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1. Introduction

The study of hypercontractivity in bosonic system was pioneered by Nelson [26]. Gross
[16] establishes an equivalence relationship between hypercontractivity and the logarith-
mic Sobolev inequality. Then Gross [15] generalized it to the non-commutative case, i.e.,
fermonic system, the corresponding relation was obtained under certain condition. In this
case, the optimal time was finally obtained by Carlen and Lieb in [10]. Biane [4] extended
Carlen’s and Lieb’s work to q-Ornstein-Uhlenbeck semigroup (−1 < q < 1) (see § 2), but
he did not give the equivalent relationship between hypercontractivity and corresponding
logarithmic Sobolev inequality. The motivation of this paper is to establish the hyper-
contractivity of a class of quantum Markov semigroups and corresponding logarithmic
Sobolev inequality in the framework of a probability gage space, that is, a finite von Neu-
mann algebra with a faithful normal trace on it, including the above q-Ornstein-Uhlenbeck
semigroup (−1 < q < 1) as a special case.

Hypercontractivity and non-commutative functional inequalities of quantum Markov
semigroups based on various specific non-commutative probability spaces are in the ascen-
dant, refer to [3, 5, 9, 13, 17, 19–25, 28–30], etc., and they have been applied to the study
of quantum information and quantum computation (refer to [2, 27]). Therefore, this study
has theoretical significance and application value.

This paper is organized as follows. Section 1 gives a brief introduction to the rele-
vant background and research significance; Section 2 is devoted to prove the equivalence
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between logarithmic Sobolev inequality and hypercontractivity of a class of quantum
Markov semigroup and associated Dirichlet form in a probability gage space.

2. Equivalence between Logarithmic Sobolev inequality and
hypercontractivity in a probability gage space

2.1. Markov semigroup and associated Dirichlet form

In this subsection, we recall briefly the main concepts and conclusions about non-
commutative Lp-spaces, Markov semigroup and associated Dirichlet form in this non-
commutative setting, more details refer to [1, 12]:

Let (A, τ) be a probability gage space, thus A is a finite von Neumann algebra and τ is
a faithful, normal trace on it. For 1 ≤ p <∞, Lp(A, τ) is the completion of A with respect
to the norm ‖x‖p = (τ(|x|p))1/p, x ∈ A, and L∞(A, τ) = A equipped with the operator
norm. These spaces share all the functional analytic features of the classical Lp-spaces,
such as the uniform convexity for p ∈ [1,∞), duality between Lp(A, τ) and Lp′

(A, τ) with
p−1 + p′−1 = 1, and Riesz–Thorin interpolation, Hölder’s and Clarkson’s inequalities.

Furthermore, the Markov semigroup and its associated Dirichlet form are based on the
standard form (A,L2(A, τ), L2

+(A, τ), J) of the von Neumann algebra A, where L2
+(A, τ)

is a closed convex cone in L2(A, τ), inducing an anti-linear isometry J (the modular
conjugation) on L2(A, τ) which is the extension of the involution a→ a∗ of A. The
subspace of J-invariant elements (called real) will be denoted by L2

h(A, τ).
When a is real, the symbol a ∧ 1 will denote the projection onto the closed and convex

subset {a ∈ L2
+(A, τ) : a ≤ 1}, where 1 is the unit of A.

Definition 2.1.1. A weak ∗- continuous semigroup {Tt}t≥0 of bounded linear oper-
ators defined on L∞(A, τ) is said to be quantum Markov semigroup, if it satisfies the
following conditions:

(1) (symmetric property): τ(Tt(x)y) = τ(xTt(y));

(2) (completely Markovian property): if {Tt ⊗ In} is Markovian on L∞(A, τ) ⊗Mn(C),
that is, if 0 ≤ x ≤ 1 ⊗ In implies that 0 ≤ Tt ⊗ In(x) ≤ 1 ⊗ In, for all n ∈ N, where
1 is the unit of A and In is the identity map on matrix algebra Mn(C), respectively.

Remark 2.1.2. (1) Quantum Markov semigroup {Tt}t≥0 is said to be conservative,
if Tt(1) = 1,∀t ≥ 0;

(2) By using [12, Proposition 3.1] quantum Markov semigroup on L∞(A, τ) can be
extended to completely Markov semigroup

on Lp(A, τ) for all p ≥ 1.

Definition 2.1.3. A closed, densely defined and non-negative quadratic form (ε,D(ε))
on L2(A, τ) is said to be

(1) real, if for a ∈ D(ε) then J(a) ∈ D(ε) and ε[J(a)] = ε[a];

(2) a Dirichlet form, if it is positive on L2
h(A, τ), real and ε[a ∧ 1] ≤ ε[a] for a ∈ D(ε) ∩

L2
h(A, τ). Furthermore, it is conservative in case 1 ∈ D(ε);
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(3) a regular Dirichlet form if in addition A ∩D(ε) is norm dense in A and is also dense
in D(ε) with respect to the graph norm: ‖|x‖|21 = ε[x] + τ(|x|2);

(4) a completely Dirichlet form if the canonical extension (εn,D(εn)) to L2(A, τ) ⊗
Mn(C), τn): εn[[aij ]ni,j=1] :=

∑n
i,j=1 ε[aij ], is a Dirichlet form for all n ≥ 1, where

[aij ]ni,j=1 ∈ D(εn) := D(ε) ⊗Mn(C), and τn = τ ⊗ trn is the faithful, normal trace
on the von Neumann algebra A⊗Mn(C), here trn is a normalized trace on Mn(C).

Proposition 2.1.4 (see [1, Lemma 2.3; 12, Proposition 2.12; and 11 Propo-
sition 4.5 and Proposition 4.10]). Let (ε,D(ε)) be a closed, densely defined,
non-negative real quadratic form. Then the following statements are equivalent:

(1) (ε,D(ε)) is a Dirichlet form;

(2) For every real-valued Lipschitz function ϕ : R → R, which satisfies |ϕ(t) − ϕ(s)| ≤
cϕ|t− s|,∀t, s ∈ R and ϕ(0) = 0, where cϕ is a positive constant, one has ε[ϕ(x)] ≤
c2ϕε[x] whenever x ∈ D(ε) ∩ L2

h(A, τ).
Furthermore, if (ε,D(ε)) is conservative, then the above items (1) and (2) are
equivalent to the following item:

(3) ε(1, x) ≥ 0 for all x ∈ D(ε) ∩ L2
+(A, τ), and ε[|x|] ≤ ε[x] for all x ∈ D(ε) ∩ L2

h(A, τ).

In the end of this subsection, the well-known Beurling–Deny type criterion in the
non-commutative context is given:

Theorem 2.1.5 (Beurling-Deny). (see [1, Theorems 2.7, 2.8; and 12, Theorem 3.3,
11, Theorem 4.11) Given a strongly continuous symmetric semigroup Tt = e−tL with
infinitesimal generator L, and the associated quadratic form ε[x]=<

√
Lx,

√
Lx>, for x ∈

D(ε) = D(
√
L). Then the following are equivalent:

(1) The form ε is a (completely) Dirichlet form;

(2) The semigroup Tt = e−tL

is (completely) Markovian.

Remark 2.1.6. (1) From Theorem 2.1.5, we see that {Tt} is conservative quantum
Markovian if and only if the associated quadratic form is conservative completely
Dirichlet form.

(2) For a given Dirichlet form ε[, ], by [12, Proposition 1.2], the following inequality
holds true:

ε[|x|] ≤ 2ε[x] for all x ∈ D(ε).

When x ∈ D(ε) ∩ L2
h(A, τ), from Proposition 2.1.4 item (2) it is easy to check that the

coefficient 2 on the right-hand side of the above inequality can be replaced by 1, that is,
ε[|x|] ≤ ε[x].
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2.2. Hypercontractivity and logarithmic Sobolev inequality

Definition 2.2.1. We are given a quantum Markov semigroup {Tt}t≥0 in the inter-
polating family Lp(A, τ) for all p > 1, and constants a > 0 and b ≥ 0. Let p(t) = 1 +
(p− 1)e2t/a, if

‖Ttx‖p(t) ≤ eb(1/p−1/p(t))‖x‖p,

for all x ∈ Lp(A, τ), p > 1, t ≥ 0, then it is said to have hypercontractivity.

Definition 2.2.2. A quantum Markov semigroup {Tt} is said to be regular, if its
associated Dirichlet form is regular.

From now on, we consider the regular quantum Markov semigroup {Tt}t≥0 = {e−Lt}t≥0

on the above probability gage space (A, τ), then its associated Dirichlet form ε[x] =<√
Lx,

√
Lx >. Let Ent(x) = τ(x log x) − ‖x‖L2 log ‖x‖L2 denote the relative entropy of a

positive element x. We obtain the following main result:

Theorem 2.2.3. For each p > 1, let p(t) = 1 + (p− 1)e2t/a, b(t) = b(1/p) − 1/p(t)),
where a(> 0) and b(≥ 0) are constants. Then the following statements are equivalent:

(1) ‖Ttx‖p(t) ≤ eb(t)‖x‖p for all x ∈ A, ∀p > 1, ∀t ≥ 0;

(2) Ent(|x|2) ≤ 4 a ε[x] + b ‖x‖2
2 for all x ∈ D(ε). When x ∈ Dh := D(ε) ∩ L2

h(A, τ),
the coefficient 4a in the inequality can be replaced by 2a.

We need the following lemma which plays a crucial role for proving Theorem 2.2.3. The
special cases in the Clifford algebra and mixed spin systems setting was proved by Gross
[15] (see [15, Lemma 1.1]) and Biane [4] (see [4, Lemma 3]), respectively.

Lemma 2.2.4. For all invertible positive x ∈ A ∩D(ε), and 1 < p <∞, one has

ε[xp/2] ≤ p2

4(p− 1)
ε(x, xp−1).

That is

≤ p2

4(p− 1)
.

Proof. First, notice that x is invertible and positive, then there exists a constant c > 0
such that Spec (x) ⊆ [c, ‖x‖]. Hence, by Proposition 2.1.4 item (2) combining the function
calculus of x, it is easy to check that xp/2 and xp−1 are in A ∩D(ε). By the definition
and spectrum decomposition of L,

< xp/2, Lxp/2 > = lim
t→0

1
t
τ [(xp/2 − Ttx

p/2)xp/2];

< x,Lxp−1 > == lim
t→0

1
t
τ [(x− Ttx)xp−1].
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So, it suffices to prove

τ [(xp/2 − Ttx
p/2)xp/2] ≤ p2

4(p− 1)
τ [(x− Ttx)xp−1]. (2.1)

For any fixed t > 0. Since Tt is symmetric and Markovian, then for ϕ and ψ positive and
continuous functions on R, τ [ϕ(x)Tt(ψ(x))] is positive and linear in ϕ and ψ. Moreover,
for ϕ and ψ such that ϕ(α) ≤ c|α| and ψ(α) ≤ c′|α|, where c, c′ are constants. As a general
property for normal traces on von Neumann algebras (see [1, 12]), there exists a positive
measure μx on R\{0} × R\{0} with support contained in Spec(x)×Spec(x) such that
μx(α, β) = μx(β, α) and

τ [ϕ(x)Tt(ψ(x))] =
∫ ∫

ϕ(α)ψ(β)dμx(α, β).

Since 1 − Tt(1) is positive, we have also that there is a positive measure νx on R\{0}
with support contained in Spec(x) such that

τ [ϕ(x)(1 − Tt(1))] =
∫
ϕ(α)dνx(α).

Consider now the quadratic form τ [x(1 − Tt)x], we then have

τ [ϕ(x)(1 − Tt)ϕ(x)] = τ [ϕ(x)2(1 − Tt(1))] + τ [ϕ(x)2 Tt(1) − ϕ(x)Tt(ϕ(x))].

Therefore, we have

τ [ϕ(x)(1 − Tt)ϕ(x)] =
∫
ϕ(α)2dνx(α) +

1
2

∫ ∫
[ϕ(α) − ϕ(β)]2dμx(α, β). (2.2)

In the following, let ϕ(α) = αp/2, α ∈ Spec (x). Take ϕ(x) = xp/2 in Equation (2.2), we
obtain

τ [(xp/2 − Ttx
p/2)xp/2] =

∫
αpdνx(α) +

1
2

∫ ∫
(αp/2 − βp/2)2dμx(α, β).

Similarly,

τ [xp−1(x− Ttx)] =
∫
αpdνx(α) +

1
2

∫ ∫
(α− β)(αp−1 − βp−1 dμx(α, β)).

Then (2.1) holds true from the above two formulas combining the following fact

(ap/2 − bp/2)2 ≤ p2

4(p− 1)
(a− b)(ap−1 − bp−1), a, b ≥ 0, p > 1.

�

The Proof of Theorem 2.2.3. First, since each Tt is completely positive, from
[29, Remark 9] we see that the norm of Tt from Lp

h(A, τ) to Lq
h(A, τ) (p, q > 1) is achieved

on the positive cone Lp
+(A, τ). Hence, it is sufficient to consider hypercontractivity on
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positive cones. Given an invertible positive x ∈ A ∩D(ε), put ϕ(t) = e−b(t)‖Ttx‖p(t). By
[14, Lemma 2] and [18, Lemma 3.1], a straightforward calculus shows that

d
dt

logϕ(t) =
d
dt

(−b(t) + log ‖Ttx‖p(t))

= −b′(t) +
1

‖Ttx‖p(t)

d‖Ttx‖p(t)

dt

= −b′(t) +
1

‖Ttx‖p(t)

d
dt

[τ(Ttx)p(t)]1/p(t). (I)

Since

d
dt

[τ(Ttx)p(t)]1/p(t) = ‖Ttx‖p(t)
d
dt

[
1
p(t)

log τq(Ttx)p(t)

]

= ‖Ttx‖p(t)

⎡
⎣− p′(t)

p2(t)
log ‖Ttx‖p(t)

p(t) +
1
p(t)

1

‖Ttx‖p(t)
p(t)

d‖Ttx‖p(t)
p(t)

dt

⎤
⎦ ,

and since

d‖Ttx‖p(t)
p(t)

dt
=

d
dt
τ [(Ttx)p(t)]

= τ

[
(Ttx)p(t)

(
p′(t) log Ttx+ p(t)(Ttx)−1 dTtx

dt

)]
,

then take the above equation to formula (I), we have

d
dt

logϕ(t) = −b′(t) − p′(t)
p2(t)

log ‖Ttx‖p(t)
p(t)

+
1

p(t)‖Ttx‖p(t)
p(t)

τ

[
(Ttx)p(t)

(
p′(t) log Ttx+ p(t)(Ttx)−1 dTtx

dt

)]

= −b′(t) − p′(t)
p2(t)

log ‖Ttx‖p(t)
p(t) +

1

p(t)‖Ttx‖p(t)
p(t)

τ [p′(t)(Ttx)p(t) log Ttx]

+ τ

[
p(t)(Ttx)p(t)−1 dTtx

dt

]
. (II)

Notice that dTtx/dt = −L(Ttx), so that

τ

[
(Ttx)p(t)−1 dTtx

dt

]
= −ε((Ttx)p(t)−1, Ttx).

On the other hand,

Ent((Ttx)p(t)) = τ [(Ttx)p(t) log(Ttx)p(t)] − τ [(Ttx)p(t) log τ [(Ttx)p(t)]]

= τ [(Ttx)p(t) log(Ttx)p(t)] − ‖Ttx‖p(t)
p(t) log ‖Ttx‖p(t)

p(t).
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Combing with formula (II), one can obtain

d
dt

logϕ(t) = −b′(t) +
p′(t)
p(t)2

1

‖Ttx‖p(t)
p(t)

Ent((Ttx)p(t))

− 1

‖Ttx‖p(t)
p(t)

ε((Ttx)p(t)−1, Ttx). (III)

Assume (1). Since b(0) = 0 and p(0) = p, it follows that ϕ(0) = ‖x‖p, then by the
hypercontractivity of Tt implies that ϕ′(0) ≤ 0, which gives, via formula (III)

Ent((Ttx)p(t)) ≤
p2(t)‖Ttx‖p(t)

p(t)

p′(t)
[b′(t) +

1

‖Ttx‖p(t)
p(t)

ε((Ttx)p(t)−1, Ttx)].

Let t = 0 and p = 2, from which follows that p(0) = 2, p′(0) = 2/a, b′(0) = 1/2a.
Therefore, from the above inequality, it implies that

Ent(x2) ≤ 2aε[x] + b‖x‖2
2.

Now, for any given positive element x ∈ D(ε). Since ε[, ] is regular, then there exists a
sequence (xn) consisting of positive invertible elements in A ∩D(ε) such that ‖|xn −
x‖|1 → 0 as n→ ∞, where ‖|x‖|1 = ε[x] + τ(|x|2) is the graph norm. It follows that
ε[xn] → ε[x] and ‖xn‖2 → ‖x‖2, as n→ ∞. For any fixed n ∈ N, by the above proof,
we have

Ent(x2
n) ≤ 2aε[xn] + b‖xn‖2

2.

Letting n→ ∞, and combining the continuity of norm, we obtain

Ent(x2) ≤ 2aε[x] + b‖x‖2
2.

Hence, for any y ∈ D(ε) ∩ L2
h(A, τ), from the above inequality, we have

Ent(|y|2) ≤ 2aε[|y|] + b‖y‖2
2.

Since ε[|y|] ≤ ε[y] (see Remark 2.1.6 (2)), then combining the above inequality implies
that

Ent(|y|2) ≤ 2aε[y] + b‖y‖2
2.

Finally, notice that ε[|z|] ≤ 2 ε[z] for all z ∈ D(ε) (see Remark 2.1.6 (2) again), similar to
the above proof, we have

Ent(|z|2) ≤ 4 aε[z] + b‖z‖2
2.

Conversely, assume (2). For a given invertible positive x ∈ A ∩D(ε), we have

Ent(x2) ≤ 2aε[x] + b‖x‖2
2.

Replace x with xp/2, one can get

Ent(xp) ≤ 2aε[xp/2] + b‖xp/2‖2
2.
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By Lemma 2.2.4, it implies that

Ent(xp) ≤ ap2

2(p− 1)
ε(xp−1, x) + b‖x‖p

p.

Set x be Ttx and p be p(t) in the above formula, we have

Ent((Ttx)p(t)) ≤ ap(t)2

2(p(t) − 1)
ε((Ttx))p−1, Ttx+ b‖Ttx‖p(t)

p(t). (IV)

Notice that formula (III),

d
dt

logϕ(t) =
p′(t)

p2(t)‖Ttx‖p(t)
p(t)

[
Ent((Ttx)p(t))

−p(t)
2

p′(t)
ε((Ttx)p(t)−1, Ttx) − b′(t)p(t)2

p′(t)
‖Ttx‖p(t)

p(t)

]
. (V)

Since b(t) = b(1/p− 1/p(t)), p(t) = 1 + (p− 1)e2t/a, then b′(t) = p′(t)/p(t)2, p′(t) =
(2/a)(p− 1)e2t/a, hence, p(t)2/p′(t) = ap(t)2/2(p(t) − 1), and b′(t)p(t)2/p′(t) = b. Com-
pare (IV) and (V), then we have (d/dt) logϕ(t) ≤ 0, it follows that (d/dt)ϕ(t) ≤ 0.
Therefore, ϕ(t) ≤ ϕ(0) = ‖x‖p. Since ε[, ] is regular, it is easy to prove that the sub-
set of invertible positive elements in A ∩D(ε) is dense in all Lp(A, τ) with respect to the
Lp-norms for all p > 1, and since ϕ(t) is continuous in the operator norm, which in turn
yields the hypercontractivity of {Tt}.

It is well known that in the abelian case, when 4a is replaced by 2a in the item (2) of
Theorem 2.2.3 for all x ∈ D(ε), the conclusion still holds. On further analysis, we see that
the key point is ε[|J(x)|] = ε[|x|] for all x ∈ D(ε). Inspired by this, with this restriction,
it can be extended to non-commutative case:

Corollary 2.2.5. The notation is as in Theorem 2.2.3. For a given quantum Markov
semigroup {Tt}t≥0 and its associated regular Dirichlet form ε[, ] on L2(A, τ). If ε[|J(x)|] =
ε[|x|] for all x ∈ D(ε), then the following statements are equivalent:

(1) ‖Ttx‖p(t) ≤ eb(t)‖x‖p for all x ∈ A, ∀p > 1, ∀t ≥ 0;

(2) Ent(|x|2) ≤ 2 a ε[x] + b‖x‖2
2 for all x ∈ D(ε).

Proof. Using Theorem 2.2.3 and the regularity of ε[, ], one only needs to prove
ε[|x|] ≤ ε[x] for all x ∈ A ∩D(ε). Indeed, since ε[x] = is completely Dirichlet form, so
that (ε2,D(ε2)) is Dirichlet form (see the above Definition 2.1.3). Put x̃ =

[
0 x∗
x 0

]
, it is

easy to see that x̃ is a self-adjoint in D(ε2) := D(ε) ⊗M2(C). By Remark 2.1.6 (2) we
have ε2[|x̃|] ≤ ε2[x̃]. By routine calculation, |x̃| = (x̃∗x̃)1/2 =

[ |x| 0
0 |x∗|

]
. Hence,

ε[|x|] + ε[|x∗|] = ε2
[[ |x| 0

0 |x∗|
]]

= ε2[|x̃|] ≤ ε2[x̃] = ε2
[[

0 x∗

x 0

]]
= ε[x∗] + ε[x].
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Furthermore, by the condition of this claim, ε[|x∗|] = ε[|x|] (Remark: J(x) = x∗ when
x ∈ A), and notice that ε[x∗] = ε[x] = ε[x] (see Definition 2.1.3). Therefore, from the
above inequality, we can obtain 2 ε[|x|] ≤ 2 ε[x], that is, ε[|x|] ≤ ε[x]. �

3. Application to the q-Ornstein–Uhlenbeck semigroup (−1 < q < 1)

In the last section, we use Corollary 2.2.5 to characterize the equivalence of strictly
hypercontractivity and the logarithmic Sobolev inequality for q(−1 < q < 1)-Ornstein–
Uhlenbeck semigroup introduced by Bozèjko and Speicher [7].

For this purpose, we first recall briefly the construction of q-Gaussian von Neumann
algebra and q-Ornstein–Uhlenbeck semigroup on it. Since the cases q = ±1 are well
known, in the following, we shall only consider the cases for −1 < q < 1. More details can
refer to [4, 6–8].

Let H be an infinite dimensional real separable Hilbert space with complexification
HC . Let Ω be a unit vector in a 1-dimensional complex Hilbert space (disjoint from HC).
We refer to Ω as the vacuum, and by convention define HC⊗0 ≡ CΩ. The algebraic Fock
space F(H) is defined as

F(H) =
∞⊕

n=0

H⊗n
C
,

where the direct sum and tensor product are algebraic. We then define a Hermitian form
< ·, · >q in F(H) as below:

For ξ, η ∈ F(H)

< ξ, η >q=< ξ, Pqη >,

where <,> is the usual scalar product and Pq =
⊕∞

n=0 P
(n)
q , in which P

(n)
q (f1 ⊗

f2 ⊗ · · · ⊗ fn) =
∑

π∈Sn
qi(π)fπ(1) ⊗ fπ(2) ⊗ · · · ⊗ fπ(n) for all fk ∈ F(H), k = 1, 2, . . . , n,

∀ n ∈ N.
Here Sn is the symmetric group on n symbols, and i(π) counts the number of inversions

in π, that is

i(π) = �{(i, j) : 1 ≤ iπ(j)}.

Indeed, the above Hermitian form is the conjugate-linear extension of

< Ω,Ω >q= 1;

q = δmnΣπ∈Sn
qi(π)

· · · ,

for fi, gj ∈ H, i = 1, 2, . . . ,m; j = 1, 2, . . . , n,∀ m,n ∈ N.
It is remarkable that, for −1 < q < 1, the form < ·, · >q is always non-degenerate on

F(H). The q-Fock space Fq(H) is defined as the completion of F(H) with respect to the
inner product < ·, · >q.
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For any vector f ∈ H ⊂ HC, define the creation operator cq(f) on Fq(H) to extend

cq(f)Ω = f

cq(f)f1 ⊗ · · · ⊗ fk = f ⊗ f1 ⊗ · · · ⊗ fk.

The annihilation operator c∗q(f) is its adjoint, which satisfies

c∗q(f)Ω = 0

c∗q(f)f1 ⊗ · · · ⊗ fk = Σk
j=1q

j−1f1 ⊗ · · · ⊗ fj−1 ⊗ fj+1 ⊗ · · · ⊗ fk.

The operators cq(f) and c∗q(f) are bounded on Fq(H) with

‖cq(f)‖ = ‖c∗q(f)‖ =
{ ‖f‖(1 − q)−1/2, if 0 ≤ q < 1,

‖f‖, if − 1 < q < 0.

On the above bases, define the q-Gaussian von Neumann algebra Γq(H) which is generated
by the self-adjoint q-Gaussian operators ω(f) = cq(f) + c∗q(f), f ∈ H on Fq(H). It was
proved in [8, Theorem 2.10] that Γq(H) is a II1-factor and τq(a) =< Ω, aΩ >q for a ∈
Γq(H), is the unique faithful normal trace on Γq(H).

Next, we will introduce the concept of q-Ornstein–Uhlenbeck semigroup on the above
q-Gaussian von Neumann algebra Γq(H) for −1 < q < 1:

Let T : H → H be a contraction on the real Hilbert spaces H with complexification TC,
then the linear map defined on elementary tensors by

Fq(T )(f1 ⊗ · · · ⊗ fn) = TCf1 ⊗ · · · ⊗ TCfn

extends to a contraction

Fq(T ) : Fq(H) → Fq(H).

Now we define q-Gaussian functor Γq as a map

Γq(T ) : Γq(H) → Γq(H)

as follows

(1) Γq(T )ω(f) = ω(Tf), for f ∈ H;

(2) (Γq(T )(X))Ω = Fq(T )(XΩ).

By [8, Theorem 2.11] Γq(T ) is a unique bounded, normal, unital, completely posi-
tive, and the trace preserving map, and is a covariant functor, that is, if T1 and T2 are
contractions on H, then

Γq(T1T2) = Γq(T1)Γq(T2).

Furthermore, let Tt = e−tIH, t ≥ 0, where IH is the identity on H. Then the q-Ornstein–
Uhlenbeck semigroup is defined to be {U (q)

t }t≥0 = {Γq(Tt)}t≥0 on Γq(H) (see Ref. [8]).
From the above construction, it is easy to see that {U (q)

t }t≥0 is a conservative,
completely Markov semigroup on Γq(H). Remark 2.1.2 tells us that {U (q)

t }t≥0 can be
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extended to completely Markov semigroup on all non-commutative Lp(Γq(H), τq)-spaces.
Its generator Nq on L2(Γq(H), τq) is the number operator given by:

NqΩ = 0;

and
Nq(f1 ⊗ · · · ⊗ fn) = n(f1 ⊗ · · · ⊗ fn), fj ∈ HC(j = 1, 2, . . . , n).

In formally, we write U (q)
t = e−tNq

. From Theorem 2.1.5, the corresponding quadratic
form ε[x] =<

√
Nqx,

√
Nqx >q for all x ∈ D(

√
Nq), is a conservative, completely Dirichlet

form.
Biane [4] described the strictly hypercontractivity of the q-Ornstein–Uhlenbeck semi-

group {U (q)
t }t≥0 (see [4, Theorem 2]) and derived a logarithmic Sobolev inequality from

strictly hypercontractivity (see [4, Corollary 1]). The following statements show that
strictly hypercontractivity and the logarithmic Sobolev inequality in [4] are equivalent:

Theorem 2.2.6. The notation is as in Theorem 2.2.3. Given the q-Ornstein–Uhlenbeck

semigroup {U (q)
t }t≥0 = {e−tNq}t≥0 and its associated Dirichlet form ε[x] = based on

Γq(H), then the following statements are equivalent:

(1) ‖U (q)
t x‖p(t) ≤ ‖x‖p for all x ∈ Γq(H), ∀p > 1, ∀t ≥ 0;

(2) Ent(|x|2) ≤ 2 ε[x] for all x ∈ D(ε).

Proof. In order to prove the above claim, using Corollary 2.2.5 it suffices to prove the
Dirichlet form ε[x] =q, x ∈ D(ε) is regular and satisfies the condition: ε[|J(x)|] = ε[|x|] for
all x ∈ D(ε), where the operator J ia an anti-linear isometry on L2(A, τ) (see § 2.1 for
the details).

Indeed, given a fixed orthonormal basis {ei}i∈N in H. For any subset I =
{i1, i2, . . . , in} ⊆ N, by [8, Proposition 2.7] one can construct the q-Wick product ψI =
ψ(ei1 ⊗ ei2 ⊗ · · · ⊗ ein

) ∈ Γq(H) by induction as below:

ψ(eik
) = ω(eik

) = cq(eik
) + c∗q(eik

);

ψ(ei1 ⊗ ei2 ⊗ · · · ⊗ ein
) = ω(ei1)ψ(ei2 ⊗ · · · ⊗ ein

)

−
n∑

k=1

qk−1ψ(ei1 ⊗ · · · ⊗ ěik
⊗ · · · ⊗ ein

),

where the symbol ěik
means that eik

has to be deleted in the product.
Define

Φ : Γq(H) → Fq(H)
through Φ(a) = a(Ω). Since τq is a faithful trace, then this map is a continuous imbedding
of Γq(H) into Fq(H) which extends to an unitary isomorphism of L2(Γq(H), τq) with
Fq(H). By routine calculation we have

Φ(ψI) = ψIΩ = ei1 ⊗ ei2 ⊗ · · · ⊗ ein
.

Hence, from the construction of the q-Ornstein–Uhlenbeck semigroup U
(q)
t = e−tNq

, we
have U (q)

t ψI = e−tnψI , it follows that NqψI = nψI , which shows that ψI ∈ D(ε). Denote
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by Γ̃q(H) the set of all finite linear combinations of ψI , I = {i1, i2, · · · , in} ⊆ N. It follows

that Γ̃q(H) ⊂ D(ε) since D(ε) is a subspace of L2(Γq(H), τq) and Γ̃q(H) is dense in D(ε)

with respect to the graph norm. On the other hand, since Γ̃q(H) is dense in Γq(H) with

respect to the operator norm, so that A ∩D(ε)(⊃ Γ̃q(H)) is dense in Γq(H) with operator
norm. The above proof shows that the Dirichlet form ε[, ] is regular.

Finally, in order to prove ε[|J(x)|] = ε[|x|] for all x ∈ D(ε), it is only need to verify
ε[|(ψI)∗|] = ε[|ψI |] for all ψI = ψ(ei1 ⊗ ei2 ⊗ · · · ⊗ ein

) ∈ Γq(H) ∩D(ε). Since

< ψIΩ, ψIΩ >q= τq((ψI)∗ψI) = τq(ψI(ψI)∗) =< (ψI)∗Ω, (ψI)∗Ω >q,

then there exists a unitary operator U : L2(Γq(H), τq) → L2(Γq(H), τq), such that
U |ψI | = |(ψI)∗|, here we regard ψI and ψIΩ as the same. Furthermore, it is easy to
check that NqU = UNq, hence

ε[|(ψI)∗|] =< |(ψI)∗|, Nq|(ψI)∗| >q=q

=q=< |ψI |, Nq(|ψI | >q= ε[|ψI |].
�

Acknowledgments. The author is supported by the Fundamental Research Funds
for the Central Universities, and the Research Funds of Renmin University of China
(Grant No. 10XNJ033, Study of Dirichlet forms and quantum Markov semigroups based
on Hilbert C∗-modules).

References

1. S. Albeverio and R. Høegh-Krohn, Dirichlet forms and Markov semigroups on
C∗-algebras, Comm. Math. Phys. 77 (1975), 91–102.

2. A. Ben-Aroya, O. Regev and R. de Wolf, A hypercontractive inequality for matrix-
valued functions with applications to quantum computing and LDC, IEEE Symp. Found.
Comput. Sci. (FOCS) 49 (2008), 477–486.

3. I. Bialynicki-Birula and J. Mycielski, Uncertainty relations for information entropy
in wave mechanics, Comm. Math. Phys. 44 (1975), 129–132.

4. P. Biane, Free hypercontractivity, Comm. Math. Phys. 184 (1997), 457–474.

5. M. Boz̀ejko, Deformed Fock spaces, Hecke operators and monotone Fock space of Muraki,
Demonstratio Math. XLV (2012), 129–154.

6. M. Boz̀ejko and R. Speicher, An example of a generalized Brownian motion, Comm.
Math. Phys. 137 (1991), 519–531.

7. M. Boz̀ejko and R. Speicher, Completely positive maps on Coxeter groups, deformed
commutation relations, and operator spaces, Math. Ann. 300 (1994), 97–120.
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