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We examined the relationship between physicochemical indicators and somatic cells in the
milk of dairy cows during experimentally induced mastitis and their significance as indicators
for use in controlling udder health. We were concerned particularly with the effect of alveolar
milk ejection on the sensitivity of these indicators. In Expt 1, Escherichia coli lipopolysaccharide
(Esch. coli LPS) was injected into the left rear quarter to induce an inflammatory reaction
in one quarter in each of six cows. The contralateral control quarter was injected with a
solution of NaCl (9 g/l). Nine milk samples were taken from both quarters until 60 h after
injection. In Expt 2, repeated milk samples were taken every 20 s from one quarter during a
120-s teat stimulation in 20 cows with different somatic cell counts (SCC). Quarters were
clustered for low (<5.0 log cells/ml), mid (5.0–5.7 log cells/ml) and high (>5.7 log cells/ml)
SCC of the sample taken at t=0 s. Samples were analysed for SCC, electrical conductivity (EC)
and Na+ and Cl– concentrations. During the experimental inflammation SCC, EC, Na+ and Cl–

peaked at 12 h from LPS administration and values in treated quarters (T) at this time were
elevated to 7900, 157, 501 and 169% of the values in untreated quarters, respectively. In Expt
2, SCC, EC, Na+ and Cl– in high SCC quarters were 2520, 121, 283 and 141% of low SCC
quarters at the start of stimulation (t=0 s), respectively. Highly significant (P<0.001) differences
in EC, Na+ and Cl– between high and low SCC quarters disappeared owing to the onset of
alveolar milk ejection 100 s after the first contact with the teat. In conclusion, SCC in cows’
milk provided the strongest amplitude in the case of an intramammary inflammation. EC, Na+

or Cl– were useful tools only if the measurements were performed in cisternal milk before the
start of alveolar milk ejection.
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Electrical conductivity (EC) in milk has been discussed
as an indicator of mammary inflammation for decades
(Malcolm et al. 1942; Linzell & Peaker, 1975; Fernando
et al. 1982). Results of experimental devices to measure EC
were promising (Linzell & Peaker, 1975), although EC is
influenced by parameters such as milking interval and
milk composition (Wittkowski et al. 1979; Fernando et al.
1981; Woolford et al. 1998; Ontsouka et al. 2003). In-line
systems were established to measure EC throughout milk-
ing (Gebre-Egziabher et al. 1979; Onyango et al. 1988).
However, despite the larger pool of available data the
sensitivity in detecting mastitis was not satisfactory for
practical use (Maatje et al. 1992; Nielen et al. 1995).

EC is determined by the ions dissolved in milk, mainly
Na+ and Cl– (Linzell & Peaker, 1975; Wittkowski et al.
1979; Fernando et al. 1982). The ion concentration in
normal milk is much lower than in blood serum. In the
case of a mammary infection, the tight junctions lose in-
tegrity and the epithelium becomes leaky owing to neutro-
phil diapedesis and tissue damage by mastitis pathogens
(Stelwagen et al. 1997; Nguyen & Neville, 1998). Conse-
quently blood and milk components pass through the
leaky epithelium.

The major proportion of milk, which in dairy cows is
stored in the alveolar tissue, is available only after the start
of milk ejection (Knight et al. 1994; Pfeilsticker et al.
1996). However, as much as 20% of the milk is stored in
the cisternal compartment of the udder and is immediately
available for milk removal before milk ejection occurs
(Bruckmaier & Blum, 1998). Changes in EC in different*For correspondence; e-mail : bruckmaier@wzw.tum.de
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milk fractions within a specific milking event have been
discussed (Linzell & Peaker, 1975; Wittkowski et al. 1979;
Hamann & Gyodi, 2000; Ontsouka et al. 2003). However,
the specific effect of alveolar milk ejection induced by teat
stimulation without milk being removed, even by solely
taking milk samples, has not been studied before.

Two experiments were conducted to study the sensi-
tivity of EC, Na+ and Cl– measurements in detecting
mastitis as compared with SCC. The hypothesis tested was
that the expected exponential increase of SCC in response
to an experimentally induced mastitis is accompanied by a
clearly detectable increase of Na+ and Cl– concentrations
and EC in the milk, which allows the use of these measures
for the detection of mastitis. Most importantly, the influ-
ence of the occurrence of alveolar milk ejection on the
ability of foremilk samples to detect udder health status
via SCC, EC, and concentrations of Na+ and Cl– was
investigated.

Materials and Methods

Animals and milking management

Cows were kept in loose housing and were milked in a
milking parlour at 05.00 and 16.00. The diet was maize
and grass silage, hay and concentrate given according to
individual production levels. Cows were in their first to
ninth lactation and were 50–206 d in milk. In Expt 1,
Brown Swiss cows were used, whereas seven Red Holstein
and thirteen Brown Swiss cows with a daily yield of
29.4±1.7 kg were used in Expt 2.

Experimental design

Expt 1. Experiments were conducted in six clinically
healthy cows. Only rear quarters with a log SCC <5.2
and which cultured negative for mastitis pathogens in a
sample taken 7 d before the experiment were accepted
for the study. Esch. coli endotoxin (lipopolysaccharide,
LPS; 100 mg) dissolved in 10 ml of NaCl (9 g/l) was in-
jected intramammarily into the left rear quarter (T) after
the morning milking. The right rear quarter (C) was in-
jected with 10 ml of NaCl solution only. Cisternal milk
samples of 50 ml were collected without any prior stimu-
lation immediately before and at 3, 6, 9 h after LPS treat-
ment and during succeeding milkings at 12, 24, 36, 48
and 60 h after LPS treatment.

Expt 2. Repeated milk sampling was performed during
pre-stimulation in twenty cows. All teats were manually
stimulated for 120 s. Milk samples (40 ml) were collected
from the start until the end of stimulation at 20-s intervals
from one quarter, while the other quarters were continu-
ously stimulated. Thus, seven consecutive samples were
taken. The udder was not touched before the start of

stimulation and sampling. The procedure was repeated
for three consecutive milkings in each cow.

Milk samples were analysed for SCC in the laboratory of
the Milchprüfring Bayern e.V., 80336 München, Germany,
using a MilkoScan 4500 analyser (Foss Electric, 3400 Hil-
lerød, Denmark). Aliquots of each sample were frozen at
–20 8C immediately after sampling for the determination of
EC and Na+ and Cl– concentrations. EC was measured at
25 8C using the LDM electrode from WTW (LDM 130,
Wissenschaftlich-Technische-Werkstaetten GmbH, 82362
Weilheim, Germany). Na+ and Cl– were determined in
raw milk using the ion selective electrodes, models 9811
and 9617BN respectively (Orion Research, Beverly MA,
USA).

Statistical analyses

Results are presented as means±SEM. Results were ana-
lysed using the repeated measures analysis of the MIXED
procedure and tested for significance (P<0.05) using Least
Significant-Difference Test (LSD) of the SAS (version 8.01)
program package. For Expt 2, quarters were classified ac-
cording to the SCC of the first sample obtained at t=0 s.
Three clusters were used: SCC <5.0 log cells/ml (SCC I),
5.0–5.7 log cells/ml (SCC II) and >5.7 log cells/ml (SCC
III). In Expt 1, the mixed model contained the treatment
and the time of sampling as fixed effects and the animal
was considered as a repeated factor. Likewise in Expt 2,
the model included the time of sampling and the SCC
cluster as fixed effects, and the animal entered the model
as repeated factor.

Results

Expt 1

SCC before treatment was not significantly different be-
tween T and C quarters although a slight but insignificant
rise of SCC was observed as compared with the sample
taken 7 d before the experiment in some of the control
quarters. Values of EC, Na+ and Cl– were low and did not
differ between the quarters (Fig. 1). Within 3 h after LPS
application, SCC, EC, Na+ and Cl– increased in T quarters.
In C quarters, EC, Na+ and Cl– increased transiently owing
to the administration of NaCl (9 g/l) solution and were
numerically but not significantly higher at 3 h than at 0 h.
Subsequently, SCC and Na+ were significantly higher in T
quarters than in C quarters between 6 and 24 h after ad-
ministration of LPS and NaCl, respectively. EC and Cl– ,
however, were significantly higher in T than in C quarters
only at 9 and 12 h after LPS and NaCl treatments, re-
spectively. SCC, EC, Na+ and Cl– peaked at 12 h after LPS
administration. Their peak values in T quarters, expressed
as linear values, were 7900, 157, 501 and 169% of C
quarters, respectively. SCC remained elevated in T quar-
ters until the end of the experiment (60 h), whereas all
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Fig. 1. SCC, EC, Na+ and Cl– concentrations in the milk of one treated (m) and one control quarter (#) before and after application
of 100 mg lipopolysaccharide (LPS) or NaCl control solutions, n=6 cows; a, b, c, dmeans without a common letter throughout the time
span are different in treated quarters at corresponding times (P<0.05); * indicates a significant (P<0.05) difference between treated
and control quarters.
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other parameters returned to pre-treatment levels within
24 h after LPS treatment.

Expt 2

Figure 2 illustrates the results obtained in Expt 2. In the first
sample (t=0 s) mean SCC was 4.62±0.07, 5.34±0.04 and
6.00±0.08 log cells/ml in SCC I (n=23 samples), SCC II
(n=14 samples) and SCC III (n=22 samples), respectively.
In the first sample (t=0 s) mean SCC in SCC III quarters,
expressed as a linear value, was 2520% of the results in
SCC I quarters. SCC decreased within 120 s and was sig-
nificantly lower at 100 s and 120 s than at the start of
sampling (t=0 s) in SCC III and SCC I quarters. However,
the SCC group differences between SCC I, SCC II and SCC
III quarters remained significant throughout the 120-s
sampling period.

From 0 to 60 s, EC in SCC III quarters was significantly
higher than in SCC I and SCC II quarters, whereas EC did
not differ significantly between SCC I and SCC II quarters.
EC in SCC III quarters was 121% of that in SCC I quarters
at t=0 s. A dramatic decrease of EC occurred between 40
and 100 s of sampling. In SCC III quarters, EC was signifi-
cantly lower at t=80 s than at t=0 s. The difference of EC
between SCC III and SCC II quarters was no longer sig-
nificant from t=100 s, i.e., EC was similar in SCC III, SCC
II and SCC I quarters 100 s after the start of sampling.

Na+ was significantly higher in SCC III quarters than in
SCC I throughout the 120-s sampling period, whereas for
Cl– , the significant difference between SCC I and SCC III
quarters disappeared at t=100 s. At t=0 s, Na+ and Cl–

concentrations in SCC III quarters were 283 and 141% of
SCC I quarters, respectively. Na+ and Cl– did not differ
significantly between SCC I and SCC II quarters throughout
the sampling period. Despite the dramatic decrease of Na+

and Cl– that occurred during the course of stimulation,
Na+ was still significantly higher in SCC III than in SCC I
quarters at t=120 s.

Discussion

Intramammary injection of 100 mg LPS resulted in a con-
siderable inflammatory reaction in the respective quarter,
as reported earlier (Bruckmaier et al. 1993; Moussaoui
et al. 2002; Schmitz et al. 2002; Yagi et al. 2002). The
observed peak of SCC at 12 h after administration of LPS
demonstrates that the inflammatory and immunological
reaction required a latency period of several hours. Most
of the injected LPS would be expected to be removed by
the milking at 12 h after application of LPS, since the
transient reaction of EC, Na+ and Cl– returned to basal
levels. Surprisingly, SCC remained elevated until 60 h after
LPS application, although tight junction integrity seemed
to be largely restored as indicated by Na+ and Cl– pat-
terns. It may be speculated that only during periods of high
somatic cell diapedesis rates do the tight junctions get

leaky enough (Stelwagen et al. 1997; Nguyen & Neville,
1998) to allow considerable movement of ions from blood
into milk. This may explain the limited sensitivity of Na+,
Cl– and EC as indicators of mastitis in the subclinical
range (as shown in Expt 2).

The constant SCC in C quarters documents that the el-
evated SCC in T quarters was a local reaction in response
to LPS administration. As expected, EC, Na+ and Cl–

values in C quarters were numerically elevated at 3 h after
application of NaCl solution. For the same reason, the re-
sults for T quarters seem to be shifted. However, the dra-
matic increase of SCC from 0 to 3 h documents the
considerable amplitude of the SCC rise as compared with
the changes in EC, Na+ and Cl– during the impairment of
tight junction integrity.

In Expt 2, single quarters with different SCC levels, but
without clinical mastitis were used for repeated milk
sampling during a teat stimulation of 120 s. For SCC, EC,
Na+ and Cl– , the values decreased during the sampling
period but none of these variables changed before the
sample taken at 60 s. It is therefore obvious that the con-
tinuous teat stimulation during sampling induced alveolar
milk ejection. The onset of milk ejection, i.e., the occur-
rence of alveolar milk in the mammary cistern, caused a
mixture of alveolar and cisternal milk and hence an im-
mediate change of milk ion concentrations (Ontsouka et al.
2003). The lag time between start of stimulation and the
start of milk ejection was previously found to be 50–100 s,
as a function of the degree of udder filling (Bruckmaier &
Hilger, 2001). As a consequence of milk ejection the
measurements of EC and of Na+ and Cl– concentrations
lose sensitivity as mastitis indicators. This fact needs to be
considered in the case of foremilk sampling for EC, Na+

and Cl– measurements. Foremilk can only be expected to
be cisternal milk until about 40 s from the first touch of the
udder.

With respect to the differences between SCC III and
SCC I quarters, SCC was the most sensitive indicator. The
dramatic increase during inflammation was the result of a
local immune reaction and mediator-linked active trans-
port of cells into the milk of the respective quarter. In
contrast, the rise of Na+ and Cl– , and consequently of EC,
was a result of diffusion through leaky tight junctions dur-
ing somatic cell influx. Thus the increment of EC, Na+ and
Cl– during intramammary inflammation was only a linear
shift as compared with the exponential increase of SCC.
Therefore, the mixture of cisternal milk with alveolar milk
resulted in the disappearance of highly significant differ-
ences between SCC I and SCC III quarters for all physico-
chemical indicators investigated.

It has to be pointed out that the sensitivity of EC, Na+

and Cl– was not great enough to distinguish between SCC
I and SCC II quarters. In automatic milking systems, the
sensitivity of the currently used measurement of EC could
be slightly improved by inter-quarter ratio and compari-
son from one milking to the next even though the EC is
measured after the milk ejection.
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Fig. 2. SCC, EC, Na+ and Cl– concentrations in the different milk fractions, 0 to 120 s after the first contact with the udder; data are
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In accordance with the results of Expt 1, only a high
somatic cell diapedesis rate during acute inflammation
seems to allow electrolyte diffusion from blood into milk,
while during the influx of cells at a lower rate the elec-
trolyte concentrations return to their basal levels. Rec-
ommended SCC thresholds to distinguish between
disturbed and undisturbed milk composition range be-
tween 5.0 log cells/ml (Hillerton, 1999) and 5.3 log cells/
ml (Smith, 1995). Therefore the studied variables were not
satisfactory for distinguishing these thresholds by using the
current in-line sampling routine. However, physicochem-
ical indicators could detect serious immune reactions
during mastitis.

In conclusion, SCC is the most sensitive measurement to
detect mastitis in bovine milk, both before and after the
occurrence of milk ejection. In contrast, EC, Na+ or Cl–

concentrations can be useful tools for in-line measuring
but only if quarter milk samples of the cisternal fraction are
available. To achieve this goal, foremilk samples must be
taken before the occurrence of alveolar milk ejection.
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