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Bounded Depth Ascending HNN
Extensions and m;-Semistability at infinity

Michael L. Mihalik

Abstract. A well-known conjecture is that all finitely presented groups have semistable fundamental
groups at infinity. A class of groups whose members have not been shown to be semistable at infinity
is the class A of finitely presented groups that are ascending HNN-extensions with finitely gener-
ated base. The class A naturally partitions into two non-empty subclasses, those that have “bounded”
and “unbounded” depth. Using new methods introduced in a companion paper we show those of
bounded depth have semistable fundamental group at infinity. Ascending HNN extensions produced
by Ol'shanskii-Sapir and Grigorchuk (for other reasons), and once considered potential non-semistable
examples are shown to have bounded depth. Finally, we devise a technique for producing explicit ex-
amples with unbounded depth. These examples are perhaps the best candidates to date in the search
for a group with non-semistable fundamental group at infinity.

1 Introduction

A one-ended finitely presented group has semistable fundamental group at infinity if
it acts geometrically on some (equivalently any) simply connected and locally finite
complex X with the property that any two proper rays in X are properly homotopic.
If G has semistable fundamental group at infinity, then one can unambiguously de-
fine the fundamental group at infinity for G. The conjecture that all finitely presented
groups have semistable fundamental group at infinity has been studied for over 40
years. If G is an ascending HNN extension with finitely presented base group, then
indeed, G has semistable fundamental group at infinity ([Mih85]), but since the early
1980 it has been suggested that the finitely presented groups that are ascending HNN
extensions with finitely generated base may include a group with non-semistable fun-
damental group at infinity. We show that ascending HNN extensions naturally break
into two non-empty classes, those with bounded depth and those with unbounded
depth. Those with finitely presented base have bounded depth (by definition). Our
main theorem shows that bounded depth finitely presented ascending HNN exten-
sions with finitely generated base groups have semistable fundamental group at in-
finity. Semistability is equivalent to two weaker asymptotic conditions on the group
holding simultaneously. We show one of these conditions holds for all ascending
HNN extensions, regardless of depth. Before this paper, the only unbounded depth
ascending HNN extension we were aware of was one whose base was in fact normal in
the overgroup. Such groups have semistable fundamental group at infinity for other
reasons. A technique for constructing ascending HNN extensions with unbounded
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depth is developed in Section 4 (see Theorem 4.5). We consider this construction to
be the best attempt so far to produce a group with non-semistable fundamental group
at infinity.

If H is a group, and ¢: H — H is a monomorphism, then the notation
(t,H:t'ht = ¢(h)) stands for a presentation of a group G with generators {¢} U H
and relation set {t 'ht = ¢(h) for all h € H} union all relations for H. The group G is
usually denoted H*4 and called an ascending HNN extension with base H and stable
letter t. By Britton’s lemma, the obvious map of H into G is an isomorphism onto its
image. If F(A) is the free group on the set A, ¢: A - F(A) is a function and R is a
set of A-words, then the group G with presentation

P=(t,A:R,t"at=¢(a)forallacA)

is an ascending HNN extension with base group A, the subgroup of G generated by A.
It is important to note that {(A:R) need not be a presentation for A. For each integer
n>0andr € R, ¢"(r) may not be in the normal closure of R in F(A), but certainly
¢" (r) isarelator of A. In fact, when A is finite, one would rarely expect A to be finitely
presented. The relations t at = ¢(a) are called conjugation relations.

Semistability of the fundamental group at infinity for a finitely presented group is
a geometric notion discussed in §2. If a finitely presented one-ended group G has
semistable fundamental group at infinity, then the fundamental group at infinity of G
is independent of base ray. It is unknown if all finitely presented groups are semistable
at infinity. To date, the strongest result in the theory of semistability and simple con-
nectivity at oo for ascending HNN extensions is the following theorem.

Theorem 1.1 (M. Mihalik [Mih85]) Suppose H is a finitely presented group ¢: H -~ H
is a monomorphism and G = (t, H : t 'ht = ¢(h)) is the resulting HNN extension.
Then G is one-ended and semistable at infinity. If additionally, H is one-ended, then G
is simply connected at infinity.

The line of proof used for this result fails when H is only finitely generated, and it
has been suggested since the 1980’s that a promising place to search for a group with
non-semistable fundamental group at infinity is among the finitely presented ascend-
ing HNN extensions with finitely generated base. More specifically, A. OI'shanskii and
M. Sapir [0S02,0S01] have constructed a finitely generated infinite torsion group I
and finitely presented ascending HNN extension G with base J{, which has been sug-
gested as a possible group with non-semistable fundamental group at infinity.

In §4, we show that the collection of finitely presented ascending HNN extensions
of finitely generated groups is naturally divided into two classes, those with what is
called bounded depth and those of infinite/unbounded depth. The Ol'shanskii-Sapir
group G has bounded depth and is semistable at infinity by our main theorem.

Theorem 1.2  Suppose G is a finitely presented ascending HNN extension of a finitely

generated group A and G has bounded depth. Then G has semistable fundamental group
at infinity.
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Semistable fundamental group at infinity for finitely generated groups was defined
in the mid-1980’s ([Mih86]). While we are not concerned with that notion here, the
following result ([Mih86, Theorem 4]) is connected to the ideas in this paper.

Theorem 1.3  Suppose G is an ascending HNN extension of a finitely generated one-
ended group A. If A is semistable at infinity, then G is semistable at infinity.

To prove Theorem 1.2 we use the main theorem of [GGMa], which implies that a
finitely presented group G has semistable fundamental group at infinity if and only if
two (somewhat orthogonal) weaker semistability conditions hold for G. The rest of
the paper is organized as follows.

In Section 2, we define semistability at infinity for spaces and groups, and list a
number of equivalent formulations of this notion. Two weaker notions, the semistablil-
ity of a finitely generated subgroup J in an over group G and, the co-semistability of
J in G are defined.

In Section 3 we prove that if A is an infinite finitely generated base group of a finitely
presented ascending HNN extension G and f is the stable letter, then for any N > 0,
tN At~V is semistable at infinity in G (regardless of depth). By the main theorem of
[GGMa], this reduces the proof of our main theorem to showing that G satisfies the
second semistability condition of [GGMal].

In Section 4 we review the combinatorial group theory of ascending HNN groups
and define what it means for such a group to have bounded depth. Examples of Grig-
orchuk and Ol'shanskii-Sapir of ascending HNN extensions with bounded depth are
reviewed and a method for constructing ascending HNN extensions with unbounded
depth is given.

In Section 5 the bulk of the proof of our main theorem is given. We show that if
G is an ascending HNN extension of a finitely generated group A, P is a finite HNN
presentation with bounded depth for G, and X is the Cayley 2-complex for P, then
for each compact subset C of X, there is an integer N(C) > 0 such that tN AtV is
co-semistable at infinity in X with respect to C. We also prove a result (Theorem 5.11)
that considers the case when A is finitely presented and connects this case to several
papers already in the literature. When A is finitely presented and C is compact in X,
we show there is an integer N(C) > 0 and compact set Q(C) containing C such that
loops in X — (N At™V)Q are homotopically trivial in X — (tNAt™N)Q.

2 The Basics of Semistability at infinity for Groups

Suppose K is a locally finite connected CW complex. A ray in X is a map
r: [0,00) — K. The space K has semistable fundamental group at infinity if any
two proper rays in K converging to the same end are properly homotopic. Suppose
Co, Cy, ... is a collection of compact subsets of a one-ended locally finite complex K
such that C; is a subset of the interior of C;;; and U2, C; = K, and r: [0,00) — K is
proper, then 717° (K, r) is the inverse limit of the inverse system of groups:

7T1(K-C0,1’)<—7'[1(K—C1,T)<—"'.
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This inverse system is pro-isomorphic to an inverse system of groups with epimorphic
bonding maps if and only if K has semistable fundamental group at infinity. When K
is one-ended with semistable fundamental group at infinity, 777° (K, r) is independent
of proper base ray r.

If for any compact set C in K there is a compact set D in K such that loops in K- D
are homotopically trivial in X — C (equivalently the above inverse sequence of groups
is pro-trivial), then K is simply connected at infinity .

There are a number of equivalent forms of semistability that are collected as [CM14,
Theorem 3.2].

Theorem 2.1 (G. Conner and M. Mihalik [CM14]) Suppose K is a locally finite,
connected, and one-ended CW-complex. Then the following are equivalent.

(i) K has semistable fundamental group at infinity.

(ii) For any proper ray r: [0,00) — K and compact set C, there is a compact set D
such that for any third compact set E and loop « based on r and with image in
K - D, a is homotopic rel{r} to a loop in K — E, by a homotopy with image in
K-C.

(iii) For any compact set C there is a compact set D such that if r and s are proper rays
based at v and with image in K — D, then r and s are properly homotopic rel{v},
by a proper homotopy in K — C.

If K is simply connected, then a fourth equivalent condition can be added to this list.

(iv) Proper rays r and s based at v are properly homotopic rel{v}.

If G is a finitely presented group and Y is a finite complex with 7;(Y) = G, then G
has semistable (resp. simply connected) fundamental group at infinity if the universal
cover of Y has semistable (resp. simply connected) fundamental group at infinity. This
definition only depends on the group G.

In [GGMa] we consider finitely generated groups acting (perhaps not
co-compactly) as covering transformations on one-ended CW complexes X, and we
say what it means for such a group to be semistable at infinity in X with respect to a
given compact subset of X. In this paper we only need consider a more simple notion.
Suppose A is a finitely generated infinite subgroup of a finitely presented one-ended
group G. Say A U 8 is a finite generating set of G, where A generates A. Let X be the
Cayley 2-complex for some finite presentation P (with generating set A U 8) of G. So
X is the simply connected 2-dimensional complex with 1-skeleton equal to the Cayley
graph of G with respect to A US8. The vertex set of X is G and each edge of X is labeled
by an element of A US. For each vertex v of X and relation r of P there is a 2-cell with
boundary equal to the edge path loop at v with edge labels spelling the word r. Let *
be the identity vertex of X. Let A(A, A) c X be the Cayley graph of A with respect to
A. If g € G and q is an edge path in gA, then q is called an A-path in X. Note that g
is an A-path if and only if each edge of g is labeled by an element of A.

If g € G and C is compact in X, then we say gAg™" is semistable at infinity in X
(or in G) with respect to C if there is a compact set D(C) c X such that if r and s are
two proper edge path rays in gA(A, A) — D based at the same vertex v € gA, then r
and s are properly homotopic rel{v} by a proper homotopy in X — C. This definition
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is equivalent to the one of [GGMa]. If gAg™" is semistable at infinity with respect to
every compact subset of X, then we say gAg™ is semistable at infinity in X (or in G).
If A is one-ended and semistable at infinity, then gAg™" is always semistable at infinity
in X (G).

In Section 3 we prove the following proposition.

Proposition 2.2 If G is a finitely presented ascending HNN extension of a finitely gen-
erated infinite group A and t is the stable letter, then for all N > 0, tN At™N is semistable
at infinity in G.

The main theorem of [GGMa] is significantly more general than Theorem 2.3. In
[GGMa], the main result does not require an overgroup G acting cocompactly on Y,
only that Y be one-ended and for each compact subset C of Y, the existence a finitely
generated group J acting as covering transformations on Y and satisfying conditions
(i) and (ii) below. The notion of a group J being co-semistable at infinity in a space is
a bit technical, and we define this afterwards.

Theorem 2.3 (R. Geoghegan, C. Guilbault, and M. Mihalik [GGMa]) Suppose G is
a one-ended finitely presented group acting cocompactly by covering transformations on
a simply connected locally finite CW-complex Y. If for each compact set C c Y there is
an infinite finitely generated subgroup ] of G such that

(i) J is semistable at infinity in Y with respect to C and
(ii) ] is co-semistable at infinity in Y with respect to C,

then Y (and hence G) has semistable fundamental group at infinity.

The converse of Theorem 2.3 is rather straightforward. In fact, if Y (equivalently G)
has semistable fundamental group at infinity, then suppose C is any compact subset
of Y and ] is any infinite finitely generated subgroup of G, then conditions (i) and (ii)
hold for J and C. Interestingly, our proof of the main theorem of this paper relies on
selecting different groups J for different compact sets C satistying (i) and (ii). We apply
Theorem 2.3 when G is an ascending HNN extension of a finitely generated group A,
and G acts cocompactly on Y the Cayley 2-complex of G with respect to some finite
HNN presentation P (see §1). In our situation, all of the subgroups J of Theorem 2.3
will have the form t¥ At™ for some N > 0. Proposition 2.2 resolves Theorem 2.3(i)
for all compacts sets. All that remains to be shown is that for each compact set C in X
there is an integer N(C) > 0 such that t¥ At~ is co-semistable at infinity in Y with
respect to C. We now define what that means.

Suppose ] is an infinite finitely generated group acting as covering transformations
on the one-ended, simply connected, and locally finite CW-complex Y. A subset S
of Y is bounded in Y if S is contained in a compact subset of Y. Otherwise, S is
unbounded in Y. Let q: Y — J\Y be the quotient map. If K is a subset of Y, and
there is a compact subset C; of Y such that K ¢ JC; (equivalently q(K) has image
in a compact set), then K is a J-bounded subset of Y. Otherwise K is a J-unbounded
subset of Y. If r: [0, 00) — Y is a proper edge path ray and gr has image in a compact
subset of J\Y, then r is said to be J-bounded. Equivalently, r is a J-bounded proper
edge path ray in S if and only if r has image in JC; for some compact set C; c Y.
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Let * be a base vertex in Y. When r is J-bounded, there is an integer M (depending
only on C; and fixed terms) such that each vertex of r is (using edge path distance)
within M of a vertex of J* c Y.

We say ] is co-semistable at infinity in Y with respect to the compact subset C of Y if
there is a compact subcomplex C; of Y such that for each J-unbounded component
U of Y — (JC;), and any J-bounded proper ray r in U “loops in U and based on r
can be properly pushed to infinity along r, avoiding C”. More specifically, for any
loop «: [0,1] —» U with a(0) = a(1) = r(0) there is a proper homotopy H: [0,1] x
[0,00) = Y—Csuch that H(#,0) = a(t) forall t € [0,1] and H(0,s) = H(L,s) = r(s)
forall s € [0, 00).

3 Base Group Semistability in an Ascending HNN Extension

In this section, we prove three lemmas that imply Proposition 2.2. This shows that an
infinite finitely generated base group is always semistable at infinity in an ascending
HNN extension (regardless of bounded or unbounded depth). Begin with a finite
presentation for a group G that is an ascending HNN extension with base group a
finitely generated group A with finite set of generators A:

P= (t,.A : R, t'at = ¢p(a) foralla e .A).

Here R is a finite subset of the free group F(A). Consider the homomorphism
Py: G — Z that kills the normal closure of A. If g € G and Py(g) = N, we say g is
in level N. Let X be the Cayley 2-complex for the presentation P of G. Then P, can
be extended to P: X — R by taking each 2-cell corresponding to an element of R to
Py (v) for any vertex v of the cell, and if D is a 2-cell corresponding to a conjugation
relation t'at = ¢(a) for a € A, then P maps D to the interval [N, N + 1] (where the
edge of D corresponding to a € A is mapped by P, to N and those corresponding to
¢(a) are mapped to N + 1), in the obvious way.

Lemma 3.1 Lete: [0,1] > X be an edge in X with label a € A such that e(0) = v
and e(1) = w. Let r, and r,, be the edge path rays at v and w (respectively) each of
whose edges is labeled t. There is a proper map H,: [0,1] x [0,00) — X such that
H,(t,0) = e(t), Ho(0,t) = r,(t)), He (1, t) = (), and P(H,([0,1]x[N,N+1])) c
[P(v) + N,P(v) + N +1].

Proof On [0,1] x [0,1], define H, to have image the 2-cell at v with boundary label
at$(a~')t™!. Tterate to define H, as in Figure 1. Note that if ¢(a) has length L, then
the image of H, on [0,1] x [1,2], consists of L conjugation relation 2-cells (each of
which is mapped by P to [P(v) + 1, P(v) +2]).

To see that H, is proper, let C be compact in X. Then P(C) c [-N, N] for some
integer N > 0. But then H,'(C) c [0,1] x [0, |P(v)| + N]. ]

Recall A is the Cayley graph of A with respect to A, and we assume * € A ¢ X
where * is the identity vertex.

Lemma 3.2 Suppose C is compact in X. There are only finitely many A-edges e in A
such that the image of H, (see Lemma 3.1) intersects C.
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Figure I: Constructing and projecting H.,.

Proof Ifv e A,letr, bethe proper edge pathray atv, each of whose edges is labeled .
If e is an edge of A with initial point v, then P(v) = 0. Let H, be the proper homotopy
of Lemma 3.1. For any integers S > R > 0, P(H,([0,1] x [R,S])) c [R, S]. Say that
P(C) c [-N, N] for N > 0. Then for any edge e of A,

H.([0,1]]x[N+100))nC=0

(since P(C) c [-N,N] and PH,([0,1] x [N +1,00)) c [N + 1,00)). Assume
A={ay,...,a,}. Let Lbethelength of the longest word in the set {$(a;), ..., ¢(an)}.
So for any integer K > 0, the length of the A-word H,([0,1] x {K} is < LX (if e has
label a € A, then H,([0,1] x {K} has label $X(a)). For any edge e of A with initial
vertex v,

H,([0,1] x [0,N]) € S£" N (v).

There are only finitely many vertices v of A such that St *£(v) 1 C # @, and so there
are only finitely many edges e of A such that the image of H, intersects C. ]

Lemma 3.3  Suppose s = (So,S1,...) is a proper edge path ray in A ¢ X. Ifv is
the initial point of s let r, be the edge path at v each of whose edges is labeled t, then
there is a proper homotopy H;: [0,00) x [0,00) = X of s to 1, rel{v} defined so that
Hj, restricted to [N, N + 1] x [0,00) is Hy, (i.e., Hi(N + x,y) = Hg,(x,y) for all
(x,y) €[0,1] x [0, 00)).

Proof Since H(0, y) = r,(y) and H(x,0) = s, H is a homotopy of r, to s rel{v}. It
remains to show that H is proper. If C is compact in X, then by Lemma 3.2 there are
only finitely many edges e of s such that the image of H, intersects C. Choose N such
that for all n > N, H;, avoids C. Then H;'(C) = U, H;'(C). This last set is a finite
union of compact sets, since each Hj, is proper. [ ]

Proof of Proposition 2.2 We show that for any integer N > 0, the group tN At~ is
semistable at infinity in X (G). Let C be compact in X. If v € A, let r, be the proper
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edge path ray at v, each of whose edges is labeled ¢. If e is an edge of A with initial point
v, let H, be the proper homotopy of Lemma 3.1. By Lemma 3.2 there are only finitely
many edges e of A such that the image of H, intersects t VC. Choose D compact
such that D contains t NVC and all of these edges. If s and s’ are proper A-rays at
v € A - D, then the proper homotopies H and Hy of Lemma 3.3 both avoid ™V C so
that both s and s’ are properly homotopic rel{v} to r, by homotopies in X — t N C.
Combining H; and Hy we have s is properly homotopic rel{v} to s’ by a homotopy
Hin X -tV C. Now ¢tV H is a proper homotopy rel{tNv} of Vs to t¥s’ in X - C and
tN At~V is semistable at infinity in X. [

4 Ascending HNN Extension Combinatorics

A finitely presented group G is an ascending HNN extension of a finitely generated
group if and only if it has a finite presentation of the form

(*) P=(tA:R,t"at = ¢(a) foralla e A).

Here A is a finite set, R is a finite set of elements (words) in the free group F(A),
and for each a € A, ¢(a) is an element of F(A). Let G be the group with presen-
tation P. The base group of this HNN extension is A, the subgroup of G generated
by A. The function ¢: A - F(A) defines a monomorphism (usually denoted ¢ as
well) from A to A. Note that ¢ also extends to a homomorphism of F(A) — F(A).
This homomorphism need not be a monomorphism, but can always be “replaced”
by a monomorphism (see Lemma 4.8). Equivalently, one could obtain every finitely
presented ascending HNN presentation by considering arbitrary homomorphisms
¢: F(A) - F(A) (with A finite) and forming the presentation P in the same way.

In order to define what it means for an ascending HNN extension to have
bounded depth, we must first understand ker(p) where p is the homomorphism
p: F(A) - A(defined by p(a) = a for a € A). Certainly, ker(p) contains Ny (R, ¢) =
N(U2, ¢'(R)), where N(U2, ¢ (R)) is the normal closure of U2, ¢ (R) in F(A).
But it may be that for some word w € F(A) and some integer m, " (w) € No(R, ¢),
and w ¢ No(R, ¢). Then w € ker(p). Consider the normal subgroup of F(A):

N (%) = U ¢/ (No(®, ¢)) < F(A).

It is well known to experts that ¢~ (No(R, ¢)) < ¢~""'(No(R, ¢)) (see theorem 4.4)
so that N (R, ¢) is an ascending union of normal subgroups of F(A) and that
N (R, ¢) is the kernel of p, so

A=(A:N®(R,¢)).

If there is an integer B such that N (R, ¢) = U%, ¢ ' (No(R, ¢)), then the pre-
sentation P of G has bounded depth. Our main theorem shows that if P has bounded
depth, then G is semistable at infinity (Theorem 1.2). It is not always the case that such
ascending HNN extensions have bounded depth (see Theorem 4.5).

As in Section 3, Py: G — Z is the homomorphism that kills the normal closure of
A. If X is the Cayley 2-complex for the presentation P of G given in (*) (with vertex
set G), then Pj extends to P: X - R.If g € G and Py(g) = N, gisin level N.
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Remark 4.1 An edge path loop in level L of X, whose labeling defines an element
of U2, ¢~ (No(R, ¢)), is homotopically trivial by a combinatorial homotopy H such
that P(H) has image in (—oo, L + B]. Note that if « is an edge path loop in level L
labeled by an element of N(R) (the normal closure of R in F(A)), then « can be
killed by a homotopy in level L. If a has initial vertex v in level L and labeling ¢(r)
for r € N(R), then using only conjugation relations, « is homotopic to an edge path
loop at v with labeling (¢, 8, ), where f has labeling r and image in level L -1. Since
B is homotopically trivial in level L -1, the loop « can be killed by a homotopy H such
that P(H) has image in [L —1, L]. This homotopy only uses the homotopy that kills 3
in level L —1and the conjugation relation 2-cells connecting « and f. If « has label in
¢ (N(R)) (so ¢(a) = r € N(R)), then « can be killed by a homotopy H such that
P(H) hasimagein [L,L +1].

In the case that A is finitely generated and the image of ¢: A — A is of finite index
in A, then A is “commensurated” in G and G is semistable at infinity (see [CM14,
Corollary 4.9]).

For A finite, the group G = (t, A : R',t7'at = ¢(a)fora € A) (with R’ c
F(A)) is an ascending HNN extension with bounded depth D and root R if the ker-
nel of the homomorphism p: F(A) — A (defined by p(a) = aforalla € A) is
PP (No(R,9)) = ¢ P(N(UZ, ¢ (R))) for some finite set of words R in F(A). In
this case, G has finite presentation (t,.A : R, t 'at = ¢(a) forall a € A).

Example 4.2 R. Grigorchuk [Gri96, Gri98] constructed a finitely generated infi-
nite torsion group G of intermediate growth having solvable word problem. He also
showed that G was the base group of a finitely presented ascending HNN extension
(which is the first example of a finitely presented cyclic extension of an infinite torsion
group). I. Lysénok [Lys85] produced the following recursive presentation of G:

G= <a,c,d: 0" (a*),0"((ad)*), 0" (adacac)*),n > 0),

where 6(a) = aca,o(c) = cd and 0(d) = c. It can be shown that the ascending HNN
extension E with presentation

(a,c,d,t:a*=(ad)* = (adacac)* =1,t"at = aca, t"'ct = dc,t'dt = c)

has base group G generated by {a,c,d} and E has bounded depth with root
{a* ¢*,d?* (ad)*, (adacac)*}. The group E was the first example of a finitely pre-
sented amenable but not elementary amenable group. In [Mih, §5], M. Mihalik shows
that E is simply connected at infinity. The notion of a finitely generated group being
simply connected at infinity is introduced in [Mih], and the group G is shown to be
simply connected at infinity.

Example 4.3 A. Ol'shanskii and M. Sapir [0S02, OS01] construct a finitely pre-
sented ascending HNN extension G, where the base group { is a finitely generated
infinite torsion group. In contrast to Grigorchuk’s group (Example 4.2) the base group
has finite exponent, and G is not amenable (see [OS02, Theorem 1.1]). The group G
has been suggested as a possible non-semistable at infinity group, but it is clear from
[OS02, equations (5)-(8), §1.2] that G has an ascending HNN presentation with depth
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one, and so by our main theorem is semistable at infinity. We give a brief summary.
A finite set of words R is determined in F¢c = {cy, ..., ¢y ) a free group of rank m. A
monomorphism ¢: Fc — Fc is defined and R’ is defined to be U2, {¢(r) : r € R}.
The base group of their ascending HNN extension has presentation

FH={(ct,...rcm: RUVUR),
where V is the set of elements u” for all u € F¢ (and n a fixed large odd number).

In particular, K is an infinite torsion group. A finitely presented ascending HNN
extension of J{ has infinite presentation

G=(t,cr..rcmit it =¢(ci), RUR UV)

(this follows [0S02, equation (7)]). Clearly the relations R’ are a consequence of R and
the conjugation relations and so can be removed. It is then argued that each relation
v of Vis ¢~'(v") where v/ is a consequence of R and the conjugation relations. In
particular, the above presentation of G can be reduced to the presentation

G = (t, ClyvvsCm it teit = ¢(ci),3€>,

and this presentation has depth 1. It seems unlikely that § has an ascending HNN
presentation with depth 0. One must wonder if for every integer N > 0, there are
finitely presented ascending HNN groups Gy with ascending HNN presentations of
depth N, but Gy does not have such a presentation of depth N — 1.

Theorem 4.4  Suppose G is the ascending HNN extension with finite presentation
P=(t,A: Rt "at = ¢(a) forall a e A),

where ¢: F(A) — F(A) is a (finite rank) free group homomorphism. Then A, the
subgroup of G generated by A, has presentation

A= (A:N=®.9)= U g (N ¢'(R))).

Furthermore, we have the relations
(i) ¢ (N(URe¢/(R))) € ¢~ D(N(U, ¢/ (R))) forall i > 0, and
(i) ¢(N*(R,¢)) c N*(R,¢) = ¢~ (N(R,¢)).
Proof Note that
S(N(J ¢/(39)) < N(U ¢/(3)))  N(J ¢/()) so that

N(G#/R)) 6™ (N ¢/ (),

and so relation (i) follows.

To simplify notation, let N = N%(R,¢) and N; = ¢~ (N(U7, ¢/(R))) for
i >0, s0that N® = [J2, N; and by (i), N; € N;y; = ¢ (N;). Suppose a € ¢ (N*).
Then ¢(a) € N™ and so ¢(a) € N; for some i > 0. Then a € ¢"'(N;) = N;;; c N,
and we have shown that ¢! (N*°) ¢ N*.

Next suppose a € N*. Then for some i > 0,a € N;. By (i), a € Niy; = ¢7'(N;) ¢
¢'(N*). We have shown that N (R, ¢) c ¢"!(N>°(R, ¢)). Combining we have
N* = ¢~}(N>°), and relation (ii) follows.

.,
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Let A, be the group with presentation (A: N (R, ¢)). To finish the theorem, we
must show that A = A;. Let p;: F(A) — A; (determined by p;(a) = aforall a € A)
be the quotient homomorphism. By (ii), the map ¢;: A; - A; that extends the map
¢1(p1(a)) = p1(¢(a)) for all a € A is a homomorphism. This gives a commutative
diagram:

F(A) —2~ F(A)

b b

A1 % A].
Next we show that ¢; is a monomorphism. Suppose w; € ker(¢;). Let w € F(A)
be such that p;(w) = w;. Then p;(¢(w)) = 1and so ¢(w) € ker(p;) = N and
we ¢ {(N®) =N Thenw; = p;(w) =1€ A, and ¢, is a monomorphism.
Consider the ascending HNN extension

Axg = (L, A: N (R, ¢),t"at = ¢(a)) foralla e A

with base group A;. Since each relation in N*°(R, ¢) is a consequence of R and
the conjugation relations, this group also has presentation P. By Britton’s lemma,
A = Al. |

Suppose G has finite presentation (t, A : R,t'at = ¢(a)fora € A). Here
¢: F(A) — F(A) is a homomorphism. Let Nyo = N(UZ, ¢/(R)) < F(A), N; =
¢~'(Np), and let A be the subgroup of G generated by A, so that G is the ascending
HNN extension, with base A and stable letter ¢. Let p: F(A) — A be the homomor-
phism extending the map taking a to a for all g € A.

It seems that there is some potential to find a finitely presented group that is not
semistable at infinity if one could find a finitely presented ascending HNN extension
(t, A : R,t7'at = ¢(a) for a € A), such that the ascending chain of normal sub-
groups Ny of F(A) do not stabilize. The following approach gives a general method
of constructing infinite depth ascending HNN presentations. In particular, when A,
is a non-Hopfian group and ¢g: Ay = Ay is an epimorphism with non-trivial kernel,
then there is a corresponding ascending HNN extension with infinite depth.

Theorem 4.5  Suppose the group A has finite presentation (A : R) and ¢o: Ag - Ao
is a homomorphism with non-trivial kernel Ko such that the following diagram (with
F(A) the free group on A and q(a) = a for a € A) commutes:

F(A) —2 = F(A)

Pk

AO —0> Ao.

If the ascending sequence {K; = ¢,'(Ko) = ker(¢§*')} of normal subgroups of A
does not stabilize (in particular when ¢ is an epimorphism), then the group G with
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ascending HNN presentation
P=(t,A: Rt "at = ¢(a) foralla e A)
has unbounded depth.

Proof First observe that if ¢ is an epimorphism, and k € Ky — {1}, then there is k,,
such that ¢/ (k,) = k. In particular, k, € ker(¢s™") — ker(¢§). Note that ker(q) =
N(R)<F(A).Ifre N(R),theng(¢(r)) =landso $(N(R)) c N(R) and (retaining
the notation of Theorem 4.4)

No = N(U ¢'(®)) = N(R) = ker(q).
For the subgroup A of G determined by A, there is a commutative diagram,

F(A) —2 > F(A)

Pl

A—"" S A

Observed that A is a quotient of Ay where the element q(a) is mapped to p(a) for all
a € A and the following diagram commutes:

A04¢>Ao

L
é

A—— A
(%) If ¢ is an epimorphism, then since gy is an epimorphism ¢ is also an epimor-
phism. In any case, G = A*y, and when ¢ is an epimorphism, ¢, is an isomorphism.
Let N; = ¢7'(Np) < F(A). By Theorem 4.4(i), N;-; < N;. For i > 0 we show
N; # N;_; when K; # K;_j, so that P has unbounded depth when {K;} does not
stabilize. Choose a, € K,, — K;,_;. Choose a,, € F(A) such q(a,) = a,. Then

q(‘pn_l(an)) = g_lq(an) = ‘/)g_l(an) #1,
so¢"(a,) ¢ No =ker(q) anda, ¢ N,_;. But

9" (@n) = $o(q(¢" ™ (@n))) = ¢o(a) = 1,
so ¢"(a,) eker(q) = Npanda, € N, - N,_;. [

Example 4.6 When A, is non-Hopfian and ¢ maps Ay onto Ay with non-trivial
kernel, Theorem 4.5 produces a corresponding ascending HNN extension with un-
bounded depth.

Let Ag = BS(2,3) = (a,b : b™'a’*b = a’), and ¢: F({a,b}) —» F({a,b}) by
a — a®>and b — b, observe that ¢'([b~7ab’,a]) = [b~a® b',a*] ~ [a*,a>] = 1,
so that [b~'ab’,a] € N;. If [b~"ab’,a] € N,_;, then ¢'}([b~"ab’,a]) € Ny where
No = N(b'a*ba™3) < F({a,b})). But

¢ '([biab,a]) =[b7'a> b,a® 1~[b7'd® ba® ],
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a reduced word of syllable length 8 in (the HNN extension) (a,b : b™'a* = a°). In
particular, the following ascending HNN extension presentation with stable letter ¢
and base group generated by {a, b} has infinite depth:

(t,a,b:ba*b=a’,t"at = a®, t'bt = b).

Since ¢ is an isomorphism (see (*)), (A) = (a, b) is normal in G, and the main
theorem of M. Mihalik’s paper [Mih83] implies G is semistable at infinity. So this par-
ticular approach cannot yield a non-semistable at infinity ascending HNN extension
of unbounded depth when ¢ is an epimorphism.

The remainder of this section is of general interest in understanding presentations
of ascending HNN extensions, but not important to the proof of our main theorem.

Remark 4.7 Consider a homomorphisms ¢: F(A) — F(A) for A finite where ¢
has non-trivial kernel. One might wonder if it is possible to have a such a homomor-
phism so that (even with R = @), the presentation (¢, A : t™'at = ¢(a) fora € A)
does not have finite depth? Le., is it possible that the ascending collection of normal
subgroups of F(A) defined by Ny = (U~ ker(¢")) does not stabilize? The answer is
no.

Consider the sequence F(A) — ¢(F(A)) - ¢*(F(A)) - --- of epimorphisms
where each map is ¢. Fori > 0, ¢’ (F(A)) is a free group of rank < rank (¢’ (F(A))).
So, for some integer m > 0, rank(¢™(F(A))) = rank(¢™*'(F(A))). As finitely
generated free groups are Hopfian, the epimorphism ¢: ¢ (F(A)) - ¢™*(F(A))
is an isomorphism and ker(¢™) = ker(¢™*').

Next we show that any homomorphism ¢: F(A) — F(A) defining an ascending
HNN extension can be replaced by a monomorphism.

Lemma 4.8 Suppose A is a finite set, R is a finite subset of the free group F(A)
and ¢: F(A) — F(A) is a homomorphism. Then there is a finite set B, a finite set
R" ¢ F(B), a monomorphism ¢': F(B) — F(B) and an isomorphism of ascending
HNN extensions,
(t, A: R, t"at = ¢(a) fora e AL (B R bt = ¢'(b) for b € B).
Furthermore, if

ga: F(Au{t}) — (t, A: R, t'at = ¢(a) fora € A),

gp: F(Bu{t}) — (, B: R, t7'bt = ¢'(b) for b e B)
are the natural projections, then there is a epimorphism

o' F(AU{t}) — F(BU{t})

such that

@ p'(1)=1t
(i) gBop =poqa,
(iii) p'(R) = R', (for Ng(R) the normal closure of R in G) p'(Npa)(R)) =
Np3)(R') and p'(Neaugn) (R)) = Nesugn) (R).
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In particular, the following diagram commutes:

’

p

F(Au{t}) F(Bu{t})

- .

(t,A: Rt at = (a)) —2= (£, B : R, bt = ¢/ (b)).
(Basically p is conjugation by t"™ for some m > 0.)

Proof Since free groups are Hopfian, there is an integer m > 0 such that
¢: ¢"(F(A)) - ¢™"(F(A)) is an isomorphism (see Remark 4.7). Let B be a fi-
nite set of free generators for ¢ (F(A)) (so F(B) = ¢"(F(A)))andlet ¢': F(B) —
F(B) be defined so that ¢’(b) is a B-word for ¢(b) for each b € B. Note that ¢ is a
monomorphism, since ¢: ¢" (F(A)) - ¢"*'(F(A)) < F(B) is a monomorphism.
Define p’: F(Au {t}) - F(B u {t}) such that p’(¢) = t and p'(a) = ¢™(a) for
all a € A. Note that p’ is an epimorphism. Let R' = ¢ (R) (written as B-words),
and then (iii) holds. Since p’ of each relation of (¢, A : R, t 'at = ¢(a)) is a relator
of (t,B: R, t7'bt = ¢’(b)), the homomorphism p can be defined so that (ii) holds.
Since p’ is an epimorphism, p is an epimorphism. (Basically, p is conjugation by ¢".)
To show that p is an isomorphism, it remains to show that if w € ker(pga),
then w € ker(qa) (i.e, p is a monomorphism). First observe that the exponent
sum of ¢ in w is zero. Next observe that, w € ker(pqa) (resp. w € ker(qx)) if
and only if 7wt/ € ker(pga) (resp. t 7wt/ € ker(qa)) for every integer j > 0.
Select a positive integer j such that any initial segment of t~/wt/ has t-exponent
sum < 0. In F(A u {¢}), w = (7 wit™)--- (™ w,t") where n; > 0 and each
w; € F(A). Letw = ¢"(wy)---¢"™ (ws)(e F(A)). Now ga(w) = qa(w) and
w € ker(qpp’). Note that p'(w) = ¢™(w) € ker(gs)(< F(B)). By Theorem
4.4, ¢™(w) € (¢")F(N(UZ(¢") (R"))) for some integer k > 0. By (iii) we have,
9" () < ¢ E(N(UE) ¢/($"(R)))), and s € ¢~ (N(UE,, ¢/ (R))). By The-

orem 4.4, w (and hence w) is an element of ker(q.4 ). [

5 Bounded Depth HNN Extensions are Semistable at infinity

The group G is an ascending HNN extension of a finitely generated group A and G
has bounded depth. We use the notation of Section 3. Let A = {ay, ..., a, } be a finite
generating set for A and

P=(t,A:R,t"at=¢(a)forallacA)

a finite presentation for G, where for each a € A, ¢(a) € F(A) and R c F(A). Let
X be the Cayley 2-complex for this presentation, and A be the Cayley graph of A
with generating set A. We assume * € A c X where * is the identity vertex for X.
We must show that condition (ii) of Theorem 2.3 is satisfied for each compact set C
in X. We will show that there is an integer N(C) > 0 (defined in Lemma 5.2) such
that N At~ is co-semistable at infinity in X with respect to C. This requires that we
find a compact set D(C) such that loops in X — (N AtN)D(C) can be pushed to
infinity by proper homotopies in X — C. In every instance D(C) will have the form
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N(C)¢------m-mmmmmm - "
L N(C) — (o)
(o) —
! L M (0, )

P ]

— :
' m(v) {

tM(C) E tn(v)
0 K c

Figure 2: Special normal forms.

tN(C){*, t™1,...,t7M} for some integer M that depends on C and the depth of the
presentation P for G.

Remark 5.1 In the case that A is finitely presented, it is interesting to note that
our proof will show that for our choice of D(C), each loop in X — (¢ NAtN)D is
homotopically trivial in X — (¢ "V AtN)D (see Theorem 5.11). This sort of behavior is
related to the main theorems of [Wri92, GGMb, GG12], and is called strongly coaxial
when A is infinite cyclic.

Recall that P: X — R is such that for each vertex v € G c X, P(v) is the exponent
sum of ¢ in v and we say v is in level P(v). The next lemma is a direct consequence
of the normal form for elements of G (each element g € G has the form t"at™™ for
some n,m > 0 and a € A).

Lemma 5.2 Suppose C is a finite subcomplex of X. For each vertex v € C, write
v=t"Ma, 7" for a, € Aand n(v),m(v) > 0, and
N(C) = max{n(v):ve C}and M(v,C) = N(C) - n(v) + m(v)(> 0).
Then vtM () e N(C) A Note that by definition, N(C) - M(v,C) = n(v) = m(v) =
P(v).

Proof For v € C (see Figure 2),
Y= tN(C)(tn(v)—N(C)avtN(C)—n(v))t—M(v,C).

If a/, = 17()=N(©) g fN(©)=n() (¢ pN(O)-1()(A) < A), then vtM(WO) = (N(C ! g

Geometrically, this says that for each vertex v of C, the edge path at v with each
edge labeled ¢ and of length M (v, C) ends in tN(©) A,
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Lemma 5.3 Suppose C is a finite subcomplex of X. Let
M(C) =max{M(v,C) :visa vertex of C}.
Then for each vertex v € C,
ve (NOArNOYNO e 1 MOy,
For any non-negative integers M, N and w € (tNAt™N)(tN {»,t71, ..., t™M}),
wAc (tNACNY (N {x, 7Y MY,

Proof The first conclusion follows from Lemma 5.2. Note that w = tNat™™ for some
aceAandme{0,..., M}.

Then wA c tNa(t™™At™)t™™ and as t " At™ c A,
wAc tNAT™ < (NAEN (N {7 MY, m

For integers N, M > 0, define D(N, M) = tNA{x,t™',...,t"M}. If C is compact
in X, and B is the bounded depth of our ascending HNN presentation P, we will
use the set D(N(C), M(C) + B +1) to play the role of JD in X and tN(©) At~N(©)
to play the roll of ] when applying Theorem 2.3. First we must understand the set
(tNAENYD(N, M) = tNA{*,t7L, ..., M}, and a few geometric definitions will help.
If v, w € G, we say the coset wA is n levels directly below v A if there is an edge path of
length »n with each edge labeled t from a vertex of wA to a vertex of vA. Note that if
wA is n levels directly below v A, then for every vertex u of wA, the edge path at u of
length n and with each edge labeled ¢ ends in vA. We say vA is n levels directly above
wA. Any coset wA has exactly one coset that is n(> 0) levels directly above it, but the
cosets one level directly below vA are in one-to-one correspondence with the cosets
of t7'At in A. This means

Lemma 5.4 Theset D(N, M) = tNA{x,t7),...,t ™M} is the union of cosets vA that
are n levels directly below tNAfor ne{0,1,...,M}.

Note In order to avoid confusion, we can use the notation H - E instead of HE when
H is a subgroup of G and E a subset of X.

Let Q(M) = {,t7,t72,...,t7M} (M > 0) and notice that the next lemma says
that it is easy to check if a vertex v of X is in either A-Q(M), K (a special component
of X—A-Q(M)) or a component of X — A- Q(M) other than K. If v isin alevel > 0
then v € Ky. If v is in level 0 through —M, then v isin A - Q if the edge path from v to
level 0, with each edge labeled ¢, ends in A (i.e., vA is —P(v) levels directly below A);
and v is in K otherwise. If v is in a level < —M, then v is in K if the edge path from
v to level 0, with each edge labeled ¢, does not end in A, and otherwise, v belongs to a
component of X — A - Q other than Kj. Note that t" € K for all #n > 0, so that under
the quotient of X by A, the image of Kj is not contained in a compact set. If v € K
where K is a component of X — A - Q other than K, then vt" € K for all n < 0, so
under the quotient of X by A, the image of K is not contained in a compact set. Our
terminology for this is that K and K are A-unbounded components of X - A- Q.

Lemma 5.5 Let Q(M)={x,t7,t2,...,t* M} for M > 0.
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L e tl )CL
sv (P(v)>0)
1 e
0O e p,UtfP(v)
o (—M < P(v) <0)
—M e 1 Utk
—M —ke U (P(U)<*M)

Figure 3: Components of X — AQ(M).

(i) A-Q(M) is the set of all vertices v € X such that P(v) € {-M,...,0} and
vt P() ¢ A, Furthermore, if v e A- Q(M), then vA c A- Q(M).
(i) X-A-Q(M) has an A-unbounded component K, with stabilizer A and the vertex
vof X —A-Q(M) is in Ky if and only if either P(v) > —M or both P(v) < -M
and vt P ¢ A,
(iii) If K is any component of X — A - Q(M) other than K, then K is A-unbounded,
and if v is a vertex of K, then P(v) < =M and vt *(") ¢ A,

Proof (i) This part follows directly from Lemma 5.4 (with N = 0).

(ii) Let Ky be the component of X — A - Q that contains the vertex ¢. Let v be a
vertex of X; then by normal forms, v = t'at™™" where a € Aand [, m > 0. If P(v) > 0,
then I > m (Figure 3) and the normal form for v defines an edge path from ¢ to v in
levels 1 and above, and hence avoiding A - Q. So if P(v) > 0, then v € K,. Note that
P(at) =1forall a € A, so that A stabilizes K.

Suppose v € X — A-Q and -M < P(v) < 0 (Figure 3); then by part (i), vt ") ¢ A
and no point of the edge path beginning at v with labeling t~"(*) is a point of A - Q.
Since P(vt~P(")*1) = 1, the edge path at v with labeling (") ayoids A- Q and ends
ata point of Ko. Soifve X - A-Qand P(v) € {-M,...,0}, thenv € K,.

Suppose v € X — A- Q and P(v) < —M (Figure 3). Note that P(vtP(")) = 0. If
vt P(") ¢ A, then we have already shown that vt~"(*) ¢ K, and by part (i), no point
of the path with labeling t~P(") at v intersects A - Q. Hence v € K.
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For the converse, suppose v € K and P(v) < —M. We must show vt P(") ¢ A
Let a be an edge path in X — A - Q from ¢ to v (Figure 3). Let 3 be a tail of & where
w, the initial point of f, is the last point of a with P(w) = —M. The first edge of 3
is labeled t!. Note that conjugation relations allow us to move each A-edge of 8 up
to level —M so there is an edge path from w to v labeled (x;, ... x;, t ¥) where k > 0
and x; € {ay,...,a,}*". Hence vt* € wA and P(vt*) = —M. Since w ¢ A - Q, part
1) implies wAN A- Q = @, so vtk ¢ A- Q. Again by Part 1), ytkPO1) ¢ A. Then
v P = k=P ~k = gk =P(EY) ¢ A. This completes part (ii).

(iii) Ifv € K # K then by Part (i), P(v) < -M and vt ?(*) ¢ A, [

We need a slightly stronger version of Lemma 5.5. Recall that Q(M) =
{x, 7,72, t M}, Then

tNA-Q(M) = VAN (N (Q(M))).
Observe that for any integer m > 0 the stabilizer of t™ A is t™ At™™.

Lemma 5.6 Let M, N > 0 be integers.

(i) Theset tNA-Q(M)(= D(N, M)) consists of the vertices v € X such that P(v) €
{N,N-1,...,N - M} and vt""P) ¢ (NA. Furthermore, ifv € tNA- Q(M),
thenvA c tNA- Q(M).

(i) Let Ky be the component of X — A-Q(N) described by Lemma 5.5(ii). Then tN K,
is a (tN At™N)-unbounded component of X — t~ A- Q(N) with stabilizer tN At™,
and the vertex v of X — tN A - Q is in tN K, if and only if either P(v) > N — M or
P(v) <N =M and viN=PO) ¢ (N A,

(iii) If K is any component of X — A - Q other than K, then tNK is a (tVAt™N)-
unbounded component of X — tNA - Q(M), and if v is a vertex of tNK, then
P(v) <N - M and viN-P0) e (N A,

Proof (i) Ifv e tNA- Q(M), then P(v) € {N,N —1,...,N — M}. Note that
P(tNv)=-N+P(v)e{0,...,~M}. Lemma 5.5 implies, t Vv € A- Q if and only if
£Nyt=PU) ¢ Aifand only ifytN=P() ¢ N A, Furthermore, if v € tNA-Q(M), then
tNyveA-Q(M),and by Lemma 5.5, t NvA c A- Q(M) so that vA c tNA- Q(M).

(ii) By Lemma 5.5, t¥K; is a component of X — t¥(A - Q(M)). Since t € Ky,
tN*1 e tNKy, and so the proper ray at t¥*! with all edge labels ¢ belongs to VK. In
particular, tV Ky is t¥ At~N -unbounded. Since A stabilizes A-Q(M), N At~ stabilizes
tNA - Q(M). The vertex v of X belongs to tNKj if and only if t Vv € Ky, (by Lemma
5.5), if and only if P(+ Nv) > =M or both P(t"Nv) < —M and Ny PO ¢ A if
and only if P(v) > N — M or both P(v) < N = M and vtN=P(") ¢ tN A,

(iii) Suppose v is a vertex of tVK then t Vv € K. By Lemma 5.5, P(t Nv) < -M
(so P(v) < N = M) and t Nyt P ¢ A (so viN-P(M) € N A). n

Geometrically, the only difference between Lemma 5.6 and Lemma 5.5 is that in
order to check if a vertex v in a level of X less than N, belongs to either tN A - Q(M),
tN Ky or tVK for K a component of X — A-Q(M) different than Ky, one simply checks
if the end point of the path at v with each edge labeled ¢ and ending in level N, ends
in tN A or not. It is also important to observe the following remark.
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Remark 5.7  For any integers M, N > 0, the set tVA- Q(M)(= D(N, M)) and any
component of X — D(N, M) is a union of cosets vA.

Lemma 5.8 Suppose M, N > 0 are integers and v is a vertex of the component tN K,
of X — tNA- Q(M). Then for any integer n > 0, we have (vt"A) N A- Q(M) = @.

Proof By Lemma 5.6(i), it suffices to show that v¢" ¢ tN A - Q(M). But this follows
directly from parts (i) and (ii) of Lemma 5.6. ]

(*) From this point on, we assume the presentation P has bounded depth B > 0.

Lemma 5.9 If a is an edge path loop in X and im (P(a)) c (—oo, L], then « is
homotopically trivial by a homotopy H such that im (P(H)) c (—oo, L + B].

Proof Using only conjugation 2-cells, «, is homotopic (by a homotopy H;) to an
edge path loop S, each of whose vertices is in level L. In particular, each edge of f3
is labeled by an element of A and im (P(H;)) c (o0, L]. The word w determined
by the edge labeling of 3 is in the kernel of the epimorphism p: F(A) - A. Sow «
UZ, ¢~ (No(R, ¢)). By Remark 4.1, the loop 8 (and hence ) is homotopically trivial
by a homotopy H such that im (P(H)) c (-oo, L + B]. [ ]

Lemma 5.10  Suppose M, N > 0 are integers, a is a loop in X — tNA-Q(M) and B is
the bounded depth of the presentation P.

(i) Ifa hasimageinacomponent of X—t~ A-Q(M) other than t~ Ky, then « is homo-
topically trivial by a homotopy H such that P(H) has image in
(=00, B+ N - M].

(ii) If a has image in tN Ky, v is a vertex of a and r, is the proper edge path ray at v
with each edge labeled t, then there is proper homotopy H: [0, 00) x[0,1] = tN K,
where H(x,0) = H(x,1) = r,(x) and H(0, y) = a(y).

Proof (i) By (iii) of Lemma 5.6, im (P(«)) c (—o0, N = M]. Lemma 5.9 finishes
part (i).

(ii) Let H be the homotopy that strings together the homotopies H, of Lemma 3.1
for each A-edge e of a. The image of H avoids t¥ A - Q(M) by Lemma 5.8, and so is
in tY Ky. The homotopy H is proper, since it is a combination of finitely many proper
homotopies. [ ]

By Lemma 5.3, if C is a compact subset of X, there are integers M(C) and N(C)
such that C c tVA-Q(M). In our terminology, the next result would say that when A
is finitely presented and N > 0, the group t¥ At~ is “co-simply connected at infinity
inG”

Theorem 5.11 Suppose G is an ascending HNN extension of the finitely presented

group A and X is the Cayley 2-complex for the HNN presentation with stable letter t
and base A (with a finite presentation of A as a sub-presentation). If M,N > 0 are
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integers and « is a loop in X — tNA- Q(M) (= X - tNAt™N - (tNQ(M))), then « is
homotopically trivial in X — tNA - Q(M).

Proof We present the case where N = 0 as all others are completely analogous. Let A
be the Cayley 2-complex for A, determined by the presentation of A within our HNN
presentation of G. If K is a component of X — A - Q other than Kj and « is an edge
path loop in K, then each vertex v of « is such that P(v) < —M. Using conjugation
relations « is homotopic in K to an A-loop «; in level -M — 1. Then «; lies in a copy
of A in level —-M -1 and so is homotopically trivial in level —-M — 1.

If « is an edge path loop in Kj, then by Lemma 5.8, conjugation relations can be
used to show that « is homotopic to a loop «; in a single level and this homotopy
avoids A - Q. Lemma 5.8 also implies that a; is in a copy of A that avoids A- Q. As a;
is homotopically trivial in that copy of A, a; (and hence «) is homotopically trivial in
X-A-Q. n

Suppose M, N > 0 are integers and s is a proper edge path ray in X — tN A - Q(M)
with initial vertex v € K. If q is the quotient of X by the action of N At™N and gs
has image in a compact subset of (¥ At™™)\X (so s is t¥ At"N-bounded), then each
vertex of s is within edge path distance < K of t¥ A and Ps has image in the closed
interval [N - K, N + K].

Lemma 5.12  Suppose M, N > 0 are integers, s is a proper edge path ray in the tN K,
component of X — tNA - Q(M), and s(0) = v. Let r, be the proper edge path ray at v,
each of whose edges is labeled t. If Ps has image in a closed interval, then s is properly
homotopic to r, by a homotopy with image in tN K.

Proof Assume that the image of Ps is [L, M]. By Lemma 5.8, one can use conjuga-
tion relations to slide each A-edge of s along t-edges to level M, by a homotopy with
image in VK. So s is properly homotopic to s’, the resulting proper ray, which (after
removing any backtracking edges (¢,¢™') or (¢+7%,¢)) is a proper A-ray. Let r’ be the
proper edge path ray at the initial point of s” with all edges labeled ¢ (so r’ is a sub-ray
of r,). Let H be the proper homotopy of s to +’ defined in Lemma 3.3. By Lemma 5.8,
H has image in t" K. u

Proof of Theorem 1.2 Let X be the Cayley 2-complex of P. By Proposition 2.2,
tN At~V is semistable at infinity in X for all N > 0, and in Section 2 we reduced the
proof of Theorem 1.2 to showing that for each compact set C in X there is an integer
N > 0 such that tV At ™" is co-semistable at infinity in X with respect to C. This means
that for any finite subcomplex C of X there is an integer N > 0, and compact set D such
that for any proper t¥ At™N-bounded ray s in X~ ¥ At "N D and loop « in X—tN At "N D
such that «(0) = s(0), there is a proper homotopy H: [0,1] x [0,00) - X — C such
that H(0, t) = H(1,¢) = s(t) and H(¢,0) = a.

Start with a finite subcomplex C of X. The integer N(C) > 0 will play the part of
N. Recall that B is the bounded depth of the presentation P. Let

D =tNOQ(M(C) + B+1).
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Recall that Q(M) = {»,t7},...,t™}. By Lemma 5.3, for each vertex v € C,

vA c N AN (N Q(Mm(C)))
c tNODANO(NOQ(M(C) + B+1))
= NN

=NOA.Q(M(C)+B+1).

Ifv € C, then v € tN(© AQ(M(C)) so that P(v) € [N(C) — M(C), N(C)]. Suppose
aisaloopin X — tN(O AN D Then a is either in t¥(©) K where Kj is the special
component of X—A-Q(M(C)+B+1) (described in Lemma 5.5(ii)), or « is in tNOK
for some component K of X — A- Q(M(C) + B + 1) other than K,. If « belongs to
tN(OK, then by Lemma 5.10(i), & is homotopically trivial by a homotopy H such that

im(P(H)) c (-00,B+ N(C) = (M(C)+B+1)] = (-00,N(C) - M(C) —1].

Since P(C) c [N(C) - M(C),N(C)], the homotopy H kills & in X — C (actually in
X-A-C).

If a is in V(O Ky, and s is a V() At~N(C)_bounded proper ray in tN(©) K, such
that a(0) = s(0), then by Lemma 5.12, s is properly homotopic (rel{s(0)}) to r the
proper edge path ray at s(0), each of whose edges is labeled ¢, by a homotopy with
image in tN(®)K, ¢ X — C. Combining the homotopy of r to s with one given by
Lemma 5.10(ii) (also in tN(©)K,) completes the proof. ]
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