalent
AH wave equations, Phillips’ equation (Phillips 1960) for disturbance pressure turns
out to be the best representation of the sound mode.

In § 4 we continue the discussions of Mao et al. (2011) on both D- and ∂t-form
dilatation equations, focusing on why the ∂t-form cannot be used to identify physical
sources of ϑ , and how the D-form can and what are its rich results.

Section 5 provides two numerical examples, a low Mach flow with interaction
of two co-rotating Gaussian vortices and a complex hypersonic flow with type IV
shock/shock interactions, to demonstrate our theoretical findings and explain the
interactions of different modes. Concluding remarks are presented in § 6, followed by
two mathematical appendices.

2. Background and orientation
2.1. Fundamental equations

We consider the general motion of compressible viscous flows of a calorically perfect
gas, without external addition of mass, body force and heat. By its state equation p=
ρRT , where R is the gas constant, and the thermodynamic relation

Tds= de+ p d
(

1
ρ

)
= dh−

1
ρ

dp, (2.1)

where e is the internal energy, it is known that the specific entropy s is alternatively
expressible as

ds
cv
= d(ln p)− γ d(ln ρ)= d(ln h)− (γ − 1) d(ln ρ), (2.2)

where γ = cp/cv is the ratio of constant specific heats at constant volume and pressure.
The square of the sound speed is also known as

c2
= γRT = (γ − 1)h=

γ p
ρ
. (2.3)

Denoting D = D/Dt = ∂t + u · ∇ as the material time-rate operator, by (2.2), the
continuity equation can be written in terms of thermodynamic variables

ϑ =−D(ln ρ)=−
1
γ

D(ln p− s/cv)=−
1

γ − 1
D(ln h− s/cv), (2.4)

or in terms of c2

c2ϑ =−Dh+ γTDs. (2.5)

Then, the momentum equation is

Du=−∇h+ f , f ≡ T∇s+ η, (2.6)

where η ≡ νθ∇ϑ − ν∇ × ω is the viscous force, with νθ = (λ+ 2µ)/ρ and ν = µ/ρ
being the kinematic longitudinal and transverse viscosities, respectively. The energy
balance can be expressed by the entropy equation

ρTDs=Φ −∇ · q, (2.7)
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where Φ is the dissipation function, q=−k∇T is the heat flux with k being the heat
conductivity.

Throughout the theoretical development in this paper we adopt the linear diffusion
approximation introduced by Lighthill (1956) in developing a unified analytical theory
for a viscous sound wave of finite amplitude, its Riemann invariants and weak shock
structure, by which ν, νθ and k simply take their constant values. This is not an a
priori hypothesis; rather, by careful scale analysis, Lighthill proved that, if νf (x, t) is
any viscous function in the above fundamental equations, then for polytropic gas and
in a flow region without a strong shock the estimate

|νf − ν0f |
|ν0f |

� 1 (2.8)

is indeed true, and similarly for νθ f or kf . Of course this approximation is invalid
when µ strongly depends on T; but in our study shock layers are mainly resolved by
CFD, see § 5. There, the above fundamental equations formulated by the D operator
have been transformed into conservative form, along with temperature-dependent
variable ν(T). Moreover, while the linear diffusion approximation does not require
ν itself to be small, our main concern is nevertheless advection-dominated flows
at large Reynolds numbers, of which a formal introduction is of course the
non-dimensionalization of the above equations as shown by, e.g. Lagerstrom (1964)
(pp. 151–153). Here, we continue using dimensional notations for neatness, but
whenever we talk about a large Reynolds number or small viscosity we shall say that
in dimensionless form the viscous effect is of O(ε) with ε = Re−1

� 1.
Finally, as mentioned in § 1, we extend (2.6) to a tensor form in terms of the

velocity-gradient tensor ∇u=A, of which the time evolution following fluid particles
is given by the gradient of (2.6),

DA+ A2
=−Hh +∇f , (2.9)

where Hh ≡∇∇h is the Hessian of enthalpy. Like the pressure Hessian ∇∇p(≡Hp)
for incompressible flow, Hh is expected to be responsible for non-local interactions in
compressible flow.

2.2. Causality mechanisms in governing equations
As said in § 1, the choices of characteristic variables of SLP along with their
governing equations and sources are not unique. This situation underscores the
crucial importance of identifying the causal relationship among different variables
and nonlinear terms in the relevant equations. In so doing, we may well focus on
an inviscid flow model first. Then, the cause and effect in an equation of the type
DF=G, say, can be easily identified, since integrating this equation following a fluid
particle with respect to t can surely update F as the effect, with G being the cause.
Equations (2.4), (2.6) or (2.9), and (2.7) are all of this type. For example, consider
a solid body that starts to move at t = 0 in a fluid otherwise at rest. Owing to the
fluidity, the fluid yields to the body by generating an A field kinematically, including
its isotropic part ϑ . Then, by (2.4), a fluid particle will gain disturbances of ρ, p
and h isentropically at t> 0 from none. In turn, these generated variables will cause
a dynamic change of A by (2.9) along with a newly created ϑ-field. Therefore, the
kinematic–kinetic processes governed by (2.4) and (2.9) make the causality chain a
closed loop. Obviously, the loop may also start from a given initial field of (ρ, p, h)
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that produces the (A, ϑ)-field by (2.9), and ends with a newly produced field of
(ρ, p, h) via (2.4). In any case, this loop repeats as time goes on and creates the
rich world of flows. Evidently, for sound propagation relative to a non-uniformly
moving fluid, we have another type of equation, say (D2

− c2
∇

2)P = Q, for which
the causality is also easily identified.

Viscous and heat-conducting effects appear in real flows, which cause the entropy
production and also affect the evolution of A, especially in the shock region and
the long-time evolution problem. But these effects do not alter the basic cause-and-
effect identification inferred for inviscid flow. By gas kinetic theory, they occur during
molecular drifting to new positions from one equilibrium (p, ρ) state to another, and
hence slightly lag behind (Lighthill 1956).

2.3. On the source identification for scalar longitudinal process
The above cause-and-effect identification provides an objective basis for defining the
physical source of SLP in the interior of the fluid. In this regard, the entropy mode
governed by (2.7) is free from any ambiguity; Serrin (1959) has clearly explained why
Φ − ∇ · q is the true physical source by the original entropy definition ds = dQ/T .
Thus, we focus on the sound mode below and just make a couple of remarks on the
entropy mode in § 3.2. In general, for different evolution equations involving more
than one variable, their nonlinear terms can be classified into three types as defined
by Mao et al. (2011): the self-nonlinearity; the cross-modulation by which a variable
modifies another that already exists; the source that can produce a variable from none
as time goes on. Therefore, we use the word ‘source’ as the synonym of a cause
in the causality chain of a process. It will be seen that, although the choice of the
characteristic sound-mode variables and their governing equations can vary, and hence
the sources of SLP may take varying forms, they are just different faces of the same
physical origin that can well be identified.

It should be stressed, however, that this source identification still has only limited
clarity. Although ideally the source of a specific mode should be fully independent
of the characteristic variables of this mode, in practice, one can rarely achieve such
a pure goal due to the following reasons.

Firstly, the source identification depends on the specific theoretical mode splitting,
which itself can hardly be ideally ‘clean’. For example, across a curved shock one says
that the baroclinic effect ∇T ×∇s is a source of vorticity (see the next subsection),
but ignores the reaction of the newly generated vorticity field to the shock – it may
be too weak or its analysis hardly feasible. In other words, in the study of vorticity
evolution one does not consider the influence of the vorticity field on the temperature
or entropy, which are assumed known from the thermodynamic process.

Secondly, in certain fields of the sound mode such as aeroacoustics, the flow field
often needs to be further decomposed into a weak acoustic fluctuations generated
and propagated in the mean flow field although the mean flow also contains SLP.
Some nonlinear terms would be further split into a linearized propagation term and a
Reynolds-stress-like source term for the fluctuation equation. But in this paper we are
confined to the SLP behaviour of the whole flow without making such a distinction.
Consequently, the general results of source identification to be presented below may
differ from those in aeroacoustics.

Thirdly, yet very importantly, an ideally thorough longitudinal–transverse splitting
requires a decomposition of velocity u

u=∇φ +∇×ψ = uφ + uψ , ∇2φ = ϑ, ∇2ψ =−ω, (2.10a−c)
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where uφ and uψ are the longitudinal and transverse parts of u, induced non-locally by
ϑ and ω, respectively (this non-locality has nothing to do with causality and should be
distinguished from the non-local interactions implied by Hp or Hh). The acceleration
a = Du should also be accordingly decomposed. However, if we substitute (2.10)
into (2.9) and operator D, the resulting equation for φ will be formidably complicated
as observed by Mao et al. (2011). Although the multi-valueness and/or singularity of
φ and ψ are directly and universally responsible for the total lift and drag on a body
in steady flow, they are not physically testable but merely auxiliary variables (Liu
2018). In this paper, we only work on real physical quantities and shall take u and a
as a whole, and tolerate some ambiguity in the splitting of VTP and SLP, as pointed
out by Mao et al. (2011). For example, in the vortex-sound theory it suffices to say
that ∇ · (ω× u) is the source of sound without splitting of u.

2.4. Vector transverse process or vorticity mode
To be self-containing and for comparison, we now briefly review a couple of known
results for VTP. In contrast to taking the curl of (2.6) in the conventional formulation,
in tensor formulation VTP follows from taking the antisymmetric part of (2.9) by
its contraction with the permutation tensor E = eiejekεijk. This yields the vorticity
dynamics equation

Dω+ (ϑ I − D) ·ω=∇× f =∇T ×∇s+ ν∇2ω, (2.11)

where D is the strain rate tensor. This D-type equation has local |u| as its characteristic
speed. Owing to the nonlinear term A2 in (2.9), the evolution of vorticity is modulated
by the trace and symmetric part of A, (ϑ I − D). The viscous term does not produce
vorticity, but diffuses and dissipates the existing vorticity. The baroclinic term ∇T ×
∇s is a familiar physical source of vorticity inside the flow field. In addition, although
not seen from (2.11), it is well known that the vorticity is mainly and universally
created at solid walls with the tangent pressure gradient thereon as the source (via the
no-slip condition). This is a crucial longitudinal–transverse boundary coupling process,
slightly lagging behind the establishment of the pressure distribution.

3. Longitudinal processes by thermodynamic variables
This and the next sections present our major theoretical development. We start from

the contraction of (2.9) with unit tensor I , or the divergence of (2.6), to obtain an
evolution equation of SLP,

Dϑ + tr(A2)=−∇2h+∇ · f , (3.1)

where tr(A2) = uj,iui, j is the trace of A2. In contrast to (2.11), (3.1) involves double
longitudinal variables ϑ and h. A single-variable SLP equation follows from removing
either one of them.

3.1. Sound mode in terms of thermodynamic variables
The dilatation ϑ in (3.1) is related to thermodynamic variables by (2.4). Introduce
dimensionless quantities describing the relative strength of disturbances of these
variables, defined by

R≡ ln
(
ρ

ρ0

)
, P ≡

1
γ

ln
(

p
p0

)
,

H≡
1

γ − 1
ln
(

h
h0

)
=

1
γ − 1

ln
(

T
T0

)
, s∗ ≡

s− s0

cp
,

 (3.2)
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such that for a small disturbance f ′= f − f0 with |f ′|� f0 there will be ln( f /f0)' f ′/f0.
Then (2.2) yields

ds∗ = d(P −R)= (γ − 1)d(H−P)=
γ − 1
γ

d(H−R). (3.3)

Then, substituting (2.4), (3.2) into (3.1), and noticing that

T∇s=
c2

γ − 1
∇s∗, (3.4)

we easily obtain a set of single-variable AH wave equations for R,P and H,

WR= [tr(A2)− νθ∇
2ϑ] +∇ · (c2

∇s∗), (3.5)
WP = [tr(A2)− νθ∇

2ϑ] +D2s∗, (3.6)

WH= [tr(A2)− νθ∇
2ϑ] +

γ

γ − 1
D2s∗ −

1
γ − 1

∇ · (c2
∇s∗), (3.7)

where
W f =D2f −∇ · (c2

∇f ) (3.8)

is an AH wave operator for the logarithm f of any thermodynamic variable, with
varying c2 given by (2.3) as the characteristic speed. These are the standard and
simplest nonlinear AH equations. Since in triple-mode interactions s∗ should be one
independent variable, for the above equations only one is independent. In particular,
equation (3.6) is just the well-known equation derived by Phillips (1960) which, after
separating the acoustic disturbance from the mean flow, has led to the famous Lilley
(1974) equation for the noise generated by a turbulent jet.

On the right-hand side of the above sound-mode equations, there are two common
terms: the kinematic nonlinearity tr(A2) that exists universally, and the viscous term
−νθ∇

2ϑ . The latter is not a real source, since in (3.5), for example, it leads to a
term νθ∇

2DR, implying that the AH wave equation for R is changed to a third-order
advective diffusion equation. The only difference among R, P and H comes from the
entropy-related sources: the time rate of entropy production D2s∗ (from continuity) and
non-uniform entropy distribution ∇ · (c2∇s∗)= (γ − 1)T∇s (from momentum balance).

Phillips (1960) remarks that for aeroacoustics problems both νθ∇
2ϑ and D2s∗ in

(3.6) can be ignored. Actually, a simple scale analysis in the near field of low Mach
flow tells that, in (3.5)–(3.7) the magnitude of ∇ · (c2∇) is always far larger than that
of D2. This is also true if f = s∗ in (3.8), despite the fact that ∇ · (c2∇s∗) and D2s∗

appear separately. Our numerical studies in § 5 below confirm this estimate. Therefore,
although in principle (3.5) or (3.7) can play the same role as (3.6), the latter is least
influenced by the entropy variation and, as Kovásznay (1953) and Chu & Kovásznay
(1958) suggested, may serve as the primary equation for sound mode among those in
terms of thermodynamic variables.

3.2. Remarks on the entropy mode
Since

1
T
∇

2T =∇2 ln T + |∇ ln T|2 =∇2 ln h+ |∇ ln h|2,
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equation (2.7) can be cast to a DF=G type entropy production equation for a perfect
gas

Ds∗ =
Φ

ρh
+ ζ (∇2 ln T + |∇ ln T|2), ζ ≡

ν

Pr
, (3.9)

with the right-hand side being the physical sources of s∗ due to dissipation and heat
transfer. The characteristic speed is |u|. The linearized version of (3.9),

∂ts∗ ' ζ∇2 T ′

T0
, (3.10)

was used by Kovásznay (1953) and Chu & Kovásznay (1958) to analyse the entropy
mode. Since they use the (p, s) pair as independent thermodynamic variables, they
further presented a pressure–entropy equation

(∂t − ζ∇
2)s∗ ' (γ − 1)ζ∇2 p′

γ p0
(3.11)

to link the sound mode and entropy mode (of course, p′/(γ p0) can be replaced by
ρ ′/ρ0). This implies that an AH wave of the sound mode can result in the same kind
of waves in the entropy mode. Note that the structure of (3.11) has been changed
from the ∂tF = G type of (3.10) to a diffusion type due to the extra appearance of
ds∗ in the variable transformation via (3.3).

On the Chu–Kovásznay equation (3.11), we make two remarks. First, for real high
Mach number complex flows, entropy is not just passively advected as with other
variables. High peaks of ϑ2 and ω2 must appear in strong shock layers and the
viscous core of strong vortices, respectively. They may cause the peaks of nonlinear
dissipation Φ, which evolve following the motion of shocks and vortices, making
the entropy evolution deviate from simple AH waves. The relative strengths of Φ
and ζ∇2 ln T should be carefully examined case-by-case by CFD/EFD. The nonlinear
terms in (3.9) are also essential for understanding entropy cascade in compressible
turbulence (Eyink & Drivas 2018).

Second, the pressure–entropy equation is a vivid example on how the continuity
equation (2.4) and thermodynamic relations lead to bifurcations to multi-variable
formulations for SLP. The fully nonlinear version of this bifurcation from (3.9) can
be similarly obtained for either P or R, also of advection–diffusion type, but is much
more complicated. The form of these bifurcated equations could tempt one to view p′
and ρ ′ as the sources of s∗ too, but caution is necessary. The true entropy source can
only be those in (2.7) or (3.9). In a closed system, heat transfer must cause entropy
change; while a pressure fluctuation has to cause an entropy fluctuation through its
associated temperature fluctuation only if the latter appears. We thus call (3.11) and
its nonlinear extension the entropy–pressure coupling equations. As will be seen later,
in certain cases this coupling can be quite strong.

It is of interest to recall that, far before the 1950s, the formulation bifurcation via
the continuity equation had already appeared in the vorticity equation for VTP: in
(2.11), replacing ϑ by −D ln ρ yields the well-known Beltrami equation

D
(
ω

ρ

)
− D ·

(
ω

ρ

)
=

1
ρ
(∇T ×∇s+ ν∇2ω) (3.12)

as an alternative expression of the VTP–SLP coupling (cross-modulation). But this
equation is convenient only if the right-hand side vanishes. Obviously, one might
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also replace ϑ in (2.11) by other thermodynamic variables to get more bifurcations;
however, no one does that since then the entropy must artificially enter the left-hand
side of the equation. This observation exemplifies that, of the various possible
bifurcations permitted by the continuity equation and thermodynamic relations, only
a few make sense.

This observation also implies that the entropy–pressure coupling equation (3.11) is
mainly of historic value. In the pre-computer era, it was necessary to stick to the two
chosen independent thermodynamic variables for measurement or analytical solutions.
Today, with advanced CFD/EFD techniques, one may infer all physical variables from
the measured/computed velocity field u(x, t) through fundamental equations, if their
initial distributions are given. Therefore, it is no longer necessary to work on equations
like (3.11) with extra entropy terms ζ∇2s∗, nor their nonlinear generalization. One
may easily switch from the sound mode with the (p, ρ) pair to the entropy mode
with (T, s) pair.

3.3. The kinematic source and its concentration
Before proceeding, it is necessary to discuss in more detail the kinematic source of
the sound mode,

tr(A2)=∇u :∇u=∇ · (u · ∇u)− u · ∇ϑ, (3.13)

which does not belong to any one of the three modes but is a modified expression for
the divergence of the nonlinear advective acceleration in the Euler description. This
source is absent in VTP but its incompressible version is very familiar in the Poisson
equation for pressure

1
ρ0
∇

2p=−tr(A2)=−∇ · (ω× u+∇K), K ≡
1
2
|u|2, (3.14)

as directly follows from (2.6). Here, ∇ · (ω × u) and ∇2K have been known as the
main sources of sound at low Mach numbers in Lighthill’s acoustic analogy, behaving
as dipole and quadruple in the far field, respectively. But the extra compressibility
term −u ·∇ϑ=−Dϑ+ ∂tϑ is hard to understand within the conventional vector–scalar
formulation.

Actually, tr(A2) contains more information than necessary to be a source of sound.
According to our definition of source (§ 2.3), a source should be something outside a
process but can produce it from none, but A contains ϑ I as its isotropic part, which
is inside the sound mode. Thus, we propose to remove ϑ I from A by introducing the
surface deformation tensor B defined by

B≡ ϑ I − AT, ∇ · B= 0, (3.15a,b)

by which the traces of A, A2 and A3 are related to those of B, B2 and B3 by

tr(A)= ϑ =
1

n− 1
tr(B), (3.16a)

tr(A2)=−(n− 2)ϑ2
+ tr(B2)= ϑ2

− β, (3.16b)

tr(A3) = 3(ϑ3
− ϑβ)− tr(B3), if n= 3,
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= ϑ3
−

3
2βϑ, if n= 2, (3.16c)

where n is the spatial dimension. The basic physics of tensor B is reviewed in
appendix A. There, it is also shown that B can play most of the roles of A and lead
to a more concentrated sound source

β ≡∇ · (B · u)= B : AT
= lim

V→0

(
1
V

∫
∂V

n · B · u dS
)
, (3.17)

which measures a pseudo ‘inviscid work rate’ done or absorbed by the nonlinear
inertial force associated with SDP over the boundary of δV of unit mass. The
indefinite sign of β is the very nature of the surface deformation mechanism (SDM
for short): it may deform actively to add energy to the fluid, or passively to absorb
energy from the fluid by surface deformation. If a deforming surface of normal n
does positive work on a fluid element on its plus side, it must do an equal amount
of negative work to a neighbouring fluid element on its minus side. Obviously, by
(3.17), (3.13), and (3.14), β contains all the known kinematic sources of SLP in a
homentropic inviscid flow. But, as exemplified in appendix A, the net effects of those
sources are concentrated to a single elementary mechanism in β.

As an example of a D-form equation with kinematic source β, equation (3.5) is
modified to

D2R− (DR)2 −∇ · (c2
∇R)− νθ∇2DR=−β +∇ · (c2

∇s∗). (3.18)

Compared with (3.5), the concentration of the kinematic source is at the expense
of less apparent neatness. Actually, the quadratic of the first-order time-rate term
(DR)2 = ϑ2 on the left is significant only in the shock region and may be neglected
in smooth flow zones. In particular, when the domain size of interest is of the
same order as the sound wavelength, or when the disturbance R has extremely high
frequency or small period such that in a scale analysis all terms containing the period
are negligible, from (3.18) or (3.6) re-expressed by β, at low Mach numbers (3.14)
should be replaced by

(∇2
− c−2

0 ∂
2
t )p
′
= ρ0β, (3.19)

which returns to (3.14) as M→ 0. Note that a proof of (3.19) is given in appendix B.
Therefore, the non-local interaction found in incompressible flow is actually produced
by β and propagated by sound.

Note that β is a source of not only the sound mode but also the entropy mode,
namely, it is a common source of the entire SLP. The surface deformation is also
accompanied by a viscous resistance ts = −2µn · B that does work −2µβ, which,
however, never alters the fluid kinetic energy K but is directly transformed to internal
energy and dissipation (Wu, Zhou & Fan 1999). Indeed, by the kinematic identity
(Truesdell 1954)

D : D = ϑ2
+

1
2ω

2
−∇ · (B · u),

the work done by surface deformation appears explicitly in the triple decomposition
of the dissipation function

Φ = λϑ2
+ 2µD : D (3.20a)

= µθϑ
2
+µω2

− 2µβ, (3.20b)

where ω2 and ϑ2 come from VTP and SLP, respectively. Unlike these two, β
integrates to zero over an unbounded space with the fluid at rest at infinity. The
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2µβ term does not change the total dissipation over all space, but will adjust the
dissipation field. Compared with (3.20a), (3.20b) exhibits the sources of Φ more
intuitively. However, as indicated in appendix A, the three sources of Φ are not fully
decoupled. A rigidly rotating region of the fluid (say the core of a Rankine vortex)
has no contribution to Φ, since its positive work done by µω2 is exactly cancelled
by and the negative work done by 2µβ.

4. Longitudinal process by dilatation
In the preceding section, by replacing ϑ in (3.1) by D ln ρ etc., we saw how a

variety of equations for the sound mode and entropy mode are brought about due to
the multiple choices of SLP variables from (2.4). We have also found there a universal
and concentrated kinematic source β for both modes. The opposite job, i.e. reducing
the number of characteristic variables of SLP to just one, can be done by raising the
order of (3.1) by one. This approach was pioneered by Howe (1975) who obtained
an AH wave equation for the total enthalpy H = h + q2/2. Alternatively and more
naturally, Mao et al. (2011) showed that the same goal is achievable by eliminating
h from (3.1) to obtain an AH wave equation for the kinematic variable ϑ , which we
recall is the common generator of the former, as shown by (2.4).

Of course, reducing the multiplicity of variables and governing equations for SLP
is not the sole reason for studying the dilatation equation. Once developed, it is a
perfect counterpart to the vorticity equation for VTP, and may have a wide range
of applications beyond the study of the sound mode. For example, as indicated by
(3.20b), ϑ2 is also a direct cause of dissipation, of which the crucial role in hypersonic
boundary layer transition and aerodynamic heating has recently been clearly identified
(e.g. Zhu et al. 2018). Recently, González et al. (2016) showed that the dilatation
contours are a surrogate for the time rates of the pressure and density gradient,
and hence are the basis of schlieren in the sound visualization. These authors also
conjectured the close link between dilatation and the finite-time Lyapunov exponent, a
method pioneered by Haller (2001) for tracking the Lagrangian evolution of turbulent
coherent structures. This conjecture has been rigorously proved by Han, Luo & Zhang
(2019). This natural preference of the dilatation for the Lagrangian description adds
some more weight to our investigation of the D-form dilatation equation.

Since D is a nonlinear operator, however, raising the order of (3.1) to reach the
AH wave equation for ϑ inevitably brings quite many complicated nonlinear and non-
advective mechanisms into the equation for viscous and non-homentropic flows, which
‘pollute’ the neat form of the AH wave operator on the left-hand side and imply extra
sources on the right. Thus, the detailed formulation of the D-form equation is given
in appendix C, and here we focus on the main result and its implications. However,
before entering the D-form equation, we shall first visit the ∂t-form equation as a good
contrast, which is simpler in both form and its derivation because the linear operators
∂t and ∇ are exchangeable.

4.1. Dilatation equations of ∂t-form
By (3.16), equation (3.1) can be cast as

Dϑ + ϑ2
= β −∇2h+∇ · f . (4.1)

Since (2.5) implies
∂th+ u · ∇h=−c2ϑ + γTDs,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.213


893 A23-14 F. Mao and others

from (4.1),

∂t(Dϑ + ϑ2)= ∂tβ +∇
2(c2ϑ − γTDs+ u · f −DK)+ ∂t(∇ · f ), K ≡ |u|2/2. (4.2)

Substituting f = T∇s + νθ∇ϑ − ν∇ × ω into this equation and sorting terms, we
obtain

∂2
t ϑ −∇

2(c2ϑ + νθDϑ)+∇ · ∂t(uϑ)
= ∂tβ +∇ · J−∇2

[νu · (∇×ω)] − ∇2
[(γ − 1)TDs+DK]. (4.3)

Here, the term νθ∇
2(Dϑ) implies (4.3) becomes a third-order diffusion equation; while

on the right-hand side,
J≡ ∂tT∇s−∇T∂ts (4.4)

is the baroclinic source that vanishes if the flow is barotropic or steady; the first
term is the universal kinematic source, the third term is from VTP and the term
−(γ − 1)∇2(TDs) implies the transfer of kinetic energy to internal energy by
entropy production and will be treated later. The term −∇2(DK) makes an inevitable
appearance in ∂t-form, but can hardly be identified as a physical source. Rather,
for inviscid flow the kinetic-energy equation reads DK = −u · ∇h where, since
∇h= h∇ ln h= c2∇ ln ρ, there is

DK = c2(ϑ + ∂t ln ρ), (4.5)

indicating that DK is inherently related to a key term c2ϑ in the wave operator.
The form of (4.3) is not unique. For example, one of the variants of (4.3) reads

∂2
t ϑ −∇

2(c2ϑ + νθDϑ) = ∇ · [J− ∂t(ω× u)]
−∇

2
[νu · (∇×ω)+ (γ − 1)TDs+ (D+ ∂t)K], (4.6)

which has a neater wave operator but more suspicious ‘sources’ with ∂tβ being
absorbed. In a broad sense, various SLP equations of ∂t-form fall into the same
framework as Lighthill’s acoustic analogy theory. They can be mutually transformed
to each other. For example, Mao et al. (2011) have demonstrated that these ∂t-form
equations can be cast to a form with a linear wave operator and quadruple source,
which can be roughly viewed as the result of replacing ∂tρ by −ϑ in Lighthill’s
original equation. For the acoustic analogy, the operator on the left-hand side should
be kept simple to permit an analytical solution; but different choices of characteristic
variables which are linearly equivalent to each other, say χ , will still lead to different
forms of the ‘source’ (say S) on the right-hand side. The best choice would be that
S is least affected by χ . This is all one can do when seeking the sources of SLP in
the ∂t-formulation, and is obviously unsatisfactory according to our strategy based on
physical causality in the D-formulation.

Nevertheless, owing to its relative neatness and ease for performing CFD compared
with the D-form equation to be explored below, as well as its wide natural links to
various fields using the Eulerian formulation as Mao et al. (2011), the ∂t-form still
has advantages over the D-form. For example, for steady flow (4.3) can be integrated
twice to yield a viscous extension of the scalar velocity equation familiar to classic
gas dynamics (Liepmann & Roshko 1957; Mao et al. 2011), while for barotropic and
irrotational flow, equation (4.6) can be simplified to a viscous and nonlinear wave
equation for the velocity potential φ, to be explored in § 4.4. Due to the nonlinearity
of the D operator, however, these simplifications cannot be easily deduced from a D-
form equation such as (4.8) below. Actually, the respective strengths and weaknesses
of the ∂t-form and D-form equations are just opposite to each other.
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4.2. Dilatation equation of D-form for inviscid flow

To derive the AH wave equation for dilatation, we apply D to (4.1) and ∇2 to (2.5),
and then combine the results to remove h. In so doing, the non-commutative rules of
relevant operators play a key role

∇D−D∇= A · ∇, ∇2D−D∇2
= 2A :∇∇+∇2u · ∇, (4.7a,b)

where the right-hand sides indicate inherent extra complications brought in by the
nonlinearity of D. Then, we apply the operator D to both sides of (4.1) and notice
∇h= f − a where, since we are following the fluid motion, the acceleration a should
be kept as a whole kinematic quantity. This leads to

W0ϑ ≡ (D2
+ a · ∇)ϑ −∇2(c2ϑ)

= Q0 +D(∇ · f )+ 2A :∇f +∇2u · f − γ∇2(TDs), (4.8)

Q0 ≡−2D tr(A2)− 2 tr(A3)+ a · (∇×ω). (4.9)

For inviscid flow we simply have W0ϑ =Q0.
Compared with the neat AH operator W in (3.8) for thermodynamic variables, the

operator W0 contains only one extra term a · ∇ϑ . The structure and neatness of (4.8)
is similar to that of Howe’s (1975) equation, which, under the same condition, reads[

D
Dt

(
1
c2

D
Dt

)
+

a
c2
−∇

2

]
H =

(
∇−

a
c2

)
· (ω× u). (4.10)

However, while evidently (4.8) has a natural logic link to those AH wave equations of
§ 3.1 so that they are all under the same roof, equation (4.10) does not; for example
the universal sources in (4.8), the traces of A2 and A3, are absent from (4.10).

On the other hand, equation (4.8) is not finalized yet, because those traces of A2

and A3 still contain ϑ . Once we express them by the traces of B2 and B3 via (3.16),
there will appear different structures of W0 and Q0 for two-dimensional and three-
dimensional flows due to the dependence of tr(A3) on the spatial dimension, which is
a good physical property. Namely, for the inviscid and isentropic flow there will be

2D :W0ϑ + 2(Dϑ2
+ ϑ3)− 3βϑ = 2Dβ + a · (∇×ω), (4.11a)

3D :W0ϑ + 2(Dϑ2
+ 3ϑ3)− 6βϑ = 2Dβ + 2 tr(B3)+ a · (∇×ω). (4.11b)

4.3. Viscous and non-homentropic effects
For viscous and non-homentropic flow (viscous flow for short), we have to work
out terms containing f in (4.8), expressing them by relevant physical mechanisms.
Evidently, these f -terms are much more complicated than those in (4.2), for which the
detailed algebra is given in appendix C. There, it is shown that the D-form dilatation
equation for viscous flow finally reads

D2ϑ + (a+ ν∇×ω) · ∇ϑ −∇2(c2ϑ + νθDϑ)=Q0 +Qε, (4.12)

where the superscript ε reminds us of the viscous and non-homentropic root of the
source; in dimensionless form Qε is nominally of the order of O(ε), but a larger order
of magnitude is still possible. Specifically,

Qε
=Qε

en +Qε
coup +Qε

vis
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has three kinds of constituents

Qε
en =∇ · (DT∇s−∇TDs)− (γ − 1)∇2(TDs), (4.13a)
Qε

coup =ω · (∇s×∇T)+ 2νB :∇(∇×ω), (4.13b)

Qε
vis =+ν|∇×ω|

2
− ν∇2ω2

+ 2ν∇ω : (∇ω)T . (4.13c)

Here, Qε
en takes care of the source due to baroclinicity and entropy production, and

has perfect correspondence with those effects in (4.3); Qε
coup is from the nonlinear

coupling of the vorticity mode with entropy non-uniformity and surface deformation;
and Qε

vis collects explicitly viscous sources (or sinks), all from the vorticity mode.
Notice that the first term of Qε

coup comes from a counteraction of enstrophy production
by baroclinicity. In fact, let n be the unit vector of a thin vorticity tube such that
ω= nω therein and ξ = n · B is the rate of change of the cross-sectional area of the
tube, by (2.11) we have

ω · (∇s×∇T)=−(D+ 2ξ − ν∇2)(ω2/2)− ν∇ω : (∇ω)T, (4.14)

indicating that this source of ϑ is associated with an enstrophy reduction.
Equation (4.13) is for the first time a complete list of all extra dilatation modulation

mechanisms and sources due to viscosity, yet still within the linear diffusion
approximation and without the splitting of the velocity u and acceleration a. The
large number of terms in Qε is in sharp contrast not only to VTP, where no surface
deformation is involved and the internal source of ω comes solely from ∇T × ∇s,
but also to the lower-order equations for R,P and H from which most mechanisms
in (4.13) cannot be seen, and for which the reason has been stated in the context of
(4.7). A physical interpretation of this extra complexity is in order here.

The thermodynamic or kinematic variable F(x; t) carried by fluid particles satisfies
DF = G. Here, the variable’s longitudinal wave is governed by (D2

− c2
∇

2)F = Q,
say, because the wave propagation involves not only a single fluid particle but also
its neighbouring ones. In other words, ∇F and ∇2F no longer have simple causality
as F and G do. However, once established at a space–time point (x, t), the former will
also be advected by D to encounter different ∇ and ∇2 at (x+ δx, t+ δt). This dual
property of the evolution of ∇F and ∇2F, etc., is symbolically reflected in the non-
commutability of operators D and ∇, ∇2 shown in (4.7). It is an inevitable expanse
as long as we insist on tracing the physical causes of SLP. Note that the equations
for R, P and H do not have this complexity because the order of D is not raised.
Actually, this kind of extra complexity is not new. It has happened as we go from
the Du-equation (2.6) to the A-equation (2.9), that leads to the extra nonlinear term
A2; and much earlier than this, as we go from (2.6) to the vorticity equation (2.11)
that reveals the kinematic mechanism of vorticity tube stretching and tilting as well
as the dynamic mechanism of vorticity production by baroclinicity.

Evidently, the VTP or vorticity mode plays a very active role in affecting the
dilatation evolution, which further confirms the concept of ‘vortex sound’. But now
the effect of ω is broken down into various specific kinds. Once we leave the compact
vortical-flow region, equation (4.12) is significantly reduced to

D2ϑ + a · ∇ϑ −∇2(c2ϑ + νθDϑ)
=−2D tr(A2)− 2 tr(A3)+∇ · (DT∇s−∇TDs)− (γ − 1)∇2(TDs). (4.15)

More discussion of this kind of flow will be given in the next subsection.
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Owing to the multiple nonlinear couplings caused by the D-operator, it is evident
that (4.12) is not a good basis for seeking a numerical solution of the dilatation field.
Rather, equations (4.12) and (4.13) should be a powerful tool in pinpointing various
sources of ϑ from available flow-field data. The key observation is: although most of
the extra terms may be small and negligible in many specific flows, one cannot simply
ignore all the viscous effects at the very beginning of the analysis. The raising of
the order of the D-operator creates higher-order derivatives, some can even strongly
amplify certain viscous effects. For example, at large Reynolds number and in the
boundary layer adjacent to a solid wall, after non-dimensionalization there can be
ν∇2ω2

' ν∂2
nω

2
=O(Re), a significant local viscous source of SLP that cannot be seen

from the inviscid flow model.
In this regard, we mention that, in Howe’s equation (4.10) for viscous and non-

homentropic flow, see e.g. Howe (1998), one still has to keep the viscous force η=
νθϑ − ν∇ × ω as a whole without extracting the dilatation therein, for if νθϑ is to
be expressed by the total enthalpy then the resulting equation would be hopelessly
complicated.

4.4. A unified longitudinal field equation
So far, the theoretical development of the SLP equation has used (2.5) and (2.6),
but not (2.7), indicating that the theory is specified to the sound mode. A more
comprehensive SLP theory can follow from substituting (2.7) into (4.3), (4.6) or
(4.12) by the following simple algebra.

Denoting the dissipation per unit mass by Φ̂(= νθϑ2
+ νω2

− 2νβ) and

α ≡
γ − 1
γ

κ = (γ − 1)
k
cp
=O(ε), (4.16)

equation (2.7) can be written as

TDs= Φ̂ +
κ

γ
∇

2h, κ =
k
ρcv

, (4.17)

which in combination with (4.1) casts the entropy production as

− (γ − 1)TDs=−(γ − 1)Φ̂ + α(Dϑ + ϑ2
− β)+O(ε2), (4.18)

which can be substituted into either (4.8) or any of the ∂t-forms. For example, it
casts (4.6) into

∂2
t ϑ −∇

2(c2ϑ + bDϑ + αϑ2)

=−α∇2β +∇ · [J− ∂t(ω× u)]
−∇

2
[(γ − 1)Φ̂comb + ν∇ · (ω× u)+ (D+ ∂t)K] (4.19)

in which
b≡ νθ + α = νθ + (γ − 1)

γ

cp
(4.20)

is the sound diffusivity (Lighthill 1956), and

Φ̂comb ≡

(
νθ −

κ

γ

)
ϑ2
+

γ

γ − 1
νω2
−

(
2ν −

κ

γ

)
β (4.21)
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is a linear combination of dissipations from the VTP, STP and surface deformation
revised from (3.20b), serving as a ‘sink’. If we set νθ = 4ν/3, Pr= 3/4 and k= 1.4,
then the coefficients of the three terms of Φ̂ have ratios 4/3 : 1 : −2, while those
of Φ̂comb become 0 : 7/2 : −2/3, indicating that the dilatation-caused dissipation is
nullified, while the vorticity-caused dissipation is more dominant.

The combination of the sound-mode theory and entropy production implies a
certain unification of these two longitudinal modes, for which the boarder is diluted.
The transfer from kinetic energy to internal energy has been taken care of by the
appearance of φ̂comb, so that our attention to the effect of entropy can be focused on
its non-uniformity. Another remarkable effect is that the coefficient νθ of the highest
order is replaced by b, indicating that heat conduction enters the operator.

A great simplification of the dilatation equations occurs for barotropic and
irrotational flow with J = 0 and ω = 0, such that u=∇φ. While (4.15) can only be
slightly simplified, now (4.19) can be remarkably reduced to

[∂2
t − (c

2
+ bD)]∇2φ + ∂t|∇φ|

2
+∇φ · ∇∇φ · ∇φ =−αβ − (γ − 1)Φ̂comb, (4.22)

in which D= ∂t +∇φ · ∇ and

c2
= (1− γ )

(
∂tφ +

1
2 |∇φ|

2
)
+ 1. (4.23)

For potential flow, αβ and the combined dissipation Φ̂comb are very weak and locally
negligible, making the homogeneous version of (4.22) a good approximation.

This result has some interesting implications. First, the linearized version of (4.19)
degenerates into

∂2
t φ − (c

2
0 + b∂t)∇

2φ = 0, (4.24)

which holds also for other SLP variables and governs the far-field annihilation of
sound, and of which the analytical solution has been found by Liu (2018). Second,
and more importantly, the homogeneous version of (4.22) has served as the basis
of so-called nonlinear acoustics as discussed by Mao et al. (2011). In particular, a
unidirectional plane wave depending solely on (x, t) falls into this category since the
flow is surely barotropic and irrotational. Then (4.19) is further reduced to

φtt + (u2
− c2)ux + (u2)t = bDux. (4.25)

This equation and (4.23) are exactly equivalent to a pair of equations for a viscous
nonlinear plane wave

ut + uux +
2

γ − 1
ccx = buxx, ct + ucx +

γ − 1
2

cux = 0, (4.26a,b)

which is the very basis for Lighthill (1956) to pioneer his unified theory of viscous
Riemann invariants and weak shock-layer structure. Therefore, the present work can
well serve as a generalization of Lighthill’s theory of viscous propagation of sound of
finite amplitude from one-dimensional flow to two- and three-dimensional flows, and
from the source-free case to those including inhomogeneous physical sources.

5. Numerical demonstration of longitudinal processes and interactions
In this section we demonstrate the theories developed in the preceding sections by

two case studies: a low Mach number flow with the interaction of two co-rotating
Gaussian vortices, and an unsteady type IV shock/shock interaction.
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FIGURE 1. Schematic diagram of flow configuration for the interaction of two Gaussian
vortices and the evolution of vorticity ω (normalized by c0/R) at t = (a) 460, (b) 500,
(c) 540, and (d) 600.

5.1. The interaction of two co-rotating Gaussian vortices
The sound generation by the merging of two co-rotating Gaussian vortices has
been studied by many researchers (Colonius, Lele & Moin 1994; Mitchell, Lele
& Moin 1995; Eldredge, Colonius & Leonard 2002; Zhang et al. 2013) using the
flow model sketched in figure 1 at the same initial condition. The two vortices
are initially separated by distance 2R, and each vortex achieves a maximum Mach
number M0 = U0/c0 = 0.56 at radius r0 = 0.15R with a Reynolds number based on
the circulation of each, Re = Γ0/ν = 7500. The initial distribution of circulation Γ0
and circumferential velocity uθ(r) are given by

Γ0 =
2πU0r0

σ
, uθ(r)=

Γ0

2πr
(1− e−α(r/r0)

2
),

where σ = 0.7, α = 1.25. The wavelength of the far-field disturbance λ is 52.5. In
our numerical simulation, the length, time, velocity, density, pressure, temperature
and viscosity are normalized by R, R/c0, c0, ρ0, ρ0c2

0, T0 and µ0, respectively. The
computational domain is [−120, 120] × [−120, 120]. After a mesh convergence check
for sufficient revolution, the grid density 500× 500 with exponential distribution was
chosen to simulate the evolution of this interaction process. For more computational
details see Zhang et al. (2013).

5.1.1. The β-distribution and its contribution to dissipation
The two vortices shown in figure 1 start to rotate around the origin of coordinates

at t = 0. After a long time rotating about each other, the vortices start to coalesce
at approximately t = 460 and then quickly merge into a single vortex. Figure 2
shows the time evolution of the dissipation for this flow. At this low Mach number,
the magnitude of longitudinal dissipation Φ1 (= µθϑ

2) is much smaller compared
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FIGURE 2. The evolution of the dissipation (3.20b): Φ (=Φ1 +Φ2 +Φ3) (d,h,l) and its
decomposition Φ1 (= µθϑ

2/(µ0c2
0/R

2)) (a,e,i), Φ2 (= µω
2/(µ0c2

0/R
2)) (b, f, j) and Φ3 =

−2µβ/(µ0c2
0/R

2) (c,g,k) at t= 460 (a–d), 540 (e–h) and 600 (i–l).

with Φ2 (= µω
2) and Φ3 (=−2µβ). The contribution of the longitudinal process to

dissipation Φ1 is negligible. In appendix A, we use an axisymmetric swirling vortex
model to predict analytically that β > 0 at the vortex core where rotation dominates,
and becomes negative where shear dominates. According to figures 2(c,g,k), it is clear
that β (=−Φ3/(2µ)) remains positive at the vortex core(s) where rotation dominates
even through the vortex deformation is large, outside of which β becomes negative
where shear dominates, which confirms this prediction in appendix A.

In this numerical example, the integral of vorticity scaled by (c0/R) remains
constant over time due to its compactness, which is (−1.475888 ± 0.000002) in
the |x| 6 10 integral domain. The integral of β scaled by (c0/R)2 is found to be
(2.844 ± 0.001) × 10−3 in the same integral domain, which is almost unchanged.
Recall (3.19) for the acoustic equation at low Mach numbers, the present result
suggests that a small fraction of the energy in the near field travels out to form a
sound wave. The magnitude of the far-field pressure wave, which is approximately
O(10−5) at |x| ∼ O(λ) (figure not shown here), is much smaller than that of the
pressure disturbance in the near field. In turn, we can estimate the compactness of
β-field by the far-field pressure wave. For low Mach number flow, if the domain V is
big enough to contain all the vorticity, the integral of β over V can be approximated
by the integral of normal pressure gradient over the domain boundary∫

V
β dV '

1
ρ0

∫
∂V

∂p
∂n

dS, (5.1)

thus the magnitude of the disturbance of the β-integral is almost of the same order
as the pressure wave in the far field.
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FIGURE 3. Time evolution of R, P , H, ϑ/(c0/R), s/cv and ω/(c0/R) at near-field fixed
point (0, 1.2R) (a) and far-field fixed point (0, λ/2) (b).

Since in the rigid-like cores of the vortices there should be no dissipation, the ω2

and −2β there must be cancelled. This is clearly seen in figure 2: both Φ2 and Φ3

have very large magnitudes but opposite signs in the rigid-like vortex core, so the
resulting dissipation Φ occurs mainly in the vicinity of the regions where β < 0.

5.1.2. The evolution of the sound mode and entropy mode
To observe the characters of the entropy mode and sound mode as well as their

mutual relations, figure 3 shows the time evolution of R, P, H, ϑ, s and ω. These
thermodynamic variables all evolve consistently with the vorticity evolution at a
spatially fixed test point (0, 1.2R) in the near field in figure 3(a). The entropy
disturbance in the near field also varies synchronously with vorticity. But since
in (3.5)–(3.7) the entropy terms are different, the relative disturbance amplitudes of
R, P and H are also different. These amplitudes in the near field are much bigger
than that of dilatation for this low Mach number flow. Figure 3(b) shows the situation
as the test point moves to (0, λ/2), far from the vortical structures. There, the entropy
disturbance becomes much smaller than that of the sound mode, so the evolution of
R, P and H coincide perfectly and travel as a sound wave, which is the same as
the prediction of small disturbance analysis. Also note that the entropy fluctuations
increase with time due to the accumulation of dissipation.

The source terms of the sound mode characterized by R, P and H are compared
in figure 4. In this example, the main sources of sound are the kinematic term β and
entropy term ∇ · (c2∇s∗), and the entropy source D2(s∗) can be ignored, which is
mainly distributed in regions of strong shear. This behaviour conforms to the scale
analysis given in §§ 3.1 and 3.2. Of course the operator comparison there also holds
for D2P and ∇ · (c2∇P), which is confirmed in figure 5(a). Consequently, by (3.5)–
(3.7) and comparison with R and H, P is the least affected by the entropy mode.
Later, in § 5.2, we find this conclusion is also applicable to the case of unsteady type
IV shock/shock interaction (figure 8 below). Therefore, as stated in § 3.1, we choose
P as the primary thermodynamic variable for the sound mode. Note, however, that,
although the entropy source ∇ · (c2∇s∗) causes obvious differences of R, P and H
in the near field, its near-field integral has no effect on the far-field disturbance of
those variables.
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FIGURE 4. Source terms of (3.5)–(3.7) at t = 460: (a) β ∼ [−0.152, 0.588], (b) ϑ2
∼

[0, 8.09× 10−6
], (c) ∇ · (T∇s)=∇ · (c2∇s∗)/(γ − 1)∼ [−0.716, 0.625], (d) D2(s/cp)=

D2s∗ ∼ [−2.34× 10−5, 3.62× 10−5
]. The terms are normalized by (c0/R)2.

We now compare the sound-mode equation (3.6) in terms of pressure disturbance
and (4.12) and (4.13) in terms of dilatation. The evolution of the dominant terms of
these equations are displayed in figures 5 and 6, respectively. As predicted in § 3.3, at
the near-field test point the flow behaves nearly incompressibly and the sound mode
satisfies ∇2p= ρ0β. In contrast, the dominant source in (4.11a) comes from 2Dβ and
a · (∇ × ω). At the test point (0, λ/2), β still has a non-negligible contribution in
(3.6), as shown in figure 5(b), which will decrease as the test point moves away (figure
not shown). By comparing figures 5(b) and 6(b), we find ϑ as the kinematic variable
of the sound mode degenerates to a source-free wave motion faster than P as the test
point moves far away.

The evolution of the D-form entropy equation (3.9) is also analysed in this
numerical example (figure not shown). It is found that the evolution of (3.9) is
dominated by all terms except the nonlinear term ζ (γ − 1)2|∇H|2 in both the near
field and far field. In the near field, all dominant terms of (3.9) evolve consistently
with the vorticity evolution.

5.2. Unsteady type IV shock/shock interaction
Characteristics of unsteady type IV shock/shock interaction of hypersonic blunt body
flows are studied by Chu & Lu (2012) by solving the Navier–Stokes equations
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FIGURE 5. (a) Values of D2P (——), ∇ · (c2∇P) (——, red), β (— · —, green) at (a)
(0, 1.2R) and (b) (0, λ/2). The terms are normalized by (c0/R)2.
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FIGURE 6. (a) Values of (0, 1.2R), (b) (0, λ/2): D2ϑ (——), ∇ · (c2∇ϑ) (——, red),
2Dβ (——, blue), a · (∇×ω) (——, green). The terms are normalized by (c0/R)3.

with high-order numerical methods. The flow structures and dynamic processes,
e.g. jet bow shock oscillation and instantaneous heating, shock/boundary layer
interaction, vortex/boundary layer interaction and the feedback mechanism of inherent
unsteadiness, are analysed to provide a physical insight into the understanding of the
mechanisms relevant to this complex flow. Based on these analyses of the physical
characters of flow phenomena, an in-depth analysis of this complex flow problem
with our theoretical results about the sound mode and entropy mode is conducted.

A direct numerical simulation (DNS) of a hypersonic flow past a circular
cylinder is performed to investigate type IV shock/shock interaction by solving
the two-dimensional laminar compressible Navier–Stokes equations, which are
non-dimensionalized by the free-stream variables including the density ρ∞, the
flow speed U∞, the temperature T∞ and the diameter of the circular cylinder ϕ used
as the characteristic scale. The pressure is normalized by ρ∞U2

∞
, time by ϕ/U∞
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FIGURE 7. The instantaneous flow structure at t = 6.2916. (a) Dilatation ϑ/(U∞/ϕ) ∼
[−353.5, 66.8], (b) vorticity ω/(U∞/ϕ) ∼ [−5846.4, 3267.0] and (c) entropy
s/(γM2

∞
R)∼ [0, 0.055].

and viscosity by µ∞. The equations are numerically approximated by a fifth-order
weighted essentially non-oscillatory scheme for the convection terms (Jiang & Shu
1996), a sixth-order central difference scheme for the viscous terms and a three-step
Runge–Kutta method for time discretization. The domain is discretized with a grid
size of 800 × 400 and the length of the first cell over the surface in the normal
direction is 1.2 × 10−6ϕ. The free-stream Mach number is 8.03 and the Reynolds
number based on the diameter of the cylinder is 5.15 × 105. An impinging shock
is introduced into the converged solution by the Rankine–Hugoniot relation. The
impinging shock angle is 18.1114◦ and the impinging shock is located at the point
(−1.1667, −0.1742). No-slip and isothermal conditions are used on the surface.
Non-reflecting boundary conditions are employed at the inlet and outlet boundaries.
Detailed descriptions of the computational overview and validation have been given
in our previous paper (Chu & Lu 2012).

We first review the evolution characteristics of three modes in unsteady flow. As
shown in figure 7, due to the interactions between the vorticity mode, sound mode
and entropy mode, there are rich flow phenomena in this case, e.g. perturbation
propagation such as vortical wave, entropy wave and compression wave, interactions
between shock waves and shear layers, shock wave and shear layer deformation and
so on. Figure 7(a) shows the instantaneous distribution of dilatation (ϑ), which
is negative in the shock region with scattered positive value in the expansion
region. Disturbances near the wall surface propagate outward as compression waves.
Figure 7(b,c) shows the contours of vorticity (ω) and entropy (s). The banded vorticity
and entropy field are generated after the strong bow shock and move downstream.
Due to the unsteady movement of the jet shock near the cylinder, there is also free
vorticity generated outside the boundary layer and moving towards both ends.

5.2.1. Sound mode and its source
Figure 8 shows the instantaneous distribution of R, P and H. As previously

mentioned, the entropy source is the only difference of (3.5)–(3.7). By comparing
figures 8(a–c), we can find that the entropy source plays an important role, which
causes an obvious difference between the evolutions of R, P and H. The pressure
disturbance P propagates consistently with a compression wave, which means the
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FIGURE 8. The instantaneous contours of (a) R ∼ [−0.269, 5.528], (b) P ∼
[−0.004, 4.649] and (c) H∼ [−0.010, 6.939] at t= 6.2916.
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FIGURE 9. The instantaneous entropy source of the vorticity mode (see (2.11)) and sound
mode (see (3.5)–(3.7)) at t = 6.2916: (a) ∇T × ∇s = ∇c2

× ∇s∗/(γ − 1) ∼ [−2.89 ×
105, 1.65 × 105

], (b) ∇ · (T∇s) = ∇ · (c2∇s∗)/(γ − 1) ∼ [−6.84 × 107, 1.13 × 107
],

(c) D2s/cp =D2s∗ ∼ [−6.57× 105, 9.56× 105
]. Every term is normalized by (U2

∞
/ϕ2).

effect of the entropy source D2s∗ is not significant compared with ∇ · (c2∇s∗), which
is confirmed in figure 9. As shown in figure 8, the density disturbance R propagates
in the mode of a compression wave in region A and in the mode of an entropy
wave in region B, which means the entropy source ∇ · (c2∇s∗) is a main source.
The evolution of the enthalpy (or temperature) disturbance H is inconsistent with
the entropy mode. Combined with the analysis of § 5.1.2, we can conclude that the
thermodynamic variable H (or T) has the property of a sound mode and an entropy
mode, which dominate in low Mach flow and high Mach flow, respectively. Based
on the above analysis, we take P as the characteristic variable of the sound mode.

Figure 9 compares the entropy source of the vorticity mode in (2.11) and that of the
sound mode in (3.5)–(3.7). Figure 9(a) shows that the source of vorticity ∇T ×∇s(=
∇c2
× ∇s∗/(γ − 1)) is not distributed continuously with the typical flow structure

but shows a positive and negative cross-distribution. This is because ∇c2
× ∇s∗ =

h∇P ×∇s∗ is the cross-product of the sound mode and entropy mode, the directions
of evolution of which are different. Comparing figure 9(a–c), we can find that ∇ ·
(c2∇s∗) is much larger than ∇c2

×∇s∗ and D2s∗, and the distribution of ∇ · (c2∇s∗)
behaves as a two-layer structure.
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FIGURE 10. The instantaneous contours of the decompositions of source ∇ · (T∇s) at
t= 6.2916: (a) T∇s · ∇s/cp/(U2

∞
/ϕ2); (b) T∇2s/(U2

∞
/ϕ2); (c) (γ − 1)T∇P · ∇s/(U2

∞
/ϕ2).
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FIGURE 11. The instantaneous contours of kinematic source Tr(A2) and its
decomposition: (a) ϑ2/(U2

∞
/ϕ2), (b) β/(U2

∞
/ϕ2), (c) Tr(A2)/(U2

∞
/ϕ2) at t= 6.2916.

As mentioned before, the thermodynamic variable T (or c2) mainly exhibits the
characteristic of the entropy mode in high Mach flow, accordingly, we decompose the
source ∇ · (T∇s) into the self-nonlinear term T(∇s ·∇s)/cp, the cross-modulation term
of the sound mode and entropy mode (γ − 1)T∇P ·∇s and the entropy diffusion term
T∇2s. The results show that the magnitude of (γ − 1)T∇P · ∇s is much smaller than
the other terms, which confirms the entropy mode characteristic of T . By comparing
figures 9(a) and 10(c), we find that the distributions of T∇P · ∇s and T∇P ×∇s are
similar due to the directions of propagation of the sound mode and entropy mode.

The decomposition of the kinematic source of the sound mode tr(A2)(= ϑ2
− β)

is exhibited in figure 11. In the shock region, ϑ2 is larger than β. In other flow
structures, β dominates as a kinematic source, the distribution of which is analysed
in detail in § 5.2.2. By comparing with figure 9(b), we find that the magnitude of the
kinematic source is the same as that of the entropy source, which is also the cause
of the different evolutions of R, P and H.
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FIGURE 12. The instantaneous contours of the decomposition of Φ = Φ1 + Φ2 + Φ3
(3.20b) at t = 6.2916 (a) Φ1 = µθϑ

2, (b) Φ2 = µω
2, (c) Φ3 = −2µβ and (d) Φ. Every

term is normalized by µ∞U2
∞
/ϕ2.
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FIGURE 13. Partial enlargement of figure 12(c).

5.2.2. The β-distribution and its contribution to dissipation
Figure 12 exhibits the decomposition of Φ in (3.20b). The value of Φ3 can be

positive or negative. The magnitude of Φ3(= −2µβ) is comparable to but smaller
than Φ1(=µθϑ

2) and Φ2(=µω
2) in the shock region and vortical region, respectively,

which causes a non-negative dissipation everywhere.
To further analyse the distribution of Φ3 or β, we zoom into figure 12(c) in several

special flow structure regions, as shown in figure 13. In area A, Φ3 is positive in the
bow shock region and the vorticity wave, but becomes negative when intersecting with
a compression wave. In area B, Φ3 is negative in the shear layer, but when intersecting
with a compression wave, Φ3 will obtain the positive value of the compression wave.
In area C, as we see in other cases which are not shown here, for strongly flattened
vortices, Φ3 is negative at both ends and weakly positive or negative in between.

6. Concluding remarks
As a continuation of the work of Mao et al. (2011), this paper studies the scalar

longitudinal process (SLP) of fluid motion in viscous compressible flow, focusing on
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the sound mode and its nonlinear couplings with other modes as well as surface
deformation. The main findings summarized below have been tested by the numerical
examples of two typical complex flows.

(i) Within the limitation stated in § 3.3, the long-standing controversy on sound-
mode source identification can be maximally clarified by the causality inherent in
various dynamic equations of the scalar longitudinal process, where the sources of a
mode are defined as its physical causes. This identification requires working on the
D/Dt form of the sound-mode equations. The nonlinear kinematic source from the
traces of the velocity-gradient tensor exists universally, which can be concentrated to
the pseudo-work rate done or absorbed by surface deformation.

(ii) In addition to the conventional level where the equations are expressed in terms
of thermodynamic variables, the sound-mode equation is also examined at a higher-
order level in terms of dilatation, which is the perfect counterpart of vorticity in a
vector transversal process, the natural basis in the schlieren visualization of sound and
the common generator of thermodynamic variables via the continuity equation. Due to
the multiple characteristic variables for the sound mode at two levels, the identified
sources based on causality still vary from one variable to another and from the first
level to the second. In particular, only at the second level can one see rich kinds of
dilatation sources, mostly from viscosity and non-uniform entropy. This unique feature
comes from the dual nature of these effects: they are of diffusion type involving
interaction of neighbouring fluid elements, but are also advected with the fluid by the
material derivative D/Dt.

(iii) The entropy mode was separated from the sound mode mainly because
it has a different type of production equation, which, however, can be absorbed
into the sound-mode equation to yield a unified longitudinal-process equation
that automatically satisfies the second law of thermodynamics. Then the entropy
manifests only by its non-uniform distribution. Meanwhile, in the unified equation
the highest-order viscous term has the sound diffusivity as the coefficient, which is a
linear combination of the longitudinal viscosity and heat diffusivity. Accordingly, the
effective dissipation of the longitudinal process appears as a linear combination of the
triple sources of the conventional dissipation function. The one-dimensional version of
the unified equation is equivalent to Lighthill’s nonlinear sound-wave theory (Lighthill
1956).

The above findings extend the concept and theory of Kovásznay (1953) and Chu
& Kovásznay (1958) on process/mode splitting to the fully nonlinear regime (yet
still under a linear diffusion approximation). This extension enables generalizing
of Lighthill’s viscous and finite-amplitude sound theory (Lighthill 1956) to multi-
dimensional flow, and the nonlinear acoustic theory to rotational flow.

Therefore, the present study may provide a new clue toward a unified longitudinal-
process theory. What remain to be further pursued are, among others, a thorough
understanding of the viscous couplings of the sound mode and other processes/modes
at a solid boundary, and extensive case studies.
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Appendix A. Surface deformation tensor and its work rate
The surface deformation tensor is defined as

B= ϑ I − AT, (A 1)

such that for the material rate of change of a fluid surface element of unit normal n,
dS= n dS,

1
dS

D(dS)=Dn+ nD(ln dS)= n · B. (A 2)

Here, B is linearly dependent on A and ϑ I that govern the rate of change of line
element dx and volume element dV , respectively.

Since
1
2(B+ BT)= ϑ I − D, 1

2(B− BT)=Ω, (A 3a,b)

many of the roles of A can be played by B. For example, in the VTP equation (2.11),
ϑ I − D can well be replaced by a single B. For incompressible flow B is just an
alternative expression of A; while for compressible flow B concentrates apparently
different mechanisms in A to a single elementary kinematic mechanism, which is
physically more intuitive. However, due to its divergence-free property, B is not seen
in the differential or integral form of the NS equations. It surfaces only after one’s
vision is broadened from vector momentum balance (2.6) to its tensor extension (2.9).

To exemplify how β is a ‘condensed’ representation of the source, consider a family
of incompressible and axisymmetric swirling vortices. In cylindrical coordinates
(r, θ, z) with velocity components (u, v, w), these vortices have similarity solutions
u= (u, v,w) and ω= (0, 0, ω), where

u=− 1
2γ r, v = v(r), w= γ z, γ > 0,

ω=
1
r
∂r(rv)=

v

r
+ ∂rv.

 (A 4)

Then, we find that in (3.14)

−∇ · (ω× u)=
1
r
∂rv

2
+

1
2r
∂r(r∂rv

2), −∇2K =−
3
2
γ 2
−

1
2r
∂r(r∂rv

2), (A 5a,b)

but as the net effect of these two sources we simply have

β =∇ · (B · u)=−
3
2
γ 2
+

1
r
∂rv

2. (A 6)

Therefore, due to the cancellation of the cumbersome terms in the two previously
known sources, equation (A 6) is recovered as a concentrated single source of simple

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.213


893 A23-30 F. Mao and others

mechanism. However, the physics of the sign change of β can now be explained
by the competition of the two constituents of β: in a vortex core where rotation
dominates, β is dominated by −∇ · (ω × u) and remains positive; while outside the
core with ω ' 0 it is dominated by −∇2K (a pure shear) and becomes negative,
because, when rv ' Γ∞,

−
1
2r
∂r(r∂rv

2)'−
2Γ 2
∞

r3
.

Namely, for any isolated vortex, β appears generically as a positive core surrounded
by a negative ring-like zone.

Then, from (3.15a,b)

tr(B3)=−tr(A3)=−
3
2
γ

(
1
2
γ 2
+

1
r
∂rv

2

)
= γ

(
1
2
β −

2
r
∂rv

2

)
, (A 7)

which is a pure three-dimensional effect governed by vortex stretching. It can be
similarly shown that (A 7) is also the most concentrated expression of −tr(A3), not
achievable by classic double decomposition of A.

Appendix B. A proof of equation (3.19)
Equation (3.6) can be rewritten as

∂2
t H+ ∂t(u · ∇H)+ u · ∇(∂tH)+ u · ∇(u · ∇H)+∇ · (c2

∇H)
=−β + ϑ2

− νθ∇
2ϑ +D2s∗. (B 1)

For low Mach number flow, the last two terms can usually be ignored.
The characteristic velocity, length, velocity of sound, frequency and Mach number

are denoted by v, l, c0, f and v/c0, respectively. Then we have

∂2
t H∼O( f 2(dH)), ∂t(u · ∇H)∼ u · ∇(∂tH)∼O

(
f
(v

l

)
(dH)

)
,

∇ · (c2
∇H)∼O

((v
l

)2 1
M2
(dH)

)
, −β ∼O

((v
l

)2
)
.

For low Mach number flow, in the near field,

ϑ2
�O

(v
l

)
,

p′

p0
∼O(M2),

dH=
1

γ − 1
d
(

ln
p
p0

)
=

1
γ − 1

dp
p
=

1
γ − 1

dp
p0

1
(1+ p′/p0)

∼O(M2),

usually, the characteristic frequency is f =v/l, then (B 1) reduces to the incompressible
approximation

∇ · (c2
∇H)= β, or ∇2p= ρ0β.

But, if the frequency is extremely high such that f ∼ (1/M)(v/l), then (B 1) reduces
to

∂2
t H−∇ · (c2

∇H)=−β or (∇2
− c−2

0 ∂
2
t )p= ρ0β.
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Appendix C. Viscous effects of the D-form dilatation equation
The transformation of viscous terms in (4.8) involves tedious but elementary tensor

algebra. Firstly,

D(∇ · f )=D∇ · (T∇s)+ νθ(∇2Dϑ − 2A : ∇∇ϑ −∇2u · ∇ϑ),

in which the first term has to be further transformed:

D∇ · (T∇s)=∇ · [D(T∇s)] − A · ∇ · (T∇s),

where

D(T∇s)=DT∇s+ TD∇s=DT∇s+∇(TDs)−∇TDs− TA · ∇s.

Hence,

D∇ · (T∇s)=∇ · (DT∇s−∇TDs)+∇2(TDs)−∇ · (TA · ∇s)− (A · ∇) · (T∇s),

of which the last two terms are

− [∇ · (TA · ∇s)+ (A · ∇) · (T∇s)] = −[∇2u · (T∇s)+ 2D : ∇(T∇s)]
= −[∇

2u · (T∇s)+ 2∇T · D · ∇s+ 2TD : ∇∇s],

where

−∇
2u · (T∇s)= T(∇×ω−∇ϑ) · ∇s, −νθ∇2u · ∇ϑ = νθ(∇×ω−∇ϑ) · ∇ϑ.

Thus, we obtain

D(∇ · f ) = ∇ · (DT∇s−∇TDs)+∇2(TDs)
+T(∇×ω−∇ϑ) · ∇s− 2∇s · D · ∇T − 2TD : ∇∇s
+ νθ (∇

2Dϑ − 2D : ∇∇ϑ + νθ(∇×ω−∇ϑ) · ∇ϑ. (C 1a)

Secondly, we have

2A : ∇f = 2A : (∇T∇s+ T∇∇s+ νθ∇∇ϑ − ν∇∇×ω)
= 2∇s · A · ∇T + 2D : (νθ∇∇ϑ + T∇∇s)− 2νA : ∇(∇×ω),

where since A= D +Ω = ϑ I + 2Ω − B:

− 2νA : ∇(∇×ω)= 2νB : ∇(∇×ω)− 4νΩ : ∇(∇×ω),

in which

− 4νΩ : ∇(∇×ω)=−2νω ·∇2ω=−2ν∇2(ω2/2)+ 2∇ω : (∇ω)T .

Thus,

2A : ∇f = 2νB : ∇(∇×ω)+ 2∇s · A · ∇T + 2D : (νθD : ∇∇ϑ + T∇∇s)
− ν∇2ω2

+ 2ν∇ω : (∇ω)T . (C 1b)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.213


893 A23-32 F. Mao and others

Thirdly,

∇
2u · f = (∇ϑ −∇×ω) · (T∇s+ νθ∇ϑ − ν∇×ω)

= [T∇s− (ν + νθ)∇×ω] · ∇ϑ
+ νθ |∇ϑ |

2
+ ν|∇×ω|2 − T(∇×ω) · ∇s. (C 1c)

Therefore, since
2∇s · (A− D) · ∇T =ω · (∇s×∇T),

we finally obtain

D(∇ · f )+ 2A : ∇f +∇2u · f = νθ∇2(Dϑ)− ν(∇×ω) · ∇ϑ
+∇ · (DT∇s−∇TDs)+∇2(TDs)
+ω · (∇s×∇T)+ 2νB : ∇(∇×ω)

− 2ν∇2(ω2/2)+ 2ν∇ω : (∇ω)T + ν|∇×ω|2. (C 2)

Consequently, for viscous flow we obtain (4.12) with detailed extra sources given
in (4.13).

REFERENCES

BLOKHINTZEV, D. 1946 The propagation of sound in an inhomogeneous and moving medium I.
J. Acoust. Soc. Am. 18 (2), 322–328.

CHU, B. T. & KOVÁSZNAY, L. S. 1958 Non-linear interactions in a viscous heat-conducting
compressible gas. J. Fluid Mech. 3 (5), 494–514.

CHU, Y. B. & LU, X. Y. 2012 Characteristics of unsteady type IV shock/shock interaction. Shock
Waves 22 (3), 225–235.

CHU, Y. B. & LU, X. Y. 2013 Topological evolution in compressible turbulent boundary layers.
J. Fluid Mech. 733, 414–438.

COLONIUS, T., LELE, S. K. & MOIN, P. 1994 The scattering of sound waves by a vortex: numerical
simulations and analytical solutions. J. Fluid Mech. 260, 271–298.

COURANT, R. & FRIEDRICHS, K. O. 1948 Supersonic Flow and Shock Waves, Pure and Applied
Mathematics, a Series of Texts and Monographs, vol. 1. Interscience.

ELDREDGE, J. D., COLONIUS, T. & LEONARD, A. 2002 A vortex particle method for two-dimensional
compressible flow. J. Comput. Phys. 179 (2), 371–399.

EMMONS, H. W. (Ed.) 1958 Fundamentals of Gas Dynamics, High Speed Aerodynamics and Jet
Propulsion, vol. III. Princeton University Press.

ENFLO, B. O. & HEDBERG, C. M. 2002 Theory of Nonlinear Acoustics in Fluids, 1st edn. Springer.
EYINK, G. L. & DRIVAS, T. D. 2018 Cascades and dissipative anomalies in compressible fluid

turbulence. Phys. Rev. X 8, 011022.
FFOWCS WILLIAMS, J. E. 1977 Aeroacoustics. Annu. Rev. Fluid Mech. 9 (1), 447–468.
GOLDSTEIN, M. E. 1976 Aeroacoustics. McGraw-Hill.
GONZÁLEZ, D. R., SPETH, R. L., GAITONDE, D. V. & LEWIS, M. J. 2016 Finite-time Lyapunov

exponent-based analysis for compressible flows. Chaos 26 (8), 083112.
HALLER, G. 2001 Distinguished material surfaces and coherent structures in three-dimensional fluid

flows. Physica D 149 (4), 248–277.
HAN, S., LUO, Y. & ZHANG, S. 2019 The relation between finite-time Lyapunov exponent and

acoustic wave. AIAA J. 57 (12), 5114–5125.
HOWE, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess

jet noise and the theory of the flute. J. Fluid Mech. 71, 625–673.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.213


Longitudinal processes in compressible flows 893 A23-33

HOWE, M. S. 1998 Acoustics of Fluid-Structure Interactions, Cambridge Monographs on Mechanics,
vol. 1. Cambridge University Press.

JIANG, G. S. & SHU, C. W. 1996 Efficient implementation of weighted ENO schemes. J. Comput.
Phys. 126 (1), 202–228.

JORDAN, P. & GERVAIS, Y. 2008 Subsonic jet aeroacoustics: associating experiment, modelling and
simulation. Exp. Fluids 44 (1), 1–21.

KOVÁSZNAY, L. S. 1953 Turbulence in supersonic flow. J. Aeronaut. Sci. 20 (10), 657–674.
LAGERSTROM, P. A. 1964 Laminar flow theory. In The Theory of Laminar Flows (ed. F. K. Moore),

High Speed Aerodynamics and Jet Propulsion Series, vol. 4. Princeton University Press.
LAGERSTROM, P. A., COLE, J. D. & TRILLING, L. 1949 Problems in the theory of viscous

compressible fluids. Tech. Rep. 6. GALCIT.
LIEPMANN, H. W. & ROSHKO, A. 1957 Elements of Gasdynamics. Dover.
LIGHTHILL, M. J. 1952 On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A

211 (1107), 564–587.
LIGHTHILL, M. J. 1956 Viscosity effects in sound waves of finite amplitude. In Surveys in Mechanics

(ed. G. K. Batchelor & R. M. Davies), pp. 250–351. Cambridge University Press.
LIGHTHILL, M. J. 1978 Waves in Fluids, Cambridge University Press.
LILLEY, G. M. 1974 On the noise from air jets. In Noise Mechanisms, AGARD-CP-131, pp. 13.1–

13.12.
LIU, L. Q. 2018 Unified Theoretical Foundations of Lift and Drag in Viscous and Compressible

External Flows. Springer.
MAO, F., SHI, Y. P., XUAN, L. J., SU, W. D. & WU, J. Z. 2011 On the governing equations

for the compressing process and its coupling with other processes. Sci. China Phys., Mech.
Astronomy 54 (6), 1154–1168.

MAO, F., SHI, Y. P. & WU, J. Z. 2010 On a general theory for compressing process and aeroacoustics:
linear analysis. Acta Mechanica Sin. 26 (3), 355–364.

MENEVEAU, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent
flows. Annu. Rev. Fluid Mech. 43 (1), 219–245.

MITCHELL, B. E., LELE, S. K. & MOIN, P. 1995 Direct computation of the sound from a
compressible co-rotating vortex pair. J. Fluid Mech. 285, 181–202.

OSTASHEV, V. 1997 Acoustics in Moving Inhomogeneous Media. CRC Press.
PHILLIPS, O. M. 1960 On the generation of sound by supersonic turbulent shear layers. J. Fluid

Mech. 9 (1), 1–28.
PIERCE, A. D. 1981 Acoustics: An Introduction to Its Physical Principles and Applications. Springer.
SERRIN, J. B. 1959 Mathematical principles of classical fluid mechanics. In Fluid Dynamics

I/Strömungsmechanik I (ed. S. Flugge & C. Truesdell), Encyclopedia of Physics Book Series,
vol. 8, pp. 125–263. Springer.

TAM, C. K., WEBB, J. C. & DONG, Z. 1993 A study of the short wave components in computational
acoustics. J. Comput. Acoust. 1 (1), 1–30.

TRUESDELL, C. 1954 The Kinematics of Vorticity. Indiana University Press.
WANG, M., FREUND, J. B. & LELE, S. K. 2006 Computational prediction of flow-generated sound.

Annu. Rev. Fluid Mech. 38 (1), 483–512.
WANG, L. & LU, X. Y. 2012 Flow topology in compressible turbulent boundary layer. J. Fluid

Mech. 703, 255–278.
WHITHAM, G. B. 1974 Linear and Nonlinear Waves, John Wiley & Sons.
WILCZEK, M. & MENEVEAU, C. 2014 Pressure Hessian and viscous contributions to velocity gradient

statistics based on gaussian random fields. J. Fluid Mech. 756, 191–225.
WU, T. Y. 1956 Small perturbations in the unsteady flow of a compressible viscous and heat-

conducting fluid. J. Math. Phys. 35 (1–4), 13–27.
WU, J. Z., LIU, L. Q. & LIU, T. S. 2018 Fundamental theories of aerodynamic force in viscous

and compressible complex flows. Prog. Aerosp. Sci. 99, 27–63.
WU, J. Z., MA, H. Y. & ZHOU, M. D. 2015 Vortical Flows. Springer.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.213


893 A23-34 F. Mao and others

WU, J. Z., ZHOU, Y. & FAN, M. 1999 A note on kinetic energy, dissipation and enstrophy. Phys.
Fluids 11 (2), 503–505.

ZHANG, S. H., LI, H., LIU, X. L., ZHANG, H. X. & SHU, C. W. 2013 Classification and sound
generation of two-dimensional interaction of two Taylor vortices. Phys. Fluids 25 (5), 056103.

ZHU, Y. D., CHEN, X., WU, J. Z., CHEN, S. Y., LEE, C. B. & GAD-EL HAK, M. 2018 Aerodynamic
heating in transitional hypersonic boundary layers: role of second-mode instability. Phys. Fluids
30 (1), 011701.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

21
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.213

	A study of longitudinal processes and interactions in compressible viscous flows
	Introduction
	The development and difficulties of longitudinal-process theories
	The approach and main findings of this study
	The contents of this paper

	Background and orientation
	Fundamental equations
	Causality mechanisms in governing equations
	On the source identification for scalar longitudinal process
	Vector transverse process or vorticity mode

	Longitudinal processes by thermodynamic variables
	Sound mode in terms of thermodynamic variables
	Remarks on the entropy mode
	The kinematic source and its concentration

	Longitudinal process by dilatation
	Dilatation equations of t-form
	Dilatation equation of D-form for inviscid flow
	Viscous and non-homentropic effects
	A unified longitudinal field equation

	Numerical demonstration of longitudinal processes and interactions
	The interaction of two co-rotating Gaussian vortices
	The β-distribution and its contribution to dissipation
	The evolution of the sound mode and entropy mode

	Unsteady type IV shock/shock interaction
	Sound mode and its source
	The β-distribution and its contribution to dissipation


	Concluding remarks
	Acknowledgements
	Appendix A. Surface deformation tensor and its work rate
	Appendix B. A proof of equation (3.19)
	Appendix C. Viscous effects of the D-form dilatation equation
	References


