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INTRODUCTION: INTERACTIVE EPISTEMOLOGY

My daughter finishes school at 3:00 p.m. She knows I know this. So she expects
me to pick her up then. An agent’s knowledge of others agents’ knowledge
influences her expectations and therefore her behavior. Interactive epistemology
studies agents’ knowledge of agents’ knowledge (their interactive knowledge), the
events that shape its structure, and its effect on the agents’ behavior (for example,
their agreeing to disagree). Taken broadly, it covers agents’ beliefs and degrees of
belief, as well as their knowledge. The titles of landmark articles by Robert Aumann
(1999a, 1999b) canonize the term interactive epistemology.
This issue presents current research in interactive epistemology. It covers

common knowledge, backward induction, arguments for common prior
probabilities, interactive knowledge’s influence on the step from degrees of belief
to betting rates, and the combination of dynamic epistemic logic and game theory.
Before previewing the articles, this introduction provides some background.
Suppose that every member of a group knows that p, knows that every member

knows that p, knows that every member knows that every member knows that p,
and so on. Then the group has common knowledge that p. A proposition’s
public announcement may make the proposition common knowledge. Common
knowledge is a key idea of interactive epistemology. Peter Vanderschraaf and
Giacomo Sillari (2009) review its various characterizations, its origin, its role in
inferences, and its significance in game theory.
Mutual knowledge that p obtains in a group just in case all in the group

know that p. Common knowledge entails (1) mutual knowledge that p, (2) mutual
knowledge that mutual knowledge that p, and so on, up an infinite hierarchy of
mutual knowledge. To couch the definition of common knowledge in compact
notation, notation for mutual knowledge helps. Let (EK )p stand for everyone
knows that p. Then let (EK )2p abbreviate (EK )(EK )p, let (EK )np abbreviate a
string of n (EK )’s followed by p, and let (EK )∞p abbreviate for all n, (EK )np. A
group has common knowledge that p if and only if (EK )∞p.
This familiar characterization of common knowledge leaves open arrangement

of quantifiers. Does “all know that all know that p” mean that each knows that all
know that p, or that each knows that each knows that p? Letting K xp abbreviate
x knows that p, does (EK )2p stand for ∀xKx∀yKyp or ∀x∀yKxKyp? The usual
disambiguation takes the second interpretation. Hence, in a group, a member’s
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knowing that all know that p is equivalent to the member’s knowing a conjunction
in which each conjunct expresses a member of the group’s knowledge that p. The
member may know the conjunction without knowing that it covers every member
of the group.
David Lewis introduced common knowledge to explain why people observe

conventions. For realism, he characterized common knowledge in terms of reasons
to believe rather than knowledge.

Let us say that it is common knowledge in a population P that ____ if and only if some state
of affairs A holds such that:

(1) Everyone in P has reason to believe that A holds.
(2) A indicates to everyone in P that everyone in P has reason to believe that A holds.
(3) A indicates to everyone in P that ____. (1969, 56)

According to this definition, common knowledge that p exists in a population
when the members of the population have an infinite hierarchy of reasons for
mutual beliefs, that is, beliefs throughout the population. In a population mutual
beliefs ascend only a few steps up the hierarchy of reasons. Some theorists say that
justified mutual beliefs further up the hierarchy are implicit or tacit. Furthermore,
mutual beliefs held may not amount to knowledge. They may be false despite
being justified by reasons in the hierarchy. Only in ideal cases do beliefs constitute
knowledge and ascend the whole hierarchy of reasons. Robin Cubitt and Robert
Sugden (2003) formalize the distinctive features of Lewis’s account of common
knowledge.
Aumann (1976) characterizes common knowledge using epistemic logic, and

using set theory rather than predicate logic. He defines communal possibility for
a population in terms of epistemic possibility for members of the population. At
a world �, M (�) stands for the set of communally possible worlds. A world �′

is communally possible if and only if within the population a path of epistemic
accessibility goes from � to �′. More precisely, �′ ∈ M (�) if and only if for some
n-tuple of members of the population (not necessarily n distinct members), at � for
the first member a world is possible such that at it for the second member a world
is possible such that at it for the third member a world is possible . . . such that at it
for the nth member �′ is possible. Suppose that agents are ideal and aware of other
agents’ epistemic possibilities. Aumann proves that in a world �, a proposition p is
common knowledge (in the standard sense) if and only if p is true in each element of
M (�). Using communal possibility, agents may conduct inferences about common
knowledge without working through an infinite hierarchy of mutual knowledge.
Inferences involving common knowledge depend on common knowledge’s

characterization and the inference’s objective. In a familiar story illustrating the
relevance of common knowledge to action, two women, Alice and Betty, strangers
to each other, are traveling in a compartment of a train. Each woman’s face bears
the grime of travel. She sees that the other woman’s face is dirty but does not see
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that her own face is dirty. Their compartment tickets issue turns for the lavatory.
As they know, Alice’s turn is first and Betty’s turn is second. Each knows that the
other cleans her face if and only if she knows it is dirty. Neither woman knows her
face is dirty, so neither woman cleans her face.
The train’s conductor enters the compartment to collect tickets and, to be

helpful, mentions that someone has a dirty face. Each woman already knew this,
but now knows that each knows this, knows that each knows this, and so on. The
two women acquire common knowledge that at least one has a dirty face.
After the conductor’s announcement, Alice forgoes her turn to use the lavatory.

She thinks that Betty’s dirty face prompted the conductor’s announcement. Betty
observes that Alice does not clean her face. She infers that Alice does not clean
her face because Alice sees that Betty’s face is dirty. So Betty uses her turn to
wash her face. Common knowledge leads Betty to the conclusion that her face
is dirty.
Inferences involving common knowledge are crucial in games of strategy.

Toward the end of a game of Tic-Tac-Toe, suppose a player knows that unless
she puts an X in the middle of the bottom row, her opponent will put an O there
and win the game. Her prediction of her opponent’s behavior uses her knowledge
that he knows he wins if he puts an O in the middle of the bottom row. Such
knowledge of her opponent’s knowledge directs her placement of an X. A method
of strategic reasoning, backward induction, predicts the move of the last player
to move, then the move of the second to last player to move, and so on until the
first player makes a move using the predictions about subsequent moves. Common
knowledge supports backward induction in sequential games, in which players take
turns making moves.
The vexing backward induction paradox arises from the observation that

backward induction’s predictions assume that players are rational. If a player were
to deviate from these predictions, the deviation would furnish evidence that the
player is not rational. An opponent’s subsequent move should then not rest on
predictions that assume the player’s rationality. Backward induction’s assumptions
appear to be unjustified when it predicts moves following irrational moves. Cristina
Bicchieri (1989) and Philip Pettit and Robert Sugden (1989) present the paradox.
Robert Aumann (1995), Ken Binmore (1996), and Robert Stalnaker (1996, 1998)
debate its resolution.
In a simultaneous-move game, players make moves at the same time, and

so each moves without observation of the other players’ moves. If the players
have common knowledge of their game’s payoff matrix and their rationality,
strict domination may simplify their choices. For a player, one strategy strictly
dominates another strategy if and only if the first strategy is better than the second
strategy, no matter what the other players do. A rational player eliminates a strictly
dominated strategy. Other players, knowing the game’s payoff matrix and the
player’s rationality, know that he eliminates that strategy. Hence they remove it
from the payoff matrix, and each considers whether for her any strategy strictly

203

https://doi.org/10.3366/epi.2011.0017 Published online by Cambridge University Press

https://doi.org/10.3366/epi.2011.0017


Paul Weirich

dominates another strategy in the reduced matrix. If so, she eliminates it, and the
others, knowing that she knows the payoff matrix and is rational, know that she
eliminates it. Hence they remove it from the payoff matrix. This process continues
until the payoff matrix, after reductions, no longer contains for any player a strictly
dominated strategy. Players choose among the strategies that remain after iterated
elimination of strictly dominated strategies.
Besides supporting iterated elimination of strictly dominated strategies, the

players’ common knowledge of their game and their rationality assists the case
for their realization of a solution to their game, that is, a profile of strategies,
one for each player, such that each strategy is rational given the profile. Without
that common knowledge, a rational player may not perform her part of a solution
because she lacks confidence that the other players will do their parts. Adam
Brandenburger (1992) explains how common knowledge of various features of a
game support familiar criteria for a solution.
Aumann and Brandenburger (1995) observe that utility maximization and

knowledge of the strategy profile realized entail realization of a Nash equilibrium,
a profile of strategies such that each is a best response to the others. Only a Nash
equilibrium is such that, given knowledge of its realization, each of its strategies
maximizes utility. Although this result relies on mutual knowledge, not common
knowledge, of the profile realized, common knowledge of the game and the players’
rationality explains mutual knowledge of the profile realized. The explanation
requires a few glosses on the players’ common knowledge.
As a background assumption, a reader of a textbook’s presentation of a game

supposes that all the players know what he knows about the game. Because the
reader knows every relevant feature of the game, the assumption entails that the
players know every relevant feature of the game too. What a player knows is a
relevant feature of the game because it affects the player’s behavior. The reader
knows every relevant fact that any player knows. Hence, by assumption, the players
all know every relevant fact that any player knows. This result (given standard
epistemic logic) is enough to generate the players’ common knowledge of any
relevant fact that any player knows. In the idealized games a textbook presents,
the players have common knowledge of a relevant proposition if at least one player
knows the proposition.
In an ideal game, the assumption that players have common knowledge of

all relevant features of their game replaces the weaker assumption that players
have common knowledge of their payoff matrix. Some knowledge, such as
knowledge of the game’s rules, a player obtains directly. Other knowledge, such
as the player’s knowledge of her choice and its rationality, she infers during
deliberations. A player’s knowledge of the strategy profile realized comes through
inference.
In an ideal game, the players know the strategy profile realized, whatever it is.

For every profile, each player knows that the profile is realized if it is realized.
This hypothetical knowledge covers every profile and not just the profiled realized.
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Knowledge of the profile realized, whatever it is, comes from a player’s knowledge
of his own strategy, whatever it is, and knowledge of the other players’ responses
to his strategy. A player’s knowledge of responses to his strategies I call prescience.
Prescience explains knowledge of the profile realized and also knowledge of
any profile hypothetically realized. Prescience is a product of players’ common
knowledge of their game and their rationality. Their common knowledge explains
the knowledge of conditionals that constitutes prescience.
Imagine a game with the players Row and Column. Row may move Up or

Down, and Column may move Left or Right. Suppose that if Row moves Up,
Column’s best response is Right. Knowledge of conditionals such as “If Up, then
Right” arises from common knowledge. It comes from a player’s knowledge of his
own strategy and an opponent’s adopting a best response to his strategy, and all this
being common knowledge. If Row adopts Up, then he knows this. If he knows his
strategy, then Column knows that he knows. If Column knows that, then Column
knows his strategy. Hence Column adopts a best response. Column knows her
response. Hence Row knows her response. Everything relevant that anyone knows
is common knowledge. Hence it is common knowledge that if Row adopts Up,
then Column adopts Right. By such reasoning, each player attains prescience of
responses. Each knows for each strategy the other’s response. Common knowledge
explains prescience, knowledge of the profile realized, and so realization of a Nash
equilibrium.
Part of a Nash equilibrium’s explanation is a generalization of the principle

of utility maximization. The generalization treats decision problems in which an
agent’s choice provides information about the state of the world that settles
the consequences of his choice. It handles decision problems in games of
strategy where a player’s choice furnishes information about other players’ choices.
According to the generalization, a rational player adopts a strategy that maximizes
utility given its adoption. The strategy is self-ratifying, and so not regretted as soon
as adopted. To verify that a strategy is self-ratifying, a player assumes that she
adopts the strategy. Then she assigns probabilities to other players’ strategies under
that assumption. The assumption grounds the probability assignment.
In a two-person game with a unique Nash equilibrium in mixed strategies, a

pure strategy has the same expected payoff as a player’s Nash strategy given that
his opponent participates in the equilibrium. Why does the player adopt his Nash
strategy? Prescience and ratification furnish reasons. Adopting a pure strategy gives
an agent evidence that his opponent adopts a best response and so a deviation from
her Nash strategy. Given her deviation, his pure strategy does not maximize utility.
It is not self-ratifying.
Weirich (2010, sect. 6.6) shows how prescience arising from common knowledge

supports a Nash equilibrium in an ideal game with a unique Nash equilibrium,
provided that rational agents comply with the principle of ratification. It does this
for the mixed extension of Matching Pennies using a proof that generalizes to every
two-person game with a unique Nash equilibrium.
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These brief remarks about common knowledge, backward induction, and Nash
equilibrium introduce interactive epistemology. The essays that follow advance the
field. They display its richness and subtlety.
Zachary Ernst’s essay, “What Is Common Knowledge?” examines assumptions

of standard characterizations of common knowledge. Because of these
assumptions, familiar models of agents’ knowledge fail to distinguish between
full-blown common knowledge and merely finite levels of interactive (or mutual)
knowledge. Ernst suggests revising accounts of common knowledge to respond
more faithfully to the motivation for Lewis’s definition of common knowledge.
This revision requires attention to cognitive limits, the value of conventions
for cognitively limited agents, and human reliance on heuristics rather than
complicated inferences. The accompanying account of rationality lowers the bar
for choices made under constraints the real world imposes.
In “Logic in a Social Setting,” Johan van Benthem treats information-driven

social action. He describes the effect that backward induction’s account of solutions
to extensive (or sequential) games has on the logic of those games. Dynamic
epistemic logic explains the origin of the players’ common knowledge of their
rationality. A generalization of backward induction uses agents’ beliefs, in particular
their rankings of the game’s possible outcomes according to plausibility. Other
generalizations revise beliefs in light of agents’ previous moves in a game,
revise preferences attributed to agents in light of their previous moves, and use
information about agents’ computational limits and methods of belief revision.
Logic’s job is to abstract uniformities from the complicated models that the
generalizations introduce for the sake of realism. Accounts of social action, which
include reasoning, elucidate logic itself. The combination of logic and game theory
generalized is a theory of play.
In a game with a sequence of stages, backward induction instructs a player

calculating how an opponent will move at a stage to ignore the opponent’s moves
at earlier stages. Whether this is rational depends on the assumptions governing
the game, including the interpretation of counterfactuals about stages that the
players do not reach. Ken Binmore, in “Interpreting Knowledge in the Backward
Induction Problem,” considers whether common knowledge of rationality implies
backward induction in finite games of perfect information, in which a player at a
stage knows the moves made at earlier stages. Binmore argues that if knowledge
is interpreted as commitment, then the implication holds, whereas if knowledge is
interpreted as certitude, then the implication does not hold. He illustrates his points
with several simple sequential games.
Ashton Sperry-Taylor’s essay, “Bounded Rationality in the Centipede Game,”

formulates a theory of rationality for agents with cognitive limits. The essay shows
that agents complying with the normative theory behave in the Centipede Game, a
game in which payoffs increase if agents forego incentives for immediate payoffs,
just as do people in experimental studies of the game. The normative theory
relaxes game theory’s usual idealizations about agents’ cognitive powers, on which
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backward induction’s solution to the Centipede Game rests, and takes account
of a person’s limited ability to look ahead and calculate an opponent’s responses
to moves. Using bounded rationality to account for observed behavior in the
Centipede Game works better than does appealing to social norms, and it enriches
plausible explanations that other theories provide.
Luc Bovens and Wlodek Rabinowicz, in “Bets on Hats,” present a case in which

a group of rational agents with the same goals appear to be open to a Dutch book,
a system of bets that guarantees a loss. They show how strategic considerations
save the group from exploitation. In the case, individual rationality in pursuit of
a common goal leads to collective rationality. Their essay formulates for groups a
restricted version of Bas van Fraassen’s principle of reflection. The new principle
asks members of a group to adjust present probabilities in light of members’
future probability assignments, but only given certain conditions concerning the
members’ prior probabilities and future evidence. Their essay also analyzes the
logic of Dutch book arguments and assesses the interpretation of degrees of belief
as betting rates.
Itzhak Gilboa, in “Why the Empty Shells Were Not Fired,” points out

a problem with an initially appealing argument that agents have a common
prior probability assignment before they acquire information and update their
probability assignments. The argument treats agents in their uninformed state as
“empty shells” ready to receive information. Gilboa argues that these uninformed
agents, if all are epistemically alike and ignorant of their identities, cannot learn their
identities. Updating from a common prior therefore cannot account for agents’
self-knowledge.
These six first-rate essays are a representative sample of the burgeoning field of

interactive epistemology. They invite additional research on the fascinating ideas
that characterize the field. Hearty thanks to Alvin Goldman for encouraging the
collection and directing its production.
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