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We report on a numerical study of turbulent convection driven by a combination of internal
heat sources and sinks. Motivated by a recent experimental realisation (Lepot et al., Proc.
Natl Acad. Sci. USA, vol. 115 (36), 2018, pp. 8937–8941), we focus on the situation where
the cooling is uniform, while the internal heating is localised near the bottom boundary,
over approximately one tenth of the domain height. We obtain scaling laws Nu ∼ Raγ Prχ

for the heat transfer as measured by the Nusselt number Nu expressed as a function of
the Rayleigh number Ra and the Prandtl number Pr. After confirming the experimental
value γ ≈ 1/2 for the dependence on Ra, we identify several regimes of dependence on
Pr. For a stress-free bottom surface and within a range as broad as Pr ∈ [0.003, 10], we
observe the exponent χ ≈ 1/2, in agreement with Spiegel’s mixing-length theory. For a
no-slip bottom surface we observe a transition from χ ≈ 1/2 for Pr ≤ 0.04 to χ ≈ 1/6
for Pr ≥ 0.04, in agreement with scaling predictions by Bouillaut et al. (J. Fluid Mech.
vol. 861, 2019, R5). The latter scaling regime stems from heat accumulation in the stagnant
layer adjacent to a no-slip bottom boundary, which we characterise by comparing the local
contributions of diffusive and convective thermal fluxes.

Key words: turbulent convection

1. Introduction

Thermal forcing is an important driver for turbulence in numerous natural and industrial
flows. Buoyancy greatly impacts the oceanic dynamics of the Earth (Sutherland et al.
2019) and of ice-clad moons (Miquel et al. 2018; Soderlund 2019), atmospheric flows
(Yano, Talagrand & Drossard 2003) and the internal dynamics of planets and stars (Aurnou
et al. 2015; Guervilly, Cardin & Schaeffer 2019). Implications and consequences range
from climate modelling (Plant & Yano 2015) to the generation of magnetic field via the
dynamo effect (Browning 2008; Soderlund, King & Aurnou 2012; Calkins et al. 2015),

† Email address for correspondence: benjamin.miquel@cea.fr

© The Author(s), 2020. Published by Cambridge University Press 900 R1-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

48
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://www.cambridge.org/core/journals/journal-of-fluid-mechanics/jfm-rapids
https://orcid.org/0000-0001-6283-0382
https://orcid.org/0000-0002-4366-3889
mailto:benjamin.miquel@cea.fr
https://doi.org/10.1017/jfm.2020.485


B. Miquel, V. Bouillaut, S. Aumaître and B. Gallet

to cite a few. A global characterisation of such convective flows boils down to the critical
issue of turbulent heat transport: How is the enhanced heat flux related to the temperature
inhomogeneities, the geometry of the system and the properties of the fluid? Owing to the
extremely turbulent nature of the natural and industrial flows of interest, one tries to answer
the questions above by identifying scaling laws that capture the essential mechanisms at
play and are amenable to extrapolations.

Here, we study convection driven by internal sources and sinks (CISS), whose
scaling behaviour departs from the standard set-ups of thermal convection, such as
Rayleigh–Bénard convection (RBC) (Ahlers, Grossmann & Lohse 2009; Chillà &
Schumacher 2012), horizontal convection (HC) (Vreugdenhil, Griffiths & Gayen 2017;
Rocha et al. 2020) or even internally heated convection with a cooling top surface
(Goluskin 2015) or between fixed-temperature plates (Goluskin & van der Poel 2016).
Indeed, the latter set-ups all display thermal boundary layers that greatly throttle the heat
flux, whereas these boundary layers are bypassed in CISS, which results in a more efficient
heat-transport scaling regime. For instance, a recent experimental and numerical study of
CISS in water by Lepot, Aumaître & Gallet (2018) investigated the dependence of the
heat flux with the temperature difference in the fluid. The dimensionless counterpart to
this question amounts to finding a relationship between the standard Nusselt number and
Rayleigh number (see (2.3) for definitions). Lepot et al. (2018) measured Nu ∼ Raγ with
γ ≈ 0.5. This is in strong contrast with RBC experiments and numerical studies where
0.27 ≤ γ ≤ 0.39 (Castaing et al. 1989; Chavanne et al. 1997; Niemela et al. 2000; Ahlers
et al. 2009; He et al. 2012; Doering, Toppaladoddi & Wettlaufer 2019). This range of
measured exponents support the fact that diffusivity coefficients play a role in the RBC
set-up, through the formation of boundary layers that throttle the heat flux.

The scope of the present study is to investigate the variation of the heat flux as the
Prandtl number (defined as the ratio of the fluid diffusivity coefficients, see (2.2)) varies.
Even for the much studied RBC case, such studies remain scarce. In the laboratory, low
Prandtl numbers are reached by employing liquid metal (Fauve, Laroche & Libchaber
1981; Cioni, Ciliberto & Sommeria 1997; Aurnou et al. 2018), which severely hinders
measurements and virtually forbids visualisations. Direct numerical simulations (DNS)
exhibit much more flexibility from the standpoint of diffusivity coefficients and have
proved invaluable for understanding the role on the Prandtl number for both RBC
(Shishkina et al. 2017) and HC (Shishkina & Wagner 2016). In the present study, we
employ DNS to explore the parameter space of CISS. In particular, we scrutinise recent
predictions by Bouillaut et al. (2019) that not only provide a model for the experimental
results of Lepot et al. (2018), but also predict two distinct regimes characterised by
different scaling behaviours with respect to the Prandtl number.

The paper is laid out as follows. The formulation of the governing equations and the
numerical methods are presented in § 2. Models for the heat transfer law are presented
in § 3 and the existence of two different regimes is predicted, depending on the Prandtl
number. These regimes are evidenced in a data set obtained from DNS and presented
in § 4, together with an analysis of the thermal boundary layers. Finally, § 5 contains a
discussion and closing remarks.

2. Governing equations and numerical procedure

2.1. Model and parameters
We consider a horizontal fluid layer of depth H, kinematic viscosity ν, thermal diffusivity
κ , specific heat capacity Cp and thermal expansion coefficient α, all of which are
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Prandtl number dependence of radiatively driven convection

considered constant. The layer is subjected to the vertical gravitational acceleration of
(uniform) magnitude g. We consider the Boussinesq approximation, where the density ρ

is constant and uniform, except in the expression of the buoyancy force. Volumic heat
sources and sinks are present in the bulk of the fluid. In the experiment by Lepot et al.
(2018) and Bouillaut et al. (2019), a powerful spotlight shines visible light through the
transparent bottom of the tank, into dyed water where absorption occurs over a typical
length �. Following Beer–Lambert’s law, the intensity of light decreases exponentially
with the height Z, measured from the bottom surface. Thus, we model the experimental
radiation-induced heating with an exponentially decreasing volumic heat source in the
present numerical work

QL(Z) = P
�

exp (−Z/�)

1 − exp (−H/�)
, (2.1)

where P is the incident light flux at the bottom of the tank (power per unit area), which
gets deposited into the fluid through absorption. In the laboratory experiment, this internal
heat source yields ‘secular heating’ of the fluid, which amounts to a quasi-stationary state
with homogeneous internal cooling Qc(Z) = P/H balancing the radiative heat input, so
that the net power deposited in the fluid layer vanishes:

∫ H
0 (QL(Z) − Qc(Z)) dZ = 0. We

stress the fact that, motivated by the experimental realisations, we are concerned with a
distribution of heat sources that takes on finite values at the boundaries. In that respect,
the problem of interest here crucially differs from previous studies by Barker, Dempsey &
Lithwick (2014), who consider a distribution of heat sources and sinks that vanishes at the
boundaries.

The characteristics of the set-up can be cast into three dimensionless control parameters,
namely the Prandtl number Pr, the flux-based Rayleigh number RaQ and the dimensionless
light absorption length �̃

Pr = ν

κ
, RaQ = αgPH4

ρCpκ2ν
, �̃ = �

H
. (2.2a–c)

The response of the fluid to the imposed flux may be characterised by the magnitude
of the temperature difference ΔT that appears between the bottom plate (Z = 0)

and mid-depth (Z = H/2), and the characteristic flow velocity U. To make contact
with the numerous RBC literature, one can then define the Reynolds number Re, the
temperature-based Rayleigh number Ra and the Nusselt number Nu

Re = UH
ν

, Ra = αgΔTH3

νκ
, Nu = PH

ρCpκΔT
, with RaQ = RaNu. (2.3a–c)

2.2. Dimensionless equations and parameters
The Boussinesq equations are written in a dimensionless form by counting lengths in units
of the depth H, time in units of diffusive time H2/κ and temperature in units of νκ/αgH3.
Thus, the governing equations for the solenoidal velocity field (∇ · u = 0) and temperature
field θ are

Pr−1 (∂tu + u · ∇u) = −∇p + θ êz + ∇2u, (2.4a)

∂tθ + u · ∇θ = ∇2θ + RaQ

⎛
⎝ exp

(
−z/�̃

)

�̃
[
1 − exp

(
−1/�̃

)] − 1

⎞
⎠ , (2.4b)
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where z = Z/H. These governing equations are supplemented with adiabatic boundary
conditions for temperature: ∂zθ = 0 at z = 0, 1. Kinematic boundary conditions are
always impenetrable (w = 0) and either no slip (u = v = 0) or stress free (∂zu = ∂zv = 0)
at the top and bottom. Finally, we consider periodic boundary conditions in the horizontal.

2.3. Numerical procedure
Direct numerical simulations of equations (2.4) are performed with the High-Performance-
Computing code Coral, which employs a Chebyshev–Fourier–Fourier decomposition in
space and a family of implicit–explicit time-stepping schemes. The boundary conditions in
the vertical direction z are enforced using Galerkin basis recombination. Computations are
initialised with either small-amplitude noise or a previous solution and are carried out until
a statistically stationary regime is clearly identified. Coral was already used for studying
CISS in Miquel et al. (2019), where it is benchmarked against analytical solutions. The
non-periodic version of Coral has also been benchmarked against the numerical solutions
obtained by Lepot et al. (2018) using the solver Dedalus (Burns et al. 2020), for Pr = 1
and 7.

3. Scaling arguments

For completeness, we recall in broad strokes the scalings predicted by Bouillaut et al.
(2019). Experiments and numerical simulations indicate that the large-scale flow consists
of turbulent convection cells of aspect ratio close to one, the velocity of which obeys the
free-fall scaling law U ∼ √

αgΔTH.

3.1. Bulk transport
As a fluid element circles around a turbulent convection cell, it rapidly heats up in the
region z � �̃, while it slowly cools down in the region z � �̃. In other words, the heat input
inside the region z � �̃ is carried outside the heating region by the flow, which amounts to
a balance between the source term and the horizontal advection term in the heat equation

ρCpU∂xT ∼ P
�
. (3.1)

Upon inserting the free-fall velocity estimate, the balance above yields an estimate ΔTbulk

for the temperature difference between the heating region z � �̃ and the bulk region z � �̃.
In dimensional and dimensionless form:

(ΔTbulk)
3 ∼ P2H

αgρ2C2
p�

2 , Nu ∼ �̃
√

RaPr. (3.2a,b)

The reasoning above and the associated ΔTbulk do not take into account the velocity
boundary conditions at the bottom plate. In the next section, we show that the latter
can induce a possibly stronger temperature difference ΔTBL between the immediate
vicinity of the bottom boundary and the heating region z � �̃. The total temperature
difference between the bottom plate and the bulk region z � �̃ is then estimated as
ΔT = ΔTBL + ΔTbulk.
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3.2. Stagnant layers near no-slip boundaries
The scaling law (3.2) may be modified in the case of a no-slip bottom boundary condition.
Indeed, the stagnant layer in the immediate vicinity of the bottom plate accumulates heat,
and without efficient advection outside this region, the heat can only be diffused away.
This leads to a thermal boundary layer of thickness δΘ . Balancing the heat source term
with the diffusive one estimated inside the boundary layer leads to

ρCpκ
ΔTBL

δ2
Θ

∼ P
�
, (3.3a)

yielding

ΔTBL = PH2

ρCpκ�

δ2
Θ

H2 . (3.3b)

A final relation between the Nusselt number and the Rayleigh and Prandtl numbers is
obtained by supplementing (3.3) with a scaling estimate of the boundary-layer thickness
δΘ . The latter depends crucially on the Prandtl number: in the case of low Prandtl
fluids, a naive laminar estimate would lead to a thermal boundary layer thicker than the
kinematic one. However, one expects vigorous turbulent mixing outside the kinematic
boundary layer, so that both boundary layers end up having the same thickness. We obtain
δΘ ∼ H/

√
Re. Upon estimating the Reynolds number using the free-fall velocity scaling

(based on ΔTBL in a worst-case scenario), equation (3.3) becomes

(ΔTBL)3 ∼ P2H
αgρ2C2

p�
2

ν2

κ2 , (3.4)

which remains negligible compared with the bulk temperature jump from equation (3.2)
when Pr 	 1. As a consequence, the scaling law Nu ∼ �̃

√
RaPr remains valid and is not

modified by the stagnant bottom layer for Pr 	 1.
The situation is crucially different for high Prandtl fluids. The thermal boundary layer

is much thinner than, and nested into, the kinetic one. The flow in the vicinity of the
no-slip bottom surface is perceived by the thermal boundary layer as a parallel shear
flow, the bottom shear S(0) being estimated as S(0) ∼ U/δν ∼ U

√
Re/H ∼

√
U3/Hν.

The boundary-layer thickness is set by a balance between slow advection by the shear ,
at a speed S(0)δΘ , and vertical diffusion

ρCpS(0)δΘ

ΔTBL

H
∼ ρCpκΔTBL

δ2
Θ

, (3.5a)

so that
δΘ

H
∼

(
κ

S(0)H2

)1/3

∼ 1
Re1/2Pr1/3 . (3.5b)

Inserting this expression for the thermal boundary-layer thickness into equation (3.3), one
gets the temperature jump associated with the sheared thermal layer and the associated
dimensionless heat flux

(ΔTBL)3 ∼ P2H
αgρ2C2

p�
2

(ν

κ

)2/3
, Nu ∼ �̃Ra1/2Pr1/6. (3.6a,b)

Noticeably, a comparison with equation (3.2) informs us that the temperature jump in the
stagnant boundary layer dominates the temperature jump in the bulk: ΔT 
 ΔTBL when
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Pr � 1. This observation results in a modification of the Nusselt number scaling law due
to boundary-layer corrections, see equation (3.6).

The last case that requires our attention is the case of high Prandtl number flows
with a stress-free bottom surface. Within the thermal boundary layer, the flow is well
approximated by a uniform parallel flow with velocity U ∼ √

αgΔTBLH. Here, in view
of finding hypothetical boundary-layer corrections, we assume again that the overall
temperature difference is dominated by the contribution from the boundary layer ΔTBL,
before testing this assumption a posteriori. A triple balance between horizontal advection,
diffusion through the layer and heating yields

ρCp
√

αgΔTBLH
ΔTBL

H
∼ ρCpκ

ΔTBL

δ2
Θ

∼ P
�
. (3.7)

This balance is similar to the bulk balance (3.1). Some straightforward algebra confirms
that a transport law identical to (3.2) is found. We conclude that no boundary-layer-induced
corrections to the heat-transport scaling law are necessary in this case.

To summarise, the scaling theory results in the following predictions for the
dimensionless heat flux:

Nu =

⎧⎪⎪⎨
⎪⎪⎩

c1 �̃
√

RaPr with stress-free b. c., ∀Pr,

c2 �̃
√

RaPr with no-slip b. c., Pr 	 Pr∗,

c3 �̃Ra1/2Pr1/6 with no-slip b. c., Pr � Pr∗,

(3.8)

where the dimensionless prefactors ci remain to be determined. The transition Prandtl
number Pr∗ is estimated by equating the two no-slip predictions at Pr = Pr∗, which yields
Pr∗ = (c3/c2)

3.

4. Observations of the two regimes

We now turn to an extensive numerical study, with the goal of (i) assessing the
validity of the scaling predictions (3.8), (ii) estimating the transition Prandtl number
Pr∗ and (iii) determining the dimensionless prefactors ci, so that (3.8) can be used
as a quantitative relation in cases of practical interest. Throughout this section, the
dimensionless absorption length is set to �̃ = 0.1. The domain is cubic with periodic
boundary conditions in the horizontal and with insulated top and bottom boundaries. The
top boundary condition is always no slip, and the bottom one is either stress free or no slip.

4.1. Heat flux scalings
Guided by the prediction (3.8) and the observations by Lepot et al. (2018) for Pr = 1
and 7, we represent in figure 1(a) the Nusselt number Nu compensated by

√
Ra for data

obtained in a suite of DNS runs with almost logarithmically equispaced Prandtl number
values: Pr ∈ {0.003, 0.01, 0.03, 0.1, 0.3, 1, 3, 10}. We observe that, for a fixed Prandtl
number (a given colour on the figure), the data form a plateau as the thermal forcing RaQ
varies. This confirms that the scaling exponent γ = 0.5 is universal and does not depend
on the Prandtl number, in line with prediction (3.8).

We now turn to the central question of this paper – the Prandtl number dependence –
which amounts to analysing the height of the plateaus in figure 1(a). In this logarithmic
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FIGURE 1. (a) Compensated heat flux Nu/
√

Ra as a function of the Rayleigh number Ra for
no-slip boundary conditions. The colour code is for the Prandtl number Pr, while the heating
intensity as measured by RaQ/Pr2 is encoded in the shape of the symbols. For convenience, we
provide a correspondence between the parameter RaQ/Pr2 and the Reynolds number Re. This
colour/shape code is employed consistently thereafter throughout the paper. (b) Compensated
heat flux Nu/

√
RaPr as a function of Pr for no-slip (filled symbols) and stress-free (open

symbols) bottom boundaries.

representation, the plateaus are separated by a distance that seems to vary with the Prandtl
number.

To better characterise this effect, we turn to figure 1(b) where we plot the heat flux
compensated by

√
RaPr – the scaling prediction (3.8) in the absence of boundary-layer

correction – as a function of the Prandtl number. Upon this rescaling, the data points for
no-slip boundary conditions (filled symbols) fall on a master curve that exhibits: (i) a
plateau for Pr � 0.04, providing evidence for the Nu ∼ √

RaPr scaling at low Prandtl
numbers; (ii) a scaling law with slope −1/3 for Pr � 0.04 which, when combined with
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FIGURE 2. (a) Temperature profiles averaged in time and along horizontal directions x and y, for
Pr = 3, RaQ = 3 × 1010, with either a no-slip (blue) or a stress-free (orange) bottom boundary.
(b) Time and horizontally averaged contributions to the total heat flux. Solid lines represent
the diffusive flux −∂zθ , whereas dashed lines represent the convective flux wθ . Coloured circles
materialise zmax, the altitude where the diffusive flux is maximum. For a no-slip bottom boundary
(top panel), the thin horizontal black line represents the altitude z∗ where the diffusive and the
convective fluxes are equal (see text).

the rescaling of the figure, suggests the Nu ∼ Ra1/2Pr1/6 scaling predicted at high Prandtl
numbers.

By contrast, the data points obtained for stress-free boundary conditions (open symbols)
reasonably form a plateau, as they exhibit variations of less than 30 % when Pr spans three
and a half decades. This observation validates the mixing-length scaling Nu ∼ √

RaPr at
all Prandtl numbers for stress-free boundary conditions.

To summarise, the numerical data are fully compatible with the prediction (3.8), with
the following values for the dimensionless prefactors and transition Prandtl number: c1 =
c2 
 0.38, c3 
 0.13, which leads to Pr∗ = (c3/c2)

3 
 0.04.

4.2. Boundary-layer structure: no-slip case
We have established that, in the high Prandtl number regime Pr � 0.04, thermal transfer
laws differ for a no-slip and a stress-free bottom boundary and are accurately captured
by the scaling prediction (3.8). To validate a posteriori the underlying assumptions of the
model, we now examine the structure of the boundary layers in the DNS flows.

The structure of the thermal boundary layer is illustrated in figure 2 for a value of
the Prandtl number Pr = 3 that lies comfortably within the high Prandtl number regime,
where a clear departure is observed between no-slip and stress-free bottom boundaries. In
this figure, we display the vertical temperature profiles θ̄ , where the overline denotes an
average along the horizontal directions and over time. Upon examination, the temperature
profiles are strikingly similar for no-slip and stress-free cases in the bulk of the flow, while
the no-slip case develops strong boundary layers associated with a large temperature jump
at the bottom of the layer.
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FIGURE 3. Structure of the boundary layers as Pr and RaQ vary. We represent the dimensionless
thickness of the thermal boundary layer δΘ/H defined as the depth where the diffusive flux is
maximum (see figure 2b), represented as a function of the dimensionless shear at the bottom
plate S(0)H2/κ = ∂z

√
u2 + v2. Dashed line: prediction from (3.5).

Beyond the mere temperature profiles, we analyse the thermal energy fluxes in
the vicinity of the bottom bounding surface in figure 2(b). For no-slip boundary
conditions, the diffusive flux ∂zθ(z) grows linearly with the distance from the wall z. As
a consequence, the diffusive flux strongly dominates the purely convective flux wθ(z),
which exhibits a slower quadratic growth with z. As z increases, the diffusive flux reaches
a maximum at distance zmax and decreases again. Advection and diffusion contribute in
equal proportions to the heat transfer at a comparable height z∗, where ∂zθ(z∗) = wθ(z∗).
Above z∗ is the bulk, where pure convection proves the most efficient mechanism.

Being able to extract a thermal boundary-layer thickness from the numerical solutions,
we now turn our attention to the validity of the sheared boundary-layer assumption (3.5)
near a no-slip boundary. The dimensionless bottom shear S(0)H2/κ is estimated as

S(0)H2/κ = ∂z

√
u2(x, y, z, t) + v2(x, y, z, t)|z=0. (4.1)

The boundary-layer thickness measured by zmax is displayed in figure 3 as a function of this
dimensionless bottom shear, for all the data gathered with no-slip boundary conditions.
A good collapse is observed, and the data for large Prandtl number validate the shear layer
structure assumed in (3.5). The approach to this asymptote proves rather slow, because the
kinetic boundary layer is only moderately thicker than the thermal one for the highest Pr
achieved in this study (approximately 3 times thicker for Pr = 10).

4.3. Boundary-layer structure: stress-free case
Returning to figure 2(b), the examination of the energy flux profiles in the stress-free case
yields a much different scenario. In contrast with the no-slip case, both the convective flux
wθ and the diffusive flux ∂zθ grow linearly with the distance z to the bottom boundary.
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As a first consequence, the ratio between these two fluxes remains asymptotically of O(1)

as the distance to the wall decreases. Moreover, energy transfers are dominated by pure
convection as wθ > ∂zθ for any altitude z. All these observations are in strong support
of the working hypotheses used for deriving prediction (3.8), and thus shed light on the
(non-purely diffusive) nature of the boundary layers that result in the Nu ∼ √

RaPr scaling
observed for all Pr in figure 1.

5. Discussion and conclusion

We have characterised the dimensionless heat flux arising in convection driven by
internal heat sources and sinks, focusing on the influence of the diffusivity ratio.
Combining the present results with the conclusions of Lepot et al. (2018) and Bouillaut
et al. (2019), we have answered the question raised at the outset – the scaling behaviour of
the enhanced heat flux – by proposing the compact scaling relation (3.8) for the Nusselt
number. While the scaling exponents appearing in this expression are most likely robust
features of CISS, the precise values of the prefactors c1, c2 and c3 may very well depend on
details of a given system. For instance, extracting the prefactor c3 from the experimental
data obtained by Lepot et al. (2018) in a cylindrical container with a stress-free top
boundary leads to approximately 0.9. Their DNS data in a cube with stress-free sidewalls
yield a value closer to c3 
 1.1, while the present DNS data with periodic boundary
conditions in the horizontal lead to c3 
 1.3.

When a stress-free bottom boundary is considered, we have established that the heat flux
follows the standard mixing-length prediction Nu ∼ √

RaPr, both in terms of Rayleigh and
Prandtl number. When the bottom boundary condition is no slip, the mixing-length scaling
regime is observed at low Prandtl number, Pr ≤ 0.04. As most astrophysical fluids of
interest have a low Prandtl number, this confirms that the associated flows would lead to the
mixing-length scaling regime regardless of the bottom boundary condition. The present
set-up thus offers a clear realisation of the scaling laws believed to hold in astrophysical
contexts.

However, for Pr > 0.04 and a no-slip bottom boundary, we find that the stagnant layer
in the vicinity of the latter is conducive to a modification of the Prandtl number exponent:
Nu ∼ Ra1/2Pr1/6. This scaling is well captured by modelling the bottom thermal boundary
layer as a sheared layer nested inside the kinetic boundary layer. We confirmed this picture
through an analysis of the temperature and heat flux profiles extracted from our suite of
DNS. This Pr = O(1) situation could be relevant to the atmosphere, in situations where the
latter is subject to both infrared heating and cooling (Deardorff 1974). The no-slip bottom
boundary and the associated stagnant layer would then crucially impact the temperature
profile in the atmospheric boundary layer. But this situation is also relevant to laboratory
realisations of CISS (Lepot et al. 2018; Bouillaut et al. 2019), which use water (Pr = 7)
together with a no-slip bottom boundary. Several approaches can be envisioned to achieve
the Nu ∼ √

RaPr scaling in such a laboratory experiment. Following the numerical study
of Barker et al. (2014), one approach would consist in artificially picking a distribution
of sources and sinks that vanishes at the top and bottom boundaries, but there is no
simple experimental way of tailoring the heat source distribution. A more natural approach
from the experimental standpoint would be to use a fluid with a Prandtl number far
below Pr∗ = 0.04, but that again seems rather impracticable. Finally, our study suggests
a third and much more promising route towards observing the Pr1/2 dependence of the
Nusselt number experimentally: tweaking the bottom boundary condition to make it as
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close as possible to a stress-free one, by stacking two layers of immiscible fluids, a heavy
transparent one below a lighter light-absorbing one.
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