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This paper describes a fully autonomous real-time in-motion alignment algorithm for Strap-
down Inertial Navigation Systems (SINS) in land vehicle applications. Once the initial position
is available, the vehicle can start a mission immediately with accurate attitude, position and
velocity information determined within ten minutes. This is achieved by two tightly coupled
stages, that is, real-time Double-vector Attitude Determination Coarse Alignment (DADCA)
and Backtracking Fine Alignment (BFA). In the DADCA process, the vehicle motion is omitted
to roughly estimate the attitude at the very start of the alignment. Meanwhile, attitude quater-
nions and velocity increments are extracted and recorded. The BFA process utilises the stored
data and exploits the Non-Holonomic Constraints (NHC) of a vehicle to obtain virtual veloc-
ity measurements. A linear SINS/NHC Kalman filter with mounting angles as extended states
is constructed to improve the fine alignment accuracy. The method is verified by three vehicle
tests, which shows that the accuracy of alignment azimuth is 0·0358◦ (Root Mean Square, RMS)
and the positioning accuracy is about 15 m (RMS) at the end of the alignment.
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1. INTRODUCTION. As a dead-reckoning navigation method, the Strapdown Inertial
Navigation System (SINS) can track the attitude, velocity and position of a vehicle by
numerical integration of the inertial sensors’ measurements (Titterton and Weston, 2004).
To establish the initial value for integration, the SINS initial alignment process is of
great importance because it will largely determine the subsequent navigation accuracy (Li
et al., 2013a). Traditional initial alignment methods, usually consisting of coarse-alignment
and fine-alignment stages, must be completed prior to vehicle movement (Savage, 2000).
Typically, the coarse-alignment phase is required to estimate the vehicle’s heading to
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an accuracy of a few degrees and pitch/roll to a few tenths of a degree to allow the
fine-alignment filter to operate in its linear region (Silson, 2011). There are two obvious
limitations in traditional alignment methods: firstly, keeping a vehicle stationary for align-
ment consumes time and space (Liu et al., 2014; Wang et al., 2012; Shin and El-Sheimy,
2004), and can be dangerous on the battlefield where high manoeuvrability is required
and secondly, the coarse-alignment phase consumes a certain period of time (typically 30
to 120 seconds) (Hu and Cheng, 2014) but has no direct contribution to final alignment
accuracy.

Handling the first limitation is particularly important for military applications. In order
to enhance manoeuvrability and thus survivability, it is necessary to achieve high accu-
racy alignment within a short time whether the vehicle is static or moving. Many efforts
have been devoted to high-accuracy in-motion alignment techniques, which always need
external sensors to compensate the vehicle motions. A Global Navigation Satellite Sys-
tems (GNSS), most frequently the Global Positioning System (GPS), providing velocity
and position directly in the geographic coordinate system, is widely used as an aiding
source for in-motion alignment (Jiang et al., 2013; Kaygısız and Sen, 2015; Kubo et al.,
2006; Wu and Pan, 2013a; 2013b). However, GNSS are vulnerable to jamming, blocking
and spoofing, greatly affecting their availability and reliability (Chang et al., 2016; Pan
and Wu, 2016; Liu et al., 2018). For the land vehicles of interest here, an odometer is the
most commonly used velocity-aiding source for autonomous initial alignment (Xu et al.,
2017; Bimal and Joshi, 2015; Wu, 2014). Since an odometer provides velocity along the
vehicle body frame, odometer-aided in-motion alignment usually requires not only attitude
determination but also velocity and position calculation (Chang et al., 2017). The existing
odometer-aided alignment methods fall into three main categories: (1) nonlinear Kalman
filter approaches (Bimal and Joshi, 2015; Wu, 2014; Chang et al., 2017; Li et al., 2013b),
which can tolerate a large initial misalignment angle and allow the vehicle to move with-
out a stationary period, but suffer from redundant computation; (2) linear Kalman filter
INS/odometer integration, which can easily achieve attitude, velocity and position in the
alignment, while the only shortcoming lies in that a 30 to 120 seconds stationary period
is still needed for coarse alignment; (3) multi-vector attitude determination in an inertial
frame, which has been the most popular method over the last decade (Chang et al., 2016;
Jiang et al., 2013; Wu, 2014), but the mounting angles and odometer’s scale factor must be
calibrated perfectly in advance to ensure attitude and position alignment accuracy, and the
heading alignment result may deteriorate by the equivalent change rate of acceleration bias
caused by a possible turn of the vehicle.

For the second limitation, a backtracking navigation scheme is a good solution to take
full use of the coarse alignment time. The method uses the inertial frame alignment strategy
as forward coarse alignment, followed by backtracking linear Kalman filter fine alignment
based on the data computed in the coarse alignment process (Li et al., 2014; 2013c). In
order to avoid the overshoot caused by error model switch, the traditional backtracking
scheme and subsequent navigation is established in the inertial frame instead of the classical
geographic frame (Li et al., 2014). As a non-local level frame mechanisation, navigation
in the inertial frame cannot conform to land navigation usage habits and will bring new
problems. The unstable height channel cannot be decoupled in the inertial frame, so the
navigation results in all three channels will be contaminated, and it is also difficult to damp
the altitude divergence by other sensors such as an atmospheric pressure altimeter.
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In Dissanayake et al. (1999), a real time, on-the-fly, roll and pitch alignment algorithm
for SINS on land vehicles without external sensors was proposed, which was achieved by
exploiting the Non-Holonomic Constraints (NHC) that govern the motion of a vehicle on a
surface. Focusing on a low-accuracy Inertial Measurement Unit (IMU), this study does not
take the heading alignment and mounting angles into account, so the positioning accuracy
is limited. Inspired by Dissanayake et al. (1999), we propose a novel in-motion alignment
method based on NHC and a backtracking navigation scheme for land vehicles. The pro-
posed method consists of two tightly coupled stages. First, in the coarse alignment process,
double-vector attitude determination based on a second-order integral of specific force in
the inertial frame is deduced, to approximately estimate the attitude at the very start of
the alignment. Meanwhile, attitude quaternions and velocity increments are extracted and
recorded with lower frequency. Second, the backtracking process uses the estimated initial
attitude and stored data to accomplish the fine alignment by SINS/NHC integrated navi-
gation based on a linear Kalman filter in the geographic coordinate system. The proposed
method has several advantages as follows:

(1) The alignment can be accomplished autonomously without any external sensors
except the initial position. The mounting angles can be automatically estimated, and
the pre-calibration process is unnecessary.

(2) There is no need to keep a vehicle stationary for coarse alignment, allowing the
vehicle to move once the initial position is available. All inertial sensor data are used
in both coarse alignment and fine alignment, and it is equivalent to lengthening the
alignment time which contributes to improvement of the alignment accuracy.

(3) The method cannot only align the attitude to high accuracy within limited time, but
also determines the velocity and position with satisfactory accuracy at the end of the
alignment.

(4) Without large storage or redundant computation such as nonlinear filters, this scheme
is easy to use in real time applications. The backtracking fine alignment and subse-
quent navigation arranged in the geographic frame are convenient for practical land
vehicle applications.

The rest of this paper is organised as follows. Section 2 describes the proposed in-
motion alignment algorithm, including the overall alignment strategy, coarse alignment
process in the inertial frame, backtracking navigation updating and SINS/NHC integrated
fine alignment process. Section 3 presents the results and discussions of three land vehicle
in-motion alignment tests. Conclusions are drawn in Section 4.

2. PROPOSED ALIGNMENT ALGORITHM. In this paper, basic coordinate systems
are defined as follows: the local level East-North-Up (ENU) geographic coordinate is cho-
sen as the navigation frame, denoted by n-frame. The IMU b-frame is implicitly predefined
by the sensitive axes of inertial sensors with axes pointing right, forward, and upward,
respectively. The e-frame denotes the Earth-Centred Earth-Fixed (ECEF) reference frame,
and the m-frame is the vehicle frame aligned with right-forward-up vehicle body axes.

2.1. In-motion alignment scheme. At the very start of alignment, the vehicle is static,
and the initial velocity can be regarded as zero. Once an initial position is available, the
SINS can start alignment and the vehicle is allowed to move immediately without a require-
ment for a specified stationary time. In order to accomplish accurate in-motion alignment
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Figure 1. The proposed in-motion alignment scheme.

without an external auxiliary sensor, this paper makes a combination of two tightly cou-
pled alignment stages: real-time Double-vector Attitude Determination Coarse Alignment
(DADCA) and Backtracking Fine Alignment (BFA).

As shown in Figure 1, the DADCA process is used to determine a rough initial atti-
tude matrix Cn0

b0
, which denotes the orientation of the b-frame with respect to the n-frame

at the very start of alignment. Meanwhile, attitude quaternions and velocity increments
extracted in the DADCA process are recorded with low frequency (1 Hz in this paper).
With no auxiliary information in the DADCA process, the required real-time velocity and
position for coarse alignment are all approximated using the initial values which means
that the vehicle’s motion is temporarily omitted. The technique of second-order integral of
specific force in the inertial space is deduced to suppress the motion interference. In the
BFA process, the initial attitude matrix Cn0

b0
and the recorded data are used to accomplish

SINS/NHC integrated navigation based on a linear Kalman filter.
The time range of the DADCA process is [0, tc], while the recorded data from time zero

to tf is used in the BFA process. The time interval [tc, tf ], which is left for the navigation
computer to execute the backtracking SINS/NHC filter, can be shortened to a few seconds
with a high performance digital signal processor. It is obvious that almost all the sensor
data in time [0, tf ] is used not only in coarse alignment but in fine alignment as well, so
there is no time wasted and it is beneficial in improving the alignment accuracy.

2.2. The DADCA process.
2.2.1. Real-time coarse alignment. Assuming that the orientation of the IMU b-frame

relative to the n-frame is unknown at start-up, we arbitrarily form the b0- and n0-frames by
inertially fixing the b- and n-frames at the beginning of the alignment. Since both the b0-
and n0-frames are fixed with respect to the inertial frame, the direction cosine matrix Cn0

b0
is

constant (Silson, 2011). According to the chain rule of the attitude matrix, the time-varying
attitude matrix Cn

b(t) can be decomposed as (Gu et al., 2008; Wu et al., 2011):

Cn
b(t) = Cn

n0
(t)Cn0

b0
Cb0

b (t) (1)

where Cn
n0

(t) represents the time-varying matrix of the n-frame relative to the inertial space
as a function of the Earth rotation rate and position change relative to the Earth; Cb0

b (t)
represents the time-varying matrix due to the rotation of the b-frame relative to the inertial
space as a function of inertial angular rates measured by the gyroscope and Cn0

b0
repre-

sents the constant matrix between the initial b0- and n0-frames at t = 0. The purpose of the
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DADCA process is to determine the initial constant matrix Cn0
b0

instead of the time-varying
attitude matrix Cn

b(t).
The navigation specific force equation in the n-frame is well known as (Qin, 2014):

v̇n = Cn
bf b − (2ωn

ie + ωn
en) × vn + gn (2)

where vn denotes the velocity relative to the Earth in the n-frame, f b is the specific force
in the b-frame, ωn

ie is the Earth rotation rate vector in the n-frame, ωn
en is the angular rate of

the n-frame with respect to the e-frame and gn is the gravity vector.
Using Equation (1), Equation (2) can be reorganised as:

Cn0
n [gn − v̇n − (2ωn

ie + ωn
en) × vn] = −Cn0

b0
(Cb0

b f b) (3)

Without the external velocity and position information required for traditional in-
motion coarse alignment, the in-motion alignment is simplified as a stationary alignment.
It is equivalent to ignoring the part −v̇n − (2ωn

ie + ωn
en) × vn on the left-hand side of

Equation (3). Even though many error sources will be introduced, such a simplification
is an expedient without auxiliary sensors. Denoting the current time as t, we have:

gn0 (t) = −Cn0
b0

f̃ b0 (t) (4)

in which:

gn0 (t) = Cn0
n (t)gn (5)

f̃ b0 (t) = Cb0
b (t)f̃ b(t) (6)

where f̃ b(t) is the specific force measured by accelerometers in the b-frame, Cn0
n (t) denotes

the changes of the n-frame during the alignment process and can be calculated as:

Cn
n0

(t) = Cn
e(t)Ce

e0
(t)Ce0

n0
(7)

with

Ce0
n0

=

⎡
⎣0 − sin L0 cos L0

1 0 0
0 cos L0 sin L0

⎤
⎦ , Ce

e0
(t) =

⎡
⎣ cos ωiet sin ωiet 0

− sin ωiet cos ωiet 0
0 0 1

⎤
⎦ and Cn

e(t) = (Ce0
n0

)T

where ωie denotes the magnitude of the Earth rotation rate and L0 the initial geographic
latitude.

In Equation (6), Cb0
b (t) represents the orientation of the b0-frame relative to the b-frame

and can be calculated as:
Ċb0

b (t) = Cb0
b (t)(ω̃b

ib×) (8)

where ω̃b
ib denotes the body angular rate measured by gyroscopes in b-frame, and the skew

symmetric matrix (·×) is defined so that the cross product satisfies a × b = (a×)b for two
arbitrary vectors (Wu and Pan, 2013b).

The alternative of Equation (8) is the quaternion differential equation:

Q̇b0
b (t) =

1
2

Qb0
b (t) ⊗ ω̃b

ib (9)

where ⊗ denotes the quaternion product and the initial condition is Qb0
b (0) = [1 0 0 0]T.
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Since the initial attitude matrix Cn0
b0

is constant, it can be determined by a Three-axis
Attitude Determination-based (TRIAD) algorithm with two non-collinear vectors (James,
2012; Jiang, 1998). It is obvious from Equation (4) that the vectors of gn0 (t) and f̃ b0 (t) at
different moments are suitable for analytic alignment. Moreover, in order to suppress the
influence of vehicle motion disturbance, a second-order integration method is introduced
to accomplish coarse alignment as follows

Cn0
b0

=

⎡
⎢⎣

(pn0
t1 )T

(pn0
t1 × pn0

t2 )T

(pn0
t1 × pn0

t2 × pn0
t1 )T

⎤
⎥⎦

−1
⎡
⎢⎢⎣

(p̃b0
t1 )T

(p̃b0
t1 × p̃b0

t2 )T

(p̃b0
t1 × p̃b0

t2 × p̃b0
t1 )T

⎤
⎥⎥⎦ (10)

with

p̃b0
t1 =

∫ t1

0

∫ t

0
Cb0

b (t)f̃ b(t)dτdt, p̃b0
t2 =

∫ t2

0

∫ t

0
Cb0

b (t)f̃ b(t)dτdt,

p̃n0
t1 =

∫ t1

0

∫ t

0
Cn0

n (t)gndτdt, p̃n0
t2 =

∫ t2

0

∫ t

0
Cn0

n (t)gndτdt,

where t1 and t2 are selected as t2 = tc, t1 = t2/2.
From Equation (10), the initial matrix can be approximately obtained, and one of the

main error sources comes from the assumption of stationary alignment. The misalignment
of the initial attitude caused by ignoring the motion acceleration in Equation (3) is approx-
imately equal to the gravity deflection associated with the travelled distance. Since the
normal speed of a land vehicle is generally less than 35 m/s and the alignment time lasts
less than 10 minutes, it is possible to align the initial attitude to an accuracy of several
degrees.

2.2.2. Data record for BFA. During the real time DADCA process, attitude quater-
nion and velocity increments must be recorded for the BFA process. To reduce storage
space and computation load, the required data should be extracted and recorded with a
lower frequency such as 1 Hz, which is the same as the Kalman filter measurement update
frequency in the subsequent BFA process. In summary, seven floating-point data should
be recorded in every storage cycle including four-dimensional attitude quaternion Qb0

bk
and

three-dimensional velocity increments �ṽb0
k . Note that the quaternion instead of the attitude

matrix should be stored to reduce the data volume. The quaternion Qb0
bk

can be obtained from
Equation (9), and the velocity increments can be calculated as

�ṽb0
k =

∫ tk

tk−1

Cb0
b (t)f̃ b(t)dt (11)

where the integral time interval [tk−1, tk] is the same as the recording cycle, that is, one
second in this paper. Given that the alignment time is 600 seconds, only 4,200 floating-
point data additional storage space is needed, which can be easily afforded by ordinary
SINS navigation computers.

2.3. The BFA process.
2.3.1. Backtracking navigation update. Besides the initial velocity and position, the

approximate initial attitude matrix Cn0
b0

is available after the DADCA process, so the
navigation parameters through the whole alignment process can be calculated based on
backtracking navigation with the stored data. As the normal inertial navigation solution,
the backtracking navigation includes attitude, velocity and position updates.
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2.3.1.1. Backtracking attitude update. The time-varying attitude matrix, Cnk
bk

which
represents the orientation of the n-frame relative to the b-frame at time tk, can be calculated
as follows:

Cnk
bk

= Cnk
n0

Cn0
b0

Cb0
bk

(12)

where Cn0
b0

is the alignment result of the DADCA process, and Cb0
bk

can easily be converted
from the stored quaternion Qb0

bk
(Titterton and Weston, 2004). As the current position is

available, the calculation of the matrix Cnk
n0

in the BFA process is somewhat different to
Equation (7):

Cnk
n0

= Cnk
ek

Cek
e0

Ce0
n0

(13)

while Ce0
n0

is calculated the same way as in Equation (7), Cnk
ek

and Cek
e0

are obtained as:

Cnk
ek

=

⎡
⎣ 0 1 0

− sin Lk 0 cos Lk
cos Lk 0 sin Lk

⎤
⎦, Cek

e0
=

⎡
⎣ cos � sin � 0

− sin � cos � 0
0 0 1

⎤
⎦

where � = λk − λ0 + ωiet and λ0 denotes the initial geographic longitude at time t = 0. λk
and Lk denotes the current longitude and latitude at time tk.

Although the backtracking attitude update is not explicitly used in subsequent velocity
and position updates, it is required to solve the state Equation (24) and the measure-
ment Equations (25)–(26) in the backtracking SINS/NHC Kalman filter. Meanwhile, the
corrected attitude result should be obtained as:

Ĉ
nk

bk
=

[
I + (φ̂

n×)
]

Cnk
bk

(14)

where φ̂
n

denotes the attitude misalignment angles estimated in fine alignment.
2.3.1.2. Backtracking velocity update. The velocity in the n-frame is updated as

follows:

vn
k = vn

k−1 + Cnk−1/2
nk−1 Cnk−1

n0
Cn0

b0
�ṽb0

k − (2ωn
ie,k−1 + ωn

en,k−1) × vn
k−1Ts + gn

k−1Ts (15)

where the subscript k denotes the parameter of the current update cycle and k − 1 is the
last update cycle, so vn

k and vn
k−1 denote the velocity at the current and last cycle, respec-

tively. Cnk−1
n0

can be obtained by Equation (13), �ṽb0
k is the stored velocity increments in

the b0-frame, and Ts = 1 s denotes the one second update cycle. Since ωn
in changes slowly,

it is reasonable to approximate the attitude matrix by Cnk−1/2
nk−1 ≈ I + (Φn

k/2×), where Φn
k/2 ≈

−1/2(ωn
ie,k−1 + ωn

en,k−1)Ts denotes the n-frame rotation vector from tk−1 to tk−1 + Ts/2.
2.3.1.3. Backtracking position update. Given that the velocity is obtained, the posi-

tion [λ, L, h]T can be updated as⎡
⎣λk

Lk
hk

⎤
⎦ =

⎡
⎣λk−1

Lk−1
hk−1

⎤
⎦ +

1
2

Rc(vn
k−1 + vn

k)Ts (16)

Rc =

⎡
⎣1/[(RN + h) cos Lk−1] 0 0

0 1/(RM + h) 0
0 0 1

⎤
⎦ (17)

where RN and RM are the transverse and meridian radius of curvature, respectively.
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2.3.2. Fine alignment algorithm. Since the backtracking navigation is conducted in
the n-frame instead of the inertial frame, it is easy to adopt the well-known non-holonomic
constraints to improve the fine alignment accuracy. Unlike an air vehicle, the motion of a
wheeled vehicle on the land surface is governed by two non-holonomic constraints. When
the vehicle does not jump off or slide on the ground, velocity of the vehicle in the plane
perpendicular to the forward direction is zero, which is a virtual two-dimensional velocity
measurement. Under ideal conditions, there is no side slip along the direction of the rear
axle and no motion normal to the road surface, the constraints are (Dissanayake et al.,
2001): ⎧⎨

⎩
vm

x = 0

vm
z = 0

(18)

In practical situations, these constraints are somewhat violated due to the presence of
side slip during cornering and vibrations caused by the engine and suspension system.
Approximately, it is possible to model the extent of such violations as Gaussian white
noise with zero mean and variance σ 2

x and σ 2
z , respectively (Dissanayake et al., 2001).

The SINS/NHC integrated navigation based on Kalman filter is a good solution to realise
the in-motion fine alignment without external sensors. In practice, the mounting angles
between the IMU and the vehicle will noticeably affect the position accuracy, and they
are commonly treated as main error sources to be estimated in SINS/odometer integrated
vehicle navigation (Wu, 2014). However, for pure SINS/NHC navigation, which is often
used to aid a low-cost SINS during GNSS signal blockages, the mounting angles are usually
ignored (Dissanayake et al., 2001; Peng et al., 2013; Rothman et al., 2015). Taking the
mounting angles into the error state vector of the SINS/NHC Kalman filter to be estimated,
we have realised a high positioning accuracy of horizontal error to 16·6 m Circular Error
Probability (CEP) and vertical error 14·9 m Probable Error (PE) with a navigation-grade
SINS in an 80 km vehicle test (Fu et al., 2012).

Since the mounting angles are inevitable and non-negligible for high-accuracy position-
ing, they should be handled properly in the SINS/NHC integration. The velocity of the
vehicle calculated by SINS can be converted to the m-frame as (Wu, 2014):

ṽm
I = C̃m

b C̃b
nṽn

I (19)

where C̃m
b denotes the converted matrix formed by the three mounting angles, and C̃b

n and
ṽn

I are the attitude matrix and velocity calculated by SINS, respectively.
In general, the mounting angles can be easily controlled to small angles, and the

converted matrix C̃m
b approximately satisfies:

C̃m
b ≈ I + α× (20)

where α = [αx αy αz]T denotes the three-dimensional mounting angle vector.
Considering the navigation errors of SINS and the non-holonomic constraints, Equation

(19) can be rewritten as (Fu et al., 2012):
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ṽm
I = (I + α×)Cb

n(I + φn×)(vn + δvn
I )

≈ vm + Cb
nδvn

I − Cb
n(vn×)φn − (Cb

nvn) × α

≈ vm + Cb
nδvn

I − Cb
n(vn×)φn −

⎡
⎣ 0 0 vm

y
0 0 0

−vm
y 0 0

⎤
⎦ ×

⎡
⎣αx

αy
αz

⎤
⎦

(21)

where φn = [φE , φN , φU]T and δvn
I = [δvE , δvN , δvU]T represent the attitude misalignment

angle and velocity error vector, respectively.
It is obvious that the roll mounting angle αy is totally irrelevant to the vehicular veloc-

ity ṽm
I , so it is an unobservable error state and should be disregarded in the SINS/NHC

Kalman filter. The other two mounting angles αx and αz can be treated as unknown random
constants which satisfy: {

α̇x = 0
α̇z = 0

(22)

Combining the error model of SINS and the mounting angles, the 17-dimensional error
state vector of SINS/NHC integration can be defined as:

x(t) = [(φn)T (δvn
I )T (δP)T (εb)T (Vb)T αx αz]T (23)

where δP = [δλ, δL, δh]T denotes the position errors, εb and Vb denote the gyro and
accelerometer biases, respectively.

The corresponding system equation of the error-state Kalman filter is:

ẋ(t) =

[
FINS 015×2

02×15 02×2

]
x(t) +

⎡
⎢⎣

−Cn
bε

b
w

Cn
bVb

w

011×1

⎤
⎥⎦ (24)

where FINS is the 15 × 15 state transition matrix based on typical SINS error model (Qin,
2013), εb

w and Vb
w denote the noise of gyroscopes and accelerometers, respectively.

As stated above, the non-holonomic constraints can be regarded as virtual velocity mea-
surements. From Equations (18) and (19), the two-dimensional measurement is formed
as:

ZNHC =

[
ṽm

x

ṽm
z

]
= M T

e C̃b
nṽn

I (25)

where M e = [e1 e3], in which ei is a unit three-dimensional column vector with the ith
element being one.

The corresponding Kalman filter measurement equation is:

ZNHC = H NHCx + VNHC (26)

with VNHC denoting the measurement noise of NHC, and the measurement matrix is:

H NHC = [M 1 M 2 02×9 M 3] (27)

where M 1 = −M T
e Cb

n(vn×), M 2 = M T
e Cb

n, M 3 = −M T
e [(Cb

nvn)×]M e.
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2.3.3. Observability of the error states. Observability of the system is above all the
first question to investigate, because if a state is unobservable, we have no way to achieve
satisfactory estimation even with perfect measurements (Wu, 2014). Although an improved
Kalman filter algorithm has been developed to accomplish the backtracking fine align-
ment, not all error states are observable under all conditions. In this section, we analyse the
observability of the SINS/NHC integration filter depending on the system and measurement
equations.

From Equation (21), the error equation is rearranged as:

δṽm
I = δṽb

I − vb × φb − vb × α (28)

where δvb
I = Cb

nδvn
I , vb = Cb

nvn, φb = Cb
nφ

n.
The measurement Equation (25) can be rewritten as:

ZNHC =

[
δvb

x − (φb
z + αz)vb

y

δvb
z − (φb

x + αx)vb
y

]
(29)

As time advances, the measurement values ZNHC and all-order derivatives can be treated
as known quantities. According to the global observability theory (Wu et al., 2009), a state
is said to be observable if it can be determined uniquely from the measurement equation
for a finite time under a possible condition. From Equation (29), it can be seen that the
measurement equation is irrelevant to position errors, so the position error states δP are
obviously unobservable. Even so, the SINS/NHC integrated navigation can mitigate the
drift of position errors by estimating the velocity errors.

Under static conditions, the longitudinal velocity vb
y is zero, so the velocity error states

δvb
x and δvb

z can be estimated but the forward velocity error δvb
y is not directly observable in

Equation (29). Assuming that the xb axis of the IMU points to east, the observable velocity
error δvb

x corresponds to eastern velocity error δvE , while when the xb axis turns to north,
δvb

x corresponds to northern velocity error δvN instead. So, the vertical velocity error is
observable and the horizontal velocity errors can be alternatively estimated if the vehicle
has a turning manoeuvre.

Due to the attitude errors and mounting angles, the observability of forward velocity
δvb

y cannot be directly decided from Equation (29) whether the vehicle is moving or not.
Taking the derivative of Equation (28) with respect to time and considering the simplified
velocity error equation δv̇n

INS ≈ f n × φn + Cn
bVb, we get:

δv̇b
I = Ċb

nδvn
I + Cb

nδv̇n
I − v̇b × φb − vb × φ̇

b − v̇b × δα

≈ −ωb
nb × δvb

I + Cb
n(f n × φn + Vn) − Cb

n(an × φn) − ab × δα

= −ωb
nb × δvb

I + Cb
n[(f n − an) × φn + Vn] − ab × δα

= −ωb
nb × δvb

I − ab × δα + Cb
n(−gn × φn + Vn)

(30)

where ab = [ab
x , ab

y , ab
z ]T denotes acceleration in the b-frame, ab = v̇b, an = Cb

nab, φb = Cb
nφ

n,
Vn = Cn

bVb and ωb
nb = [ωx, ωy , ωz]T is the angular rate of the vehicle.
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Figure 2. Experiment vehicle and equipment.

From Equation (30), the derivatives of measurement value satisfy:

ŻNHC =

[
ωzδv

b
y − ωyδv

b
z − ab

yαz − gφb
y + ∇b

x

ωyδv
b
x − ωxδv

b
y − ab

yαx + ∇b
z

]
(31)

As the left-hand side of Equation (31) can be treated as known quantities as time
advances, the vertical acceleration bias ∇b

z can be observed in a stationary state. Provided
that there are sufficient turning manoeuvres, the azimuth rate ωz will change while other
coefficients remain constant, so the forward velocity error is solvable and thus observable.
While the vehicle is accelerating or decelerating, the forward acceleration ab

y is not zero
and the mounting angles αx, αz are observable. Furthermore, the accelerometer bias ∇b

x
and level misalignments φE , φN can be further separated in angular motions when there is
change of the attitude matrix.

The azimuth error φU has no effect in Equation (31) so it has lower observability. After
the level misalignments and respective derivatives are solved, the azimuth angle error is
determined by the attitude error equation of SINS:

φ̇
n ≈ −ωn

ie × φn − εn (32)

It is obvious that the azimuth error is also estimated from the compass effect as station-
ary alignment, and the estimation accuracy is still restricted by the equivalent eastern gyro
drift εE . So, angular excitation of a vehicle is helpful to improve the estimation accuracy of
azimuth error by distinguishing the level gyro drifts εb

x and εb
y . In contrast to SINS/GPS inte-

grated navigation, gyroscopes with higher accuracy are necessary for accurate positioning
and orientation in the SINS/NHC integrated alignment filter.
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Table 1. Specifications of the inertial sensors.

Gyroscope Bias stability 0·007◦/h
Random Walk 0·001◦/

√
h

Accelerometer Bias stability 50 μg
Random Walk 10 μg/

√
Hz

Figure 3. Trajectory along the country road during the experiment.

3. LAND VEHICLE IN-MOTION ALIGNMENT TESTS. In order to verify the perfor-
mance of the proposed in-motion alignment method, three land vehicle tests were carried
out. The land vehicle was equipped with a single-antenna GPS receiver and a navigation-
grade Ring Laser Gyroscope (RLG) IMU with its axes roughly aligning with right, forward,
upward directions of the vehicle, as shown in Figure 2.

The raw data update rate of the IMU was 200 Hz with its inertial sensors’ specifications
listed in Table 1. A Novatel OEM615 GPS receiver with position accuracy of 1·5 m and
velocity accuracy of 0·03 m/s was used as the position/velocity reference, while for attitude
reference, a stationary-based initial alignment followed by SINS/GPS integrated naviga-
tion and Rauch-Tung-Striebel (RTS) post-smoothing (Simon, 2006) were conducted as the
attitude reference.

The experimental procedure was designed as follows. Firstly, the car was kept stationary
for about 10 minutes and the data was recorded to establish the attitude reference. Then
three continuous in-motion alignments were carried out. As shown in Figure 3, we chose
an extremely demanding scenario along a country road from east to west with few turns.

Figure 4 shows the travel speeds during the three tests. It can be seen that the align-
ment time of each test was about 10 minutes and the vehicle moved immediately when
starting a mission. Having no external sensors, the in-motion alignment must start from the
zero-speed state to obtain initial velocity information and the initial stationary time can be
shortened to less than one second.
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Figure 4. Travel speeds during the three vehicular tests.

Figure 5. Attitude errors of the three DADCA.

As shown in Figure 5, the attitude errors estimated by DADCA gradually converge
with time. At the end of the DADCA process, the level misalignment angles are estimated
accurately to within 1◦ and azimuthal misalignment angle to less than 4◦, which meets the
requirements of the subsequent linear fine alignment.

The attitude/velocity/position errors of the BFA processes with SINS/NHC integration
are shown in Figures 6–8, respectively. Due to the chosen east-west trajectory, the eastern
velocity constraint is lacking most of the time, which leads to a larger eastern velocity error
and northern misalignment than the other horizontal direction (northern velocity error and
eastern misalignment).
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Figure 6. Attitude errors of BFA.

Figure 7. Velocity errors of BFA.

The Root Mean Square (RMS) statistic results at the end of the alignment are listed
in Table 2. It can be seen that the azimuth alignment accuracy is 0·0358◦ (RMS) and the
positioning accuracy is about 15 m (RMS). So, even without external auxiliary sensors, the
proposed method can align the attitude to high accuracy and continuously determine the
velocity and position with satisfactory accuracy.

The mounting angles estimated by the BFA process are given in Figure 9. Although
the true mounting angles are unknown, the same convergence results in the three tests
indicate the reliability of the estimation results. Affected by observability and manoeuvre
conditions, the inertial sensor errors cannot be effectively estimated within a limited time
apart from the vertical accelerometer bias. This is not a big problem for a navigation-grade
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Figure 8. Position errors of BFA.

Table 2. RMS errors of BFA.

East North Up

Attitude (◦) 0·00375 0·00615 0·0358
Velocity (m/s) 0·028 0·019 0·017
Position (m) 14·27 13·97 6·93

Figure 9. Mounting angles estimated by BFA.

SINS with the capability of self-alignment. Given sufficient accuracy of the gyroscopes and
accelerometers, satisfactory in-motion alignment accuracy can be obtained by the proposed
method.
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4. CONCLUSION. The proposed alignment scheme in this paper does not rely on any
external sensors to realise accurate in-motion alignment for land vehicle SINS. Once the
initial position is available, the vehicle can move immediately, and accurate attitude, posi-
tion and velocity information can be determined within a given alignment time. Three
vehicle tests were carried out along an east-west country road, and the results show that
the azimuth alignment accuracy is 0·0358◦ (RMS) and the positioning errors is about 15 m
(RMS). The proposed method here may also be suitable for velocity-aided or position-aided
in-motion alignment in other applications such as aviation and marine.
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