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Receiver Autonomous Integrity Monitoring (RAIM) provides an integrity service for Global
Navigation Satellite Systems (GNSS). The conventional RAIM algorithm is based on the
assumption of a single fault and typically uses the forward-backward method, which is based
on the w-test or correlation analysis methods, to exclude the faults. It is suitable for single fault
detection and exclusion, while it can lead to inefficiency, can be misleading and can even fail in
the exclusion of multiple faults. To solve this problem, an improved method based on consensus
voting of the w-test and correlation analysis methods is presented. To verify the performance of
the improved method, tests using Global Positioning System (GPS)/BeiDou System (BDS) data
have been carried out in comparison with the conventional methods in terms of false and correct
faults exclusion rate and computational complexity in the case of a different number of faults.
Results show that the improved method has almost the same correct exclusion rate compared
to the conventional RAIM in the case of a single fault. It is worth noting that the improved
method has a higher correct exclusion probability and computational efficiency as well as a
lower possibility of false exclusion in the case of multiple faults.
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1. INTRODUCTION. In Global Navigation Satellite Systems (GNSS), the satellite sig-
nals are extremely susceptible to the surrounding environment and human factors, such as
multipath in urban canyons and spoofing. Therefore, it is rather difficult to guarantee accu-
racy and reliability of positioning in applications concerning safety of human life. Integrity
is defined by the International Civil Aviation Organization’s GNSS Standards and Recom-
mended Practices (SARPS), which is used to describe the availability and reliability of a
navigation system (Innac et al., 2016). An integrity service can provide timely warnings
to users when the system or certain parts of it are unreliable for navigation (Yang and Xu,
2016).
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Receiver Autonomous Integrity Monitoring (RAIM) is a common method for provid-
ing an integrity service, which includes Fault Detection and Exclusion (FDE). Lee (1986)
first proposed that Global Positioning System (GPS) integrity could be provided in the
user receiver by using redundant measurement information in a range and position com-
parison scheme for fault detection. Following this work, many RAIM schemes have been
proposed and studied. In general, range comparison (Lee, 1986), least squares residuals
(Parkinson and Penina, 1988), parity vector (Sturza, 1988) and maximum solution sepa-
ration (Brown and McBurney, 1988) are known as the conventional methods. The latter
three methods have the same principle in that they perform a self-consistency check among
redundant measurements using a statistical hypothesis test based on least squares residu-
als (Brown, 1992). One of the conventional RAIM algorithms is the “Snapshot” algorithm
which is based on the current measurements. It is widely used due to it not needing to con-
sider the pre-state and post-state of the navigation system. As the conventional methods
are based on the assumption of a single fault, they have a high accuracy of FDE in the
case of a single fault but an unsatisfactory performance in cases of multiple faults. In order
to improve the performance of RAIM in multiple FDE, some researchers have proposed
to use a priori knowledge to achieve FDE. For example, McBurney and Brown (1989)
and Ren and Ching-Fang (1995) proposed to use a Kalman filter to achieve GPS integrity
monitoring. Yoo et al. (2012) proposed a new method to achieve GPS fault detection and
isolation by comparing the measured pseudorange and the predicted pseudorange informa-
tion obtained by a pseudorange prediction model. In addition, Yang et al. (2014) proposed
to use supplementary information provided by external sensors to achieve integrity mon-
itoring. These methods can improve the ability of FDE in the case of multiple faults.
However, the performance of the prior knowledge-based FDE methods depends on the
accuracy of prior error estimation and the speed of detection is slow, and for the methods
based on supplementary sensor information, the reliability and accuracy of the sensor needs
to be obtained in advance.

Using conventional RAIM algorithms as the basis, some improved solutions have been
proposed. Hewitson and Wang (2006) presented an extended w-test method for the simul-
taneous removal of multiple outliers in measurements. Ni et al. (2007) and Knight et al.
(2009) proposed an improved scheme assuming two satellite faults and Knight et al. (2010)
further extended this reliability theory so that it can be applied to detect multiple faults. Cao
et al. (2013) introduced an improved RAIM algorithm based on a parity vector method,
which can effectively improve the availability of fault detection in the case of one or two
faults. Yang et al. (2013) extended the theory of outlier separability to the general case,
where there are multiple alternative hypotheses. Joerger and Pervan (2014) developed a
new Chi-squared (Chi2) RAIM approach which can improve the performance of FDE in
the case of two faults. Wang (2015) proposed an improved RAIM algorithm for two simul-
taneously faulty satellites on the basis of a QR-decomposition on a fault features plan.
These methods can improve the performance of RAIM in the case of two faults to some
degree, but in the case of more than two faults, there is no significant improvement in per-
formance. In order to exclude multiple faults as accurately as possible, conventional RAIM
algorithms typically use the forward-backward method based on the w-test to exclude the
faults (Kuusniemi et al., 2007), but the method often misleads, fails to identify the fault and
has a low computational efficiency. In view of the shortcomings of the w-test-based fault
identification method, some researchers have proposed to use correlation analysis methods
to detect and locate faults (Bei et al., 2010; Hu et al., 2014). However, in some cases, for
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example, when the correlation is not significant due to the interaction of multiple outliers,
the correlation analysis method cannot get any better results (Tang et al., 2011). In order to
improve the performance of RAIM in regard to single and multiple faults, we studied the
traditional fault exclusion methods and proposed an improved method based on consensus
voting of the w-test and correlation analysis methods.

We first introduce the error model of least squares estimation and describe the methods
of fault detection. Then we present and discuss the conventional fault exclusion methods
including the w-test and the correlation analysis methods and propose an improved method
for single and multiple faults exclusion. Finally, we give test and experimental analysis and
summarise the findings and conclusions.

2. SINGLE POINT POSITIONING AND ERROR MODEL. The code pseudorange
measurement between the satellite and the receiver can be written as follows (Kaplan and
Hegarty, 2006):

ρ = R + c(dtr − dts) + �I + �T + ε (1)

where ρ is the measurement pseudorange, R is the geometric distance between the receiver
and the satellite, c is the speed of light, dtr and dts are the receiver and satellite clock offset,
respectively, �T and �I are the tropospheric and ionospheric delay corrections, respec-
tively and ε is the sum of unmodeled measurement errors. For simplicity, Equation (1) does
not specify parameters such effects as antenna phase centre, hardware delays, multipath and
windup angle.

According to Equation (1), the navigation equations system of Single Point Positioning
(SPP) can be written in compact form as:

L = Ax + ε (2)

where L is an measurement vector containing the residuals between the measured and
predicted pseudoranges. The elements of L can be obtained by:

Li = ρ i − Ri
0 + cdtis − �I i − �Ti (3)

The superscript i indicates the i-th satellite, Li is the corresponding measurement, R0 is
the initial value of geometric distance and A is the design matrix containing the receiver-
satellite geometry. x is the estimated parameters vector, for the single system, which is
defined as follows:

x = (dx, dy, dz, δtr)T (4)

where (dx, dy, dz) indicates the deviation between the true and approximate coordinates and
δtr is the receiver clock offset. For multiple systems, such as a GPS/BeiDou System (BDS)
combined system, there is an Inter-System Bias (ISB) between GPS and BDS due to the
different coordinate frames and time references. In general, the difference of the coordinate
frame between GPS and BDS has little influence on SPP and could be ignored. Thus, the
ISB shows up as the receiver clock difference between GPS and BDS, which is usually
treated as a parameter to be estimated (Chen et al., 2016; Pan et al., 2017).

It is assumed that the measurement error is a normally distributed random variable with
zero mean and a standard deviation of σi. For the i-th visible satellite, the measurement
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variance σ 2
i of Li can be obtained by (Takasu and Yasuda, 2013):

σ 2
i = Rr(a2

σ + b2
σ / sin Elsr) + σ 2

eph + σ 2
ion + σ 2

trop + σ 2
bias (5)

where Rr is the code/carrier-phase error ratio, aσ and bσ are the carrier-phase error factors
(m), El is the elevation angle of the satellite, σeph is the standard deviation of ephemeris
and clock errors (m), σion is the standard deviation of the ionosphere correction model error
(m), σtrop is the standard deviation of the troposphere correction model error (m) and σbias
is the standard deviation of the code bias error (m). According to the principle of weighted
least squares, the estimated parameters vector x̂ can be calculated as follows:

x̂ =
(
ATPA

)−1
ATPL (6)

where:

P = diag
{
1/σ 2

1 , 1/σ 2
2 , . . . , 1/σ 2

m

}
(7)

which is the diagonal weight matrix, and each element is the reciprocal of the variance of
each measurement.

The residual vector v is defined as the difference between measurements L and the fitted
model Ax̂:

v = L − Ax̂ (8)

Substituting Equations (2) and (6) into Equation (8), the residual vector v can be written as:

v = L − A
(
ATPA

)−1
ATPL = (I − Q) L = Sε (9)

where Q is an idempotent matrix, I is the identity matrix and S = I-Q is called the mapping
matrix.

As can be seen from Equation (9), the residual vector v is the mapping of random error
vector ε though the mapping matrix S. There is a linear relationship between the measure-
ment residual and the measurement error, so they should have the same random distribution
characters. If there is an outlier in the measurement, it will be shown in the residual vector
v through the mapping S. Therefore, an outlier can be detected and identified by analysing
the residual vector.

3. FAULT DETECTION METHOD. Fault detection is one of the important functions
of RAIM, which is based on hypothesis testing. The hypothesis test is:

{
H0 : r ≤ T
H1 : r > T

(10)

where r is the test statistic, T is the threshold, H0 is the hypothesis that there is no fault
and H1 is the hypothesis that there are one or more faults. The process of fault detection
is implemented by comparing the test statistic r and threshold T. If r > T, it indicates
hypothesis H1 is accepted, and a fault is detected.
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The Weighted Sum Squared of Residual (WSSR) calculated by Equation (9) is subject
to a Chi-square distribution in the fault-free case, and non-central Chi-squared distribution
in the faulty case (Parkinson and Penina, 1988). Hence the test statistic can be formulated
as:

r =
vTPv
σ 2

0
∼ χ2

1−a,f (f = n − m) (11)

where σ 2
0 is the prior variance factor, a is the significance level of the Chi-square test

and f is the number of redundancies and is equal to the difference between the number
of observations n and the number of estimated parameters m. It is determined whether
there are faults by comparing the test statistic r and detection threshold T calculated by the
significance level a.

Despite the use of the rigorous Chi-square testing procedures, there are still two types
of error that can occur (Feng et al., 2006). A type I error occurs when the null hypothesis
H0 is true but is rejected. A type II error occurs when the null hypothesis H0 is false but
erroneously fails to be rejected. In fault detection, type I and II errors are also called false
alert and missed detection, respectively. Their probabilities are expressed by the following
equations (Sturza, 1988; Salos et al., 2014):

PFA = P
{

r > T | H0 : r ∼ χ2
f

}
= 1 − CDFχ2

f
(T) (12)

PMD = P
{

r ≤ T | H1 : r ∼ χ2
f ,λ

}
= CDFλ2

f ,λ
(T) (13)

where CDF is the Cumulative Density Function; χ2
f is the Chi-square distribution with

degree of freedom f and χ2
f ,λ is the non-central Chi-squared distribution with non-central

parameter λ.
As can be seen from Equations (12) and (13), PFA is related to the threshold T, and the

non-central parameter λ is related to PMD and T. The relationships between them are shown
in Figure 1. We can see that PFA and PMD are contradictory in the case that the non-central
parameter λ is known. For example, PFA decreases and PMD increases with the increases
of threshold T and vice versa. Moreover, if PFA is known, then T can be determined. PMD
is only related to λ and decreases with the increases of λ and vice versa. Similarly, if PFA
and PMD are known, the non-central parameter can be calculated by the following function
(Knight et al., 2010):

λdet = λ(PFA, PMD, f ) (14)

where λdet is called the minimum detectable non-centrality. According to the parameter
λdet, if there is a single fault in measurement, the Minimum Detectable Bias (MDB) of
each pseudorange measurement can be determined by (Knight et al., 2009):

∇bi =
λdetσ0√

PiiSii
(i = 1, 2, · · · , n) (15)

where ∇bi is the minimum detectable bias of the i-th pseudorange measurement; Pii and
Sii are the elements in the i-th row and i-th column of P and S, respectively. In regard to
multiple faults, the MDB in the i-th pseudorange measurement is greater than or equal to
the corresponding MDB for a single fault (Knight et al., 2010).
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Figure 1. Relationship between the probability of false alert and missed detection.

The Chi-square test based on the weighted sum of the squared residuals is a commonly
used method for detecting outliers. The performance of the Chi-square test depends on PFA
and PMD. The probability of successful detection is determined by PFA, and the sensitivity
of fault detection is determined by PMD.

4. FAULT EXCLUSION METHODS. When faults are detected by the Chi-square test,
it is necessary to identify and exclude the faults to ensure the reliability and accuracy of
positioning. Common RAIM algorithms typically use the forward-backward method based
on the w-test or correlation analysis methods to identify and exclude the faults (Hewiston et
al., 2004; Hewitson and Wang, 2006; Tang et al., 2011). First, the forward fault exclusion
is performed, the possible faults are excluded one by one based on the identification results
of the w-test or correlation analysis methods until no fault is detected, and then a backward
check is made to ensure the excluded faults are correct.

4.1. w-test method. The w-test is a test of normality in frequentist statistics. It can be
used to identify outliers in measurements under the assumption that measurement errors
are normally distributed. The test statistic is defined as follows (Baarda, 1968; Hewiston
et al., 2004; Hewitson and Wang, 2006):

ω(i) = |vi| /σvi = |vi| /σ0

√
Sii (i = 1, 2, . . . , n) (16)

where vi is the i-th element of v, σvi = σ0
√

Sii is the standard deviation of vi and ω(i) is the
test statistic for the i-th measurement, which has a standard normal distribution in the fault-
free case and has a non-central normal distribution in the presence of a fault. The critical
value for ω(i) to be tested against is N1−a/2(0, 1). If |ω(i)| > N1−a/2(0, 1), the i-th measure-
ment is assumed to be an outlier. The test is carried out with respect to each measurement;
if the maximum value of ω(i)(i = 1, 2, · · · , n) exceeds the critical value, the corresponding
measurement is deemed an outlier and is removed from the observation model.
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4.2. Correlation analysis methods. The correlation analysis methods are based on the
degree of correlation between the measurement error ε and the residual vector v to identify
the outlier. According to Equation (9), the relationship between v and ε can be expressed
as follows (Tang et al., 2011):

v = Sε =

⎡
⎢⎢⎢⎣

S11 S12 · · · S1n
S21 S22 · · · S2n

...
...

. . .
...

Sn1 Sn2 · · · Snn

⎤
⎥⎥⎥⎦ ε = S1ε1 + S2ε2 + · · · + Snεn (17)

where Si =
[
S1i S2i · · · Sni

]T (i = 1, 2, · · · , n) is the impact vector of the error εi on
v. This reflects the contribution of measurement errors εi to the residuals vector v, that
is, if Li contains a gross error εi this will be mapped to v through Si. In this case, v is
mainly affected by Si. Consequently, the correlation between ε and v can be replaced by
the correlation between Si and v. There are two indicators used to characterise the degree
of correlation: correlation coefficient and correlation distance. The calculation formulae for
these indicators are (Bei et al., 2010; Filliben, 1975; Hu et al., 2014; Tang et al., 2011):

c(i) =

n∑
j =1

(
Sji − Si

) (
vj − v

)
√√√√( n∑

j =1

(
Sji − Si

)2 n∑
j =1

(
vj − v

)2

) (i = 1, 2, · · · n) (18)

d(i) =

√√√√1
n

n∑
j =1

(
Sij − vj

)2 (i = 1, 2, · · · n) (19)

where c(i) and d(i) are the correlation coefficient and correlation distance, respectively. Si
and v are the mean values of Si and v respectively. Sji is the j -th element of the Si, and vj
is the j -th element of the v. According to the principle of correlation analysis, we take the
measurement corresponding to the maximum of the absolute value of correlation coefficient
c(i) or the minimum of correlation distance d(i) as an outlier.

The forward-backward fault exclusion methods based on w-test (FDE-w), correlation
coefficient (FDE-c) or correlation distance (FDE-d) all show a good performance under the
situation of a single fault. However, in the case of multiple faults, the three methods often
falsely identify or fail to exclude faults due to the combined effect of multiple faults, and
the efficiency is lower. These problems will be illustrated in Section 6.

5. AN IMPROVED METHOD FOR FAULT EXCLUSIONS. As is known, the w-test,
the correlation coefficient, and the correlation distance are three methods that can be used
to identify faults. In the case of a single fault, the three methods all have a comparatively
high correction identification ratio and should have the same identification result. In the
case of multiple faults, since the three methods use different test statistics and judgment
mechanisms, they might get different identification results. As shown in Table 1, there
are three situations that may occur if fault identification is based on the three methods at
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Table 1. Three situations that may occur at each time fault exclu-
sion based on the identification results of w-test and correlation analysis
methods.

Situations Conditions of satisfaction

I k1 = k2 & k2 = k3
II k1 = k2 || k1 = k3 || k2 = k3
III k1! = k2 & k1! = k3 & k2! = k3

each time. In Table 1, k1, k2 and k3 indicate the identification results of w-test, correlation
coefficient and correlation distance methods respectively.

On the basis of a consensus voting strategy (McAllister et al., 1990; Zhao et al., 2015),
the w-test, the correlation coefficient, and the correlation distance methods can be used
to identify the fault at each time fault exclusion. If the identification results of the three
methods meet situation I, then they have a good consistency. In this case, since the correct
identification probability of the three methods are higher than the probability of false iden-
tification, the probability that the three methods have the same wrong identification result
will be very low. So, when the identification results of the three methods meet situation I,
the probability that the identification result is a fault will be very high. If the identification
results of the three methods meet situation II, only two of the three identification results
are consistent. In this case, the probability that two methods have the same wrong identifi-
cation result will be high. According to the significance test of the correlation coefficient,
if the maximum correlation coefficient is significant at a given significance level, then the
probability that the corresponding measurement is an outlier is high (Tang et al., 2011). In
order to reduce the probability of a false identification in situation II, the significance of the
correlation coefficient can be used as an additional condition. If the w-test and correlation
coefficient, or the correlation distance and correlation coefficient methods have the same
identification result, and the maximum correlation coefficient is significant, the probability
that the identification result is a fault will also be high.

According to the above analysis, we propose an improved fault identification method
based on consensus voting of the three methods under situations I and II, and the consensus
voting model is given as follows:

Result = 1 ⇒
{

k1 = k2 || k2 = k3 c(i)max ≥ cd

k1 = k2 & k2 = k3 c(i)max < cd
(20)

where c(i)max denotes the maximum of c(i) and cd is the threshold value with significance
level β, which can be calculated by the probability density function of the correlation
coefficient (Filliben, 1975; DeGroot and Schervish, 2011):

f (c) =
�

(
n − 1

2

)
√

π�
(n

2
− 1

) (1 − c2)n − 4
2 (21)

where � is the gamma function. The threshold cd can also be obtained by checking the
correlation coefficient table with significance level β and degree of freedom n − 2.
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(a) (b)

Figure 2. Schematic diagram of fault set construct.

When the identification results of the three methods meet situation III or meet situation
II but do not satisfy Equation (20), we cannot determine which identification result of
the three methods is indeed a fault. In this case, we exclude the faults by building the
fault set {F} and traversing all subsets F{l}(l = 1, 2, . . . , S). In order to cover all possible
combinations of faults and reduce the computation burden as much as possible, the fault
set {F} is constructed based on the following principles: as shown in Figure 2(a), a vector
f is obtained by first sorting all the observations according to the fault probability that is
calculated by:

Pi = 1 − (wi + ci + di) /3n (22)

where the subscript i indicates the i-th observation, wi, ci and di are the index values of the
statistics corresponding to the i-th observation in vectors w, c, and d, respectively. The fault
set {F} can then be constructed according to f , as shown in Figure 2(b). The size of {F} is
S = k − 1 + C(n, k), where k = n − nmin and nmin is the minimum number of observations
required for FDE (for a single satellite system, nmin = 5 and for a combined GPS/BDS
system, nmin = 6).

The flow chart of the improved faults detection and exclusion algorithm (FDE-u) is
shown in Figure 3. The steps of the algorithm can be described as follows:

Step 1: Determine whether the FDE function is available according to the number of
satellites or observations. If n<nmin, fault detection and exclusion are unavailable or
failed.
Step 2: Fault detection according to Chi-square test. Update the test parameters r
according to Equation (11) and detection threshold T according to the Chi-square
test table. If r > T, it indicates that some faults are detected. Otherwise, there are no
faults detected or faults exclusion succeeded.
Step 3: Faults excluded based on the proposed improved fault exclusion method.
If faults are detected by Chi-square test, then calculate w(i), c(i) and d(i) accord-
ing to Equations (16), (18) and (19) respectively, and sort the w(i)(i = 1, 2, . . . , n)
and c(i)(i = 1, 2, . . . , n) in descending order to get the vectors w and c, and sort d(i)
(i = 1, 2, . . . , n) in an ascending order to get the vector d.
Steps 4: Faults excluded according to consensus voting model Equation (20). If the
identification results of the three methods meet the model Equation (20), exclude the
identified fault without checking it backwards, and then go to Step 1 and continue to
detect and exclude the other faults.
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Figure 3. Flow chart of the improved fault detection and exclusion algorithm.

Step 5: Faults excluded based on fault set {F} . In Step 4, if the identification results
of the three methods do not meet the model Equation (20), build a fault set {F} which
contains all possible combinations of faults, and then exclude the possible faults
according to the subset F{l} obtained from the {F} until r ≤T or all the subsets are
traversed. If r ≤T and the number of excluded faults num > 1, backward check the
excluded satellites or observations. If all the subsets are traversed, and there are still
faults, the fault exclusion failed.
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6. TEST AND EXPERIMENT ANALYSIS. In this section, we first validate the effec-
tiveness of the proposed consensus voting model by statistical analysis, and then further
evaluate the performance of the improved fault detection and exclusion method by com-
paring the conventional methods based on GPS and BDS data with different simulated
numbers of faulty satellites.

6.1. Effectiveness of consensus voting model. In order to verify the effectiveness of
the consensus voting model described by Equation (20), we selected six IGS reference sta-
tions with GPS and BDS data. They are the stations JFNG (Wuhan, China), CUT0 (Curtin,
Australia), NNOR (Perth, Australia), GMSD (Tanegashima, Japan), WARK (Warkworth,
New Zealand) and REUN (Reunion, Indian Ocean). The stations’ distribution is shown in
Figure 4. The data span used covers seven days from 1–7 January 2017, and the sampling
rate was every 30 s. The data sets cover a range of six to 23 visible satellites and Geometric
Dilution of Precision (GDOP) from 1·0 to 20.

We simulated a different number of outliers for single GPS, BDS and combined
GPS/BDS, and used the w-test, the correlation coefficient and the correlation distance meth-
ods to identify the outliers. The value of the bias for outliers was set to 1·5∇bi, where ∇bi is
the minimum detectable bias of the i-th measurement, which is calculated by Equation (15).
Assuming k1, k2 and k3 are the identification results of the three methods at the first-time
exclusion, the significance level β is set as 0·01 for the correlation coefficient significance
test. We acquired the probabilities that k1, k2 and k3 meet the following three situations
in the case of different number of outliers respectively and calculated the corresponding
correct probability of identification.

Situation 1: the identification results of the three methods meet k1 = k2 and k2 = k3.
Situation 2: the identification results meet k1 = k2 or k2 = k3, and the correlation

coefficient is greater than the detection threshold with significance level β = 0·01.
Situation 3: the identification results meet k1 = k2 or k2 = k3, but correlation coefficient

is less than the detection threshold with significance level β = 0·01.
Figure 5 shows that the probability that the identification results of the three methods

meet situation 1 decreases with the increases of the number of outliers. Instead, the proba-
bilities that the identification results of the three methods meet situations 2 and 3 increases
with the number of outliers. The statistical results show that the consistency of the identi-
fication results of the three methods decreases with the increase of the number of outliers.
Moreover, the total probability that the identification results of the three methods meet sit-
uations 1 and 2 for combined GPS/BDS is greater than for single GPS and BDS in the
case of the same number of outliers, which indicates that the consistency of the identifi-
cation results of the three methods for combined GPS/BDS is better than for single GPS
and BDS. The correct identification probabilities in situations 1, 2 and 3 are shown in
Figures 7, 8 and 9. It is shown by statistical results that the correct identification proba-
bility that the identification results of the three methods meet the situation 1 or 2 are all
greater than 99%, while the correct identification probability in situation 3 is in a range
from 20% to 95%. So, the fault identification result is reliable when the identification
results of the three methods meet either situation 1 or situation 2 that form the consen-
sus voting model. Consequently, the consensus voting model is useful for determining the
outliers.

6.2. Performance test based on real data with single fault. The satellite identifiers of
GPS and BDS are from C01 to C32 and C33 to C67 respectively. A real BDS satellite C34
failure occurred on 2 November 2016. Therefore, the data of the day from station JFNG
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Figure 4. Stations distribution and data sets covering the number of visible satellites and the corresponding
GDOP.

Figure 5. Probability that the identification results of the three methods meet Situations 1, 2 and 3 in the case
of different numbers of outliers for GPS, BDS and GPS/BDS.

Figure 6. Correct identification probability based on GPS, BDS and GPS/BDS with different numbers of
outliers in situation 1.

is used to verify the performance of the improved method in the case of a single fault.
The number of the visible satellites and GDOP of GPS, BDS and GPS/BDS are shown in
Figure 9.

The Chi-square test was used to detect the fault and the significance level a was set to
0·001, namely PFA = 0·001. As can be seen from Figure 10, the positioning errors of BDS
and GPS/BDS from epochs 781 to 821 have an obvious increase, but the positioning errors
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Figure 7. Correct identification probability based on GPS, BDS and GPS/BDS with different numbers of
outliers in situation 2.

Figure 8. Correct identification probability based on GPS, BDS and GPS/BDS with different numbers of
outliers in situation 3.

Figure 9. Number of visible satellites and GDOP at each epoch (cut angle 15◦).

of GPS do not show a significant change. In addition, the results of the Chi-square test in
Figure 11 show that the WSSR of BDS and GPS/BDS are all larger than the corresponding
threshold from epochs 781 to 821. Accordingly, we can determine that there should be
a fault in BDS from epoch 781 to 821. Moreover, we can also find from Figure 10 that
the positioning accuracy of the combined GPS/BDS is better than that of a single system
GPS or BDS due to having more observations in the case of no outliers in observations.
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Figure 10. Positioning error sequence in E and N directions for GPS, BDS and GPS/BDS.

Figure 11. Results of Chi-square test for GPS, BDS and GPS/BDS.

Table 2. Identification results and performance of the four methods.

Faulty Fault Correct Average
Methods identifier epochs probability(%) times

FDE-c C34 781–821 100% 1·05
FDE-d C34 781–821 100% 1·25
FDE-w C34 781–821 100% 1·10
FDE-u C34 781–821 100% 1·05

However, the positioning accuracy will be reduced when there is a fault in GPS or BDS. So,
FDE is important in improving the positioning accuracy. We used the conventional methods
and our improved method to detect and exclude the faults, respectively. The identification
results, correction identification probability and computation complexity of each methods
are listed in Table 2. In order to use statistics easily, the computational complexity is simply
represented by the average times of Chi-square test performed to achieve fault exclusion.
Figures 12 and 13 show the positioning errors and the results of the Chi-square test after
fault exclusion by using the improved method. The results show that the four methods can
all identify the faulty satellite correctly. However, FDE-c and FDE-u methods have higher
efficiency.
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Figure 12. Positioning error sequence in E and N directions after fault exclusion by FDE-u.

Figure 13. Results of Chi-square test after fault exclusion by FDE-u.

6.3. Performance test based on simulation data with multiple faults. To better under-
stand the performance of the improved method under the condition of single GNSS
constellation and multiple GNSS constellations, we used GPS, BDS and GPS/BDS data to
test and compare the performance of the conventional methods and the improved method
in the case of a different number of faults. In each experiment, we used the Monte Carlo
method to simulate the faults and count the false exclusion probability, correct exclusion
probability and the computation complexity of each method. False exclusion occurred
when the excluded satellites by fault exclusion methods did not all have faults. A correct
exclusion is defined as when all the faulty satellites were excluded correctly. The Chi-
square test was also used to detect faults and the value of bias for simulated faults was set
to 1·5∇bi. Table 3 lists the identification results of the four methods at various epochs. The
results show that in the case of multiple faults, the FDE-c, FDE-d and FDE-w methods
sometimes appeared to yield false identification or failed identification and had different
identification results. The correlation analysis methods had a better performance than the
w-test method in the condition of multiple faults. Table 4 shows a performance comparison
of the four methods with a different number of faults. The symbol “×” indicates that there
was invalid data.

As can be seen from Table 4 and Figure 14, for the single GPS system, the correct
identification probability of the improved method was greater than 99% in the case of two
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Table 3. Identification results of the four methods at various epochs.

Methods
No. of Faulty

Epoch System Satellite identifier FDE-c FDE-d FDE-w FDE-u

367 GPS 7 2, 17 2, 17 5, 17 2, 19 2, 17
181 BDS 11 33, 34 33, 34 33, 34 35, 36, 37 33, 34
177 GPS 8 2, 6, 17 2, 6, 17 failed 2, 19, 28 2, 6, 17
242 BDS 12 33, 35, 38 33, 37, 42, 43,

45, 46
35, 37, 42, 43,

46
35, 33, 40, 41,

42, 43
35, 33, 38

857 GPS 9 2, 5, 13, 15 failed failed 20, 21, 24, 29 2, 5, 13, 15
201 BDS 11 33, 34, 35, 36 33, 34, 36, 37,

38, 43
33, 34, 35, 36 35, 36, 38, 41,

42, 43
33, 34, 35, 36

Table 4. Performance comparison of the four methods.

False Probability (%) Correct Probability (%) Average times
No. of
Faults Method GPS BDS GPS/BDS GPS BDS GPS/BDS GPS BDS GPS/BDS

2 FDE-c 7·2 0·0 0·0 92·1 100 100 4·06 4·00 4·00
FDE-d 13·3 0·0 0·0 73·3 100 100 4·01 4·00 4·00
FDE-w 25·7 3·2 0·0 67·2 94·3 100 4·26 4·06 4·00
FDE-u 0·1 0·0 0·0 99·8 100 100 3·03 2·30 2·58

3 FDE-c 15·2 25·5 0·0 79·1 58·6 100 6·01 6·30 6·11
FDE-d 13·8 6·3 0·0 72·2 92·5 100 6·00 6·05 5·98
FDE-w 41·6 40·9 0·4 21·2 37·7 98·1 6·50 7·39 6·25
FDE-u 1·20 0·3 0·0 96·3 99·1 100 5·56 5·91 3·89

4 FDE-c 5·3 20·2 0·0 36·2 79·2 100 8·2 8·15 8·13
FDE-d 4·1 36·6 0·2 52·1 26·5 99·7 8·15 7·91 8·11
FDE-w 3·2 46·3 2·8 17·7 30·1 97·0 8·25 8·48 8·37
FDE-u 3·8 3·3 0·0 91·3 95·4 100 8·33 8·05 5·51

5 FDE-c × × 0·16 × × 99·8 × × 10·12
FDE-d × × 1·12 × × 98·6 × × 9·98
FDE-w × × 18·6 × × 77·7 × × 11·15
FDE-u × × 0·0 × × 100 × × 8·08

6 FDE-c × × 0·37 × × 99·5 × × 12·13
FDE-d × × 4·52 × × 94·0 × × 12·41
FDE-w × × 55·7 × × 40·2 × × 13·09
FDE-u × × 0·0 × × 100 × × 11·45

faults, which increased by 8% compared with the FDE-c method. The correct identification
probability was greater than 90% with three or four faults. Compared with the conventional
methods it increased by 20% to 50%. According to Table 4 and Figure 15, we can find that,
for the single BDS system, the correct identification probability of the improved method
was nearly 100% in the case of two faults, and the correct identification probability was
greater than 95% within three or four faults, increasing 5% to 15% compared with the
conventional methods. In addition, Table 4 and Figure 16 show that, for the combined
GPS/BDS system, the correct identification probability of the improved method was almost
100% in the case of less than six faults. Comparing with the conventional methods, the
computational efficiency of the improved method is reduced by almost half in the case of
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Figure 14. Performance of the four methods based on GPS data with different numbers of faults.

two faults, but it is not significantly reduced in the case of more than three faults under the
condition of the single GNSS system.

The statistical results show that the correct identification probability decreases and that
the computational complexity of the four methods increased with the number of faults.
However, under the same condition, the improved method has higher correct identification
probability, lower false identification probability and higher efficiency compared with the
other three methods. The results also show that the correct identification probability of the
improved method based on the single GPS system is lower than that based on the single
BDS system. This is because the number of visible GPS satellites is lower than in the case
of BDS at a given epoch, resulting in poor redundant observation in some epochs, which
can be seen from Figure 9. In addition, the performance of the improved method based on
a multiple GNSS system constellation is better than for a single GNSS system.

7. CONCLUSIONS. The conventional RAIM algorithms are theoretically based on the
assumption that only one fault happens. They generally have a lower correct identification
probability in the case of multiple faults. Although there has been a previous reliability
theory for multiple faults, it is effective only in regard to two faults. In the case of mul-
tiple faults, the conventional RAIM algorithms often use the forward-backward method
based on a w-test or correlation analysis to exclude multiple faults. However, they have a
lower efficiency and often give erroneous identifications. This paper presents an improved
method for excluding single and multiple faults based on consensus voting using the w-test,
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Figure 15. Performance of four methods based on BDS data with different numbers of faults.

Figure 16. Performance of four methods based on GPS/BDS with different numbers of faults.
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the correlation coefficient, and the correlation distance methods, which combines the iden-
tification results of the three methods to achieve fault exclusion. If the identification results
of the three methods meet the consistency conditions, the probability of false identification
will be very low. Therefore, we can determine that the identification result is a fault and
exclude it without a need to conduct a backward check. If the identification results of the
three methods fail to meet the condition of the consistency check, one needs to traverse
the collection of faults to exclude the faults. The method is invalid if all the fault subsets
are traversed but there are still faults. The experiment results have demonstrated that the
improved method has the same performance as the conventional methods in the case of
single fault and has higher efficiency and identification accuracy in the case of multiple
faults than conventional methods.
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