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Bounded Depth Ascending HNN
Extensions and π1-Semistability at infinity

Michael L. Mihalik

Abstract. A well-known conjecture is that all ûnitely presented groups have semistable fundamental
groups at inûnity. A class of groups whose members have not been shown to be semistable at inûnity
is the class A of ûnitely presented groups that are ascending HNN-extensions with ûnitely gener-
ated base. he classA naturally partitions into two non-empty subclasses, those that have “bounded”
and “unbounded” depth. Using new methods introduced in a companion paper we show those of
bounded depth have semistable fundamental group at inûnity. Ascending HNN extensions produced
byOl’shanskii–Sapir andGrigorchuk (for other reasons), andonce consideredpotential non-semistable
examples are shown to have bounded depth. Finally, we devise a technique for producing explicit ex-
amples with unbounded depth. hese examples are perhaps the best candidates to date in the search
for a group with non-semistable fundamental group at inûnity.

1 Introduction

A one-ended ûnitely presented group has semistable fundamental group at inûnity if
it acts geometrically on some (equivalently any) simply connected and locally ûnite
complex X with the property that any two proper rays in X are properly homotopic.
If G has semistable fundamental group at inûnity, then one can unambiguously de-
ûne the fundamental group at inûnity for G. he conjecture that all ûnitely presented
groups have semistable fundamental group at inûnity has been studied for over 40
years. If G is an ascending HNN extension with ûnitely presented base group, then
indeed, G has semistable fundamental group at inûnity ([Mih85]), but since the early
1980’s it has been suggested that the ûnitely presented groups that are ascendingHNN
extensions with ûnitely generated base may include a group with non-semistable fun-
damental group at inûnity. We show that ascending HNN extensions naturally break
into two non-empty classes, those with bounded depth and those with unbounded
depth. hose with ûnitely presented base have bounded depth (by deûnition). Our
main theorem shows that bounded depth ûnitely presented ascending HNN exten-
sions with ûnitely generated base groups have semistable fundamental group at in-
ûnity. Semistability is equivalent to two weaker asymptotic conditions on the group
holding simultaneously. We show one of these conditions holds for all ascending
HNN extensions, regardless of depth. Before this paper, the only unbounded depth
ascendingHNN extensionwewere aware of was one whose base was in fact normal in
the overgroup. Such groups have semistable fundamental group at inûnity for other
reasons. A technique for constructing ascending HNN extensions with unbounded
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depth is developed in Section 4 (see heorem 4.5). We consider this construction to
be the best attempt so far to produce a group with non-semistable fundamental group
at inûnity.

If H is a group, and ϕ ∶ H → H is a monomorphism, then the notation
⟨t,H ∶ t−1ht = ϕ(h)⟩ stands for a presentation of a group G with generators {t} ∪ H
and relation set {t−1ht = ϕ(h) for all h ∈ H} union all relations for H. he groupG is
usually denoted H∗ϕ and called an ascending HNN extension with base H and stable
letter t. By Britton’s lemma, the obvious map of H into G is an isomorphism onto its
image. If F(A) is the free group on the set A, ϕ ∶ A → F(A) is a function and R is a
set ofA-words, then the group G with presentation

P = ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩

is an ascendingHNN extension with base group A, the subgroup ofG generated byA.
It is important to note that ⟨A ∶R⟩ need not be a presentation for A. For each integer
n > 0 and r ∈ R, ϕn(r) may not be in the normal closure of R in F(A), but certainly
ϕn(r) is a relator ofA. In fact, whenA is ûnite, one would rarely expectA to be ûnitely
presented. he relations t−1at = ϕ(a) are called conjugation relations.

Semistability of the fundamental group at inûnity for a ûnitely presented group is
a geometric notion discussed in §2. If a ûnitely presented one-ended group G has
semistable fundamental group at inûnity, then the fundamental group at inûnity ofG
is independent of base ray. It is unknown if all ûnitely presented groups are semistable
at inûnity. To date, the strongest result in the theory of semistability and simple con-
nectivity at∞ for ascending HNN extensions is the following theorem.

heorem 1.1 (M.Mihalik [Mih85]) Suppose H is a ûnitely presented group ϕ ∶ H → H
is a monomorphism and G = ⟨t,H ∶ t−1ht = ϕ(h)⟩ is the resulting HNN extension.
hen G is one-ended and semistable at inûnity. If additionally, H is one-ended, then G
is simply connected at inûnity.

he line of proof used for this result fails when H is only ûnitely generated, and it
has been suggested since the 1980’s that a promising place to search for a group with
non-semistable fundamental group at inûnity is among the ûnitely presented ascend-
ingHNN extensions with ûnitely generated base. More speciûcally, A. Ol’shanskii and
M. Sapir [OS02,OS01] have constructed a ûnitely generated inûnite torsion group H

and ûnitely presented ascending HNN extension Gwith baseH, which has been sug-
gested as a possible group with non-semistable fundamental group at inûnity.

In §4, we show that the collection of ûnitely presented ascending HNN extensions
of ûnitely generated groups is naturally divided into two classes, those with what is
called bounded depth and those of inûnite/unbounded depth. he Ol’shanskii–Sapir
group G has bounded depth and is semistable at inûnity by our main theorem.

heorem 1.2 Suppose G is a ûnitely presented ascending HNN extension of a ûnitely
generated group AandG has bounded depth. henG has semistable fundamental group
at inûnity.
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Semistable fundamental group at inûnity for ûnitely generated groups was deûned
in the mid-1980’s ([Mih86]). While we are not concerned with that notion here, the
following result ([Mih86, heorem 4]) is connected to the ideas in this paper.

heorem 1.3 Suppose G is an ascending HNN extension of a ûnitely generated one-
ended group A. If A is semistable at inûnity, then G is semistable at inûnity.

To prove heorem 1.2 we use the main theorem of [GGMa], which implies that a
ûnitely presented group G has semistable fundamental group at inûnity if and only if
two (somewhat orthogonal) weaker semistability conditions hold for G. he rest of
the paper is organized as follows.

In Section 2, we deûne semistability at inûnity for spaces and groups, and list a
number of equivalent formulations of this notion. Twoweaker notions, the semistablil-
ity of a ûnitely generated subgroup J in an over group G and, the co-semistability of
J in G are deûned.

In Section 3we prove that ifA is an inûnite ûnitely generated base group of a ûnitely
presented ascending HNN extension G and t is the stable letter, then for any N ≥ 0,
tNAt−N is semistable at inûnity in G (regardless of depth). By the main theorem of
[GGMa], this reduces the proof of our main theorem to showing that G satisûes the
second semistability condition of [GGMa].

In Section 4 we review the combinatorial group theory of ascending HNN groups
and deûne what it means for such a group to have bounded depth. Examples of Grig-
orchuk and Ol’shanskii–Sapir of ascending HNN extensions with bounded depth are
reviewed and amethod for constructing ascendingHNN extensions with unbounded
depth is given.

In Section 5 the bulk of the proof of our main theorem is given. We show that if
G is an ascending HNN extension of a ûnitely generated group A, P is a ûnite HNN
presentation with bounded depth for G, and X is the Cayley 2-complex for P, then
for each compact subset C of X, there is an integer N(C) ≥ 0 such that tNAt−N is
co-semistable at inûnity in X with respect to C. We also prove a result (heorem 5.11)
that considers the case when A is ûnitely presented and connects this case to several
papers already in the literature. When A is ûnitely presented and C is compact in X,
we show there is an integer N(C) ≥ 0 and compact set Q(C) containing C such that
loops in X − (tNAt−N)Q are homotopically trivial in X − (tNAt−N)Q.

2 The Basics of Semistability at infinity for Groups

Suppose K is a locally ûnite connected CW complex. A ray in X is a map
r ∶ [0,∞) → K. he space K has semistable fundamental group at inûnity if any
two proper rays in K converging to the same end are properly homotopic. Suppose
C0 ,C1 , . . . is a collection of compact subsets of a one-ended locally ûnite complex K
such that C i is a subset of the interior of C i+1 and ⋃∞i=0 C i = K, and r ∶ [0,∞) → K is
proper, then π∞1 (K , r) is the inverse limit of the inverse system of groups:

π1(K − C0 , r) ←Ð π1(K − C1 , r) ←Ð ⋅ ⋅ ⋅ .
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his inverse system is pro-isomorphic to an inverse system of groups with epimorphic
bonding maps if and only if K has semistable fundamental group at inûnity. When K
is one-ended with semistable fundamental group at inûnity, π∞1 (K , r) is independent
of proper base ray r.

If for any compact set C in K there is a compact set D in K such that loops in K−D
are homotopically trivial in X −C (equivalently the above inverse sequence of groups
is pro-trivial), then K is simply connected at inûnity .

here are a number of equivalent forms of semistability that are collected as [CM14,
heorem 3.2].

heorem 2.1 (G. Conner and M. Mihalik [CM14]) Suppose K is a locally ûnite,
connected, and one-ended CW-complex. hen the following are equivalent.
(i) K has semistable fundamental group at inûnity.
(ii) For any proper ray r ∶ [0,∞) → K and compact set C, there is a compact set D

such that for any third compact set E and loop α based on r and with image in
K − D, α is homotopic rel{r} to a loop in K − E, by a homotopy with image in
K − C.

(iii) For any compact set C there is a compact set D such that if r and s are proper rays
based at v and with image in K −D, then r and s are properly homotopic rel{v},
by a proper homotopy in K − C.

If K is simply connected, then a fourth equivalent condition can be added to this list.
(iv) Proper rays r and s based at v are properly homotopic rel{v}.

If G is a ûnitely presented group and Y is a ûnite complex with π1(Y) = G, then G
has semistable (resp. simply connected) fundamental group at inûnity if the universal
cover ofY has semistable (resp. simply connected) fundamental group at inûnity. his
deûnition only depends on the group G.

In [GGMa] we consider ûnitely generated groups acting (perhaps not
co-compactly) as covering transformations on one-ended CW complexes X, and we
say what it means for such a group to be semistable at inûnity in X with respect to a
given compact subset of X. In this paper we only need consider amore simple notion.
Suppose A is a ûnitely generated inûnite subgroup of a ûnitely presented one-ended
group G. Say A ∪ S is a ûnite generating set of G, where A generates A. Let X be the
Cayley 2-complex for some ûnite presentation P (with generating set A∪ S) of G. So
X is the simply connected 2-dimensional complex with 1-skeleton equal to the Cayley
graph ofG with respect toA∪S. he vertex set of X isG and each edge of X is labeled
by an element ofA∪S. For each vertex v of X and relation r of P there is a 2-cell with
boundary equal to the edge path loop at v with edge labels spelling the word r. Let ∗
be the identity vertex of X. Let Λ(A,A) ⊂ X be the Cayley graph of Awith respect to
A. If g ∈ G and q is an edge path in gΛ, then q is called an A-path in X. Note that q
is an A-path if and only if each edge of q is labeled by an element ofA.

If g ∈ G and C is compact in X, then we say gAg−1 is semistable at inûnity in X
(or in G) with respect to C if there is a compact set D(C) ⊂ X such that if r and s are
two proper edge path rays in gΛ(A,A) − D based at the same vertex v ∈ gA, then r
and s are properly homotopic rel{v} by a proper homotopy in X −C. his deûnition
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is equivalent to the one of [GGMa]. If gAg−1 is semistable at inûnity with respect to
every compact subset of X, then we say gAg−1 is semistable at inûnity in X (or in G).
If A is one-ended and semistable at inûnity, then gAg−1 is always semistable at inûnity
in X (G).

In Section 3 we prove the following proposition.

Proposition 2.2 If G is a ûnitely presented ascending HNN extension of a ûnitely gen-
erated inûnite group A and t is the stable letter, then for all N ≥ 0, tNAt−N is semistable
at inûnity in G.

he main theorem of [GGMa] is signiûcantly more general than heorem 2.3. In
[GGMa], the main result does not require an overgroup G acting cocompactly on Y ,
only that Y be one-ended and for each compact subset C of Y , the existence a ûnitely
generated group J acting as covering transformations on Y and satisfying conditions
(i) and (ii) below. he notion of a group J being co-semistable at inûnity in a space is
a bit technical, and we deûne this a�erwards.

heorem 2.3 (R. Geoghegan, C. Guilbault, and M. Mihalik [GGMa]) Suppose G is
a one-ended ûnitely presented group acting cocompactly by covering transformations on
a simply connected locally ûnite CW-complex Y. If for each compact set C ⊂ Y there is
an inûnite ûnitely generated subgroup J of G such that
(i) J is semistable at inûnity in Y with respect to C and
(ii) J is co-semistable at inûnity in Y with respect to C,
then Y (and hence G) has semistable fundamental group at inûnity.

heconverse ofheorem2.3 is rather straightforward. In fact, ifY (equivalentlyG)
has semistable fundamental group at inûnity, then suppose C is any compact subset
of Y and J is any inûnite ûnitely generated subgroup of G, then conditions (i) and (ii)
hold for J and C. Interestingly, our proof of the main theorem of this paper relies on
selecting diòerent groups J for diòerent compact setsC satisfying (i) and (ii). We apply
heorem 2.3 when G is an ascending HNN extension of a ûnitely generated group A,
and G acts cocompactly on Y the Cayley 2-complex of G with respect to some ûnite
HNN presentation P (see §1). In our situation, all of the subgroups J of heorem 2.3
will have the form tNAt−N for some N ≥ 0. Proposition 2.2 resolves heorem 2.3(i)
for all compacts sets. All that remains to be shown is that for each compact set C in X
there is an integer N(C) ≥ 0 such that tNAt−N is co-semistable at inûnity in Y with
respect to C. We now deûne what that means.

Suppose J is an inûnite ûnitely generated group acting as covering transformations
on the one-ended, simply connected, and locally ûnite CW-complex Y . A subset S
of Y is bounded in Y if S is contained in a compact subset of Y . Otherwise, S is
unbounded in Y . Let q ∶ Y → J/Y be the quotient map. If K is a subset of Y , and
there is a compact subset C1 of Y such that K ⊂ JC1 (equivalently q(K) has image
in a compact set), then K is a J-bounded subset of Y . Otherwise K is a J-unbounded
subset of Y . If r ∶ [0,∞) → Y is a proper edge path ray and qr has image in a compact
subset of J/Y , then r is said to be J-bounded. Equivalently, r is a J-bounded proper
edge path ray in S if and only if r has image in JC1 for some compact set C1 ⊂ Y .
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Let ∗ be a base vertex in Y . When r is J-bounded, there is an integer M (depending
only on C1 and ûxed terms) such that each vertex of r is (using edge path distance)
within M of a vertex of J∗ ⊂ Y .

We say J is co-semistable at inûnity in Y with respect to the compact subset C of Y if
there is a compact subcomplex C1 of Y such that for each J-unbounded component
U of Y − (JC1), and any J-bounded proper ray r in U “loops in U and based on r
can be properly pushed to inûnity along r, avoiding C”. More speciûcally, for any
loop α ∶ [0, 1] → U with α(0) = α(1) = r(0) there is a proper homotopy H ∶ [0, 1] ×
[0,∞) → Y −C such that H(t, 0) = α(t) for all t ∈ [0, 1] andH(0, s) = H(1, s) = r(s)
for all s ∈ [0,∞).

3 Base Group Semistability in an Ascending HNN Extension

In this section, we prove three lemmas that imply Proposition 2.2. his shows that an
inûnite ûnitely generated base group is always semistable at inûnity in an ascending
HNN extension (regardless of bounded or unbounded depth). Begin with a ûnite
presentation for a group G that is an ascending HNN extension with base group a
ûnitely generated group Awith ûnite set of generators A:

P = ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩.
Here R is a ûnite subset of the free group F(A). Consider the homomorphism

P0 ∶ G → Z that kills the normal closure of A. If g ∈ G and P0(g) = N , we say g is
in level N . Let X be the Cayley 2-complex for the presentation P of G. hen P0 can
be extended to P ∶ X → R by taking each 2-cell corresponding to an element of R to
P0(v) for any vertex v of the cell, and if D is a 2-cell corresponding to a conjugation
relation t−1at = ϕ(a) for a ∈ A, then P maps D to the interval [N ,N + 1] (where the
edge of D corresponding to a ∈ A is mapped by P0 to N and those corresponding to
ϕ(a) are mapped to N + 1), in the obvious way.

Lemma 3.1 Let e ∶ [0, 1] → X be an edge in X with label a ∈ A such that e(0) = v
and e(1) = w. Let rv and rw be the edge path rays at v and w (respectively) each of
whose edges is labeled t. here is a proper map He ∶ [0, 1] × [0,∞) → X such that
He(t, 0) = e(t), He(0, t) = rv(t)), He(1, t) = rw(t), and P(He([0, 1]×[N ,N+1])) ⊂
[P(v) + N , P(v) + N + 1].

Proof On [0, 1] × [0, 1], deûne He to have image the 2-cell at v with boundary label
atϕ(a−1)t−1. Iterate to deûne He as in Figure 1. Note that if ϕ(a) has length L, then
the image of He on [0, 1] × [1, 2], consists of L conjugation relation 2-cells (each of
which is mapped by P to [P(v) + 1, P(v) + 2]).

To see that He is proper, let C be compact in X. hen P(C) ⊂ [−N ,N] for some
integer N ≥ 0. But then H−1

e (C) ⊂ [0, 1] × [0, ∣P(v)∣ + N]. ∎

Recall Λ is the Cayley graph of A with respect to A, and we assume ∗ ∈ Λ ⊂ X
where ∗ is the identity vertex.

Lemma 3.2 Suppose C is compact in X. here are only ûnitely manyA-edges e in Λ
such that the image of He (see Lemma 3.1) intersects C.
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Figure 1: Constructing and projecting He .

Proof If v ∈ A, let rv be the proper edge path ray at v, each ofwhose edges is labeled t.
If e is an edge of Λ with initial point v, then P(v) = 0. Let He be the proper homotopy
of Lemma 3.1. For any integers S > R ≥ 0, P(He([0, 1] × [R, S])) ⊂ [R, S]. Say that
P(C) ⊂ [−N ,N] for N ≥ 0. hen for any edge e of Λ,

He([0, 1] × [N + 1,∞))∩ C = ∅

(since P(C) ⊂ [−N ,N] and PHe([0, 1] × [N + 1,∞)) ⊂ [N + 1,∞)). Assume
A={a1 , . . . , an}. Let L be the length of the longestword in the set {ϕ(a1), . . . , ϕ(an)}.
So for any integer K ≥ 0, the length of the A-word He([0, 1] × {K} is ≤ LK (if e has
label a ∈ A, then He([0, 1] × {K} has label ϕK(a)). For any edge e of Λ with initial
vertex v,

He([0, 1] × [0,N]) ⊂ StL
N+N(v).

here are only ûnitely many vertices v of Λ such that StL
N+L(v)∩C ≠ ∅, and so there

are only ûnitely many edges e of Λ such that the image of He intersects C. ∎

Lemma 3.3 Suppose s = (s0 , s1 , . . . ) is a proper edge path ray in Λ ⊂ X. If v is
the initial point of s let rv be the edge path at v each of whose edges is labeled t, then
there is a proper homotopy Hs ∶ [0,∞) × [0,∞) → X of s to rv rel{v} deûned so that
Hs restricted to [N ,N + 1] × [0,∞) is HsN (i.e., Hs(N + x , y) = HsN (x , y) for all
(x , y) ∈ [0, 1] × [0,∞)).

Proof Since H(0, y) = rv(y) and H(x , 0) = s, H is a homotopy of rv to s rel{v}. It
remains to show that H is proper. If C is compact in X, then by Lemma 3.2 there are
only ûnitely many edges e of s such that the image ofHe intersects C. Choose N such
that for all n > N , Hsn avoids C. hen H−1

s (C) = ⋃N
i=1 H−1

s i (C). his last set is a ûnite
union of compact sets, since each Hs i is proper. ∎

Proof of Proposition 2.2 We show that for any integer N ≥ 0, the group tNAt−N is
semistable at inûnity in X (G). Let C be compact in X. If v ∈ A, let rv be the proper
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edge path ray at v, each ofwhose edges is labeled t. If e is an edge of Λwith initial point
v, let He be the proper homotopy of Lemma 3.1. By Lemma 3.2 there are only ûnitely
many edges e of Λ such that the image of He intersects t−NC. Choose D compact
such that D contains t−NC and all of these edges. If s and s′ are proper A-rays at
v ∈ Λ−D, then the proper homotopies Hs and Hs′ of Lemma 3.3 both avoid t−NC so
that both s and s′ are properly homotopic rel{v} to rv by homotopies in X − t−NC.
Combining Hs and Hs′ we have s is properly homotopic rel{v} to s′ by a homotopy
H in X − t−NC. Now tNH is a proper homotopy rel{tNv} of tN s to tN s′ in X −C and
tNAt−N is semistable at inûnity in X. ∎

4 Ascending HNN Extension Combinatorics

A ûnitely presented group G is an ascending HNN extension of a ûnitely generated
group if and only if it has a ûnite presentation of the form

(∗) P = ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩.

Here A is a ûnite set, R is a ûnite set of elements (words) in the free group F(A),
and for each a ∈ A, ϕ(a) is an element of F(A). Let G be the group with presen-
tation P. he base group of this HNN extension is A, the subgroup of G generated
by A. he function ϕ ∶ A → F(A) deûnes a monomorphism (usually denoted ϕ as
well) from A to A. Note that ϕ also extends to a homomorphism of F(A) → F(A).
his homomorphism need not be a monomorphism, but can always be “replaced”
by a monomorphism (see Lemma 4.8). Equivalently, one could obtain every ûnitely
presented ascending HNN presentation by considering arbitrary homomorphisms
ϕ ∶ F(A) → F(A) (with A ûnite) and forming the presentation P in the same way.

In order to deûne what it means for an ascending HNN extension to have
bounded depth, we must ûrst understand ker(p) where p is the homomorphism
p ∶ F(A) → A (deûned by p(a) = a for a ∈ A). Certainly, ker(p) contains N0(R, ϕ) ≡
N(⋃∞i=0 ϕ i(R)), where N(⋃∞i=0 ϕ i(R)) is the normal closure of⋃∞i=0 ϕ i(R) in F(A).
But it may be that for some word w ∈ F(A) and some integer m, ϕm(w) ∈ N0(R, ϕ),
and w /∈ N0(R, ϕ). hen w ∈ ker(p). Consider the normal subgroup of F(A):

N∞(R, ϕ) ≡
∞
⋃
i=0

ϕ−i(N0(R, ϕ))◁ F(A).

It is well known to experts that ϕ−i(N0(R, ϕ)) < ϕ−i−1(N0(R, ϕ)) (see theorem 4.4)
so that N∞(R, ϕ) is an ascending union of normal subgroups of F(A) and that
N∞(R, ϕ) is the kernel of p, so

A = ⟨A ∶ N∞(R, ϕ)⟩.

If there is an integer B such that N∞(R, ϕ) = ⋃Bi=0 ϕ−i(N0(R, ϕ)), then the pre-
sentation P of G has bounded depth. Our main theorem shows that if P has bounded
depth, thenG is semistable at inûnity (heorem 1.2). It is not always the case that such
ascending HNN extensions have bounded depth (see heorem 4.5).
As in Section 3, P0 ∶ G → Z is the homomorphism that kills the normal closure of

A. If X is the Cayley 2-complex for the presentation P of G given in (∗) (with vertex
set G), then P0 extends to P ∶ X → R. If g ∈ G and P0(g) = N , g is in level N .

https://doi.org/10.4153/S0008414X19000385 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X19000385


Bounded Depth HNN Extensions and π1-Semistability 1537

Remark 4.1 An edge path loop in level L of X, whose labeling deûnes an element
of⋃Bi=0 ϕ−i(N0(R, ϕ)), is homotopically trivial by a combinatorial homotopyH such
that P(H) has image in (−∞, L + B]. Note that if α is an edge path loop in level L
labeled by an element of N(R) (the normal closure of R in F(A)), then α can be
killed by a homotopy in level L. If α has initial vertex v in level L and labeling ϕ(r)
for r ∈ N(R), then using only conjugation relations, α is homotopic to an edge path
loop at v with labeling (t−1 , β, t), where β has labeling r and image in level L−1. Since
β is homotopically trivial in level L− 1, the loop α can be killed by a homotopyH such
that P(H) has image in [L− 1, L]. his homotopy only uses the homotopy that kills β
in level L− 1 and the conjugation relation 2-cells connecting α and β. If α has label in
ϕ−1(N(R)) (so ϕ(α) = r ∈ N(R)), then α can be killed by a homotopy H such that
P(H) has image in [L, L + 1].

In the case that A is ûnitely generated and the image of ϕ ∶ A→ A is of ûnite index
in A, then A is “commensurated” in G and G is semistable at inûnity (see [CM14,
Corollary 4.9]).
For A ûnite, the group G = ⟨t,A ∶ R′ , t−1at = ϕ(a) for a ∈ A⟩ (with R′ ⊂

F(A)) is an ascending HNN extension with bounded depth D and root R if the ker-
nel of the homomorphism p ∶ F(A) → A (deûned by p(a) = a for all a ∈ A) is
ϕ−D(N0(R, ϕ)) ≡ ϕ−D(N(⋃∞i=0 ϕ i(R))) for some ûnite set of words R in F(A). In
this case, G has ûnite presentation ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩.

Example 4.2 R. Grigorchuk [Gri96, Gri98] constructed a ûnitely generated inû-
nite torsion group G of intermediate growth having solvable word problem. He also
showed that G was the base group of a ûnitely presented ascending HNN extension
(which is the ûrst example of a ûnitely presented cyclic extension of an inûnite torsion
group). I. Lysënok [Lys85] produced the following recursive presentation of G:

G ≡ ⟨a, c, d ∶ σ n(a2), σ n((ad)4), σ n(adacac)4), n ≥ 0⟩,

where σ(a) = aca, σ(c) = cd and σ(d) = c. It can be shown that the ascending HNN
extension E with presentation

⟨a, c, d , t ∶ a2 = (ad)4 = (adacac)4 = 1, t−1at = aca, t−1ct = dc, t−1dt = c⟩

has base group G generated by {a, c, d} and E has bounded depth with root
{a2 , c2 , d2 , (ad)4 , (adacac)4}. he group E was the ûrst example of a ûnitely pre-
sented amenable but not elementary amenable group. In [Mih, §5], M.Mihalik shows
that E is simply connected at inûnity. he notion of a ûnitely generated group being
simply connected at inûnity is introduced in [Mih], and the group G is shown to be
simply connected at inûnity.

Example 4.3 A. Ol’shanskii and M. Sapir [OS02, OS01] construct a ûnitely pre-
sented ascending HNN extension G, where the base group H is a ûnitely generated
inûnite torsion group. In contrast to Grigorchuk’s group (Example 4.2) the base group
has ûnite exponent, and G is not amenable (see [OS02, heorem 1.1]). he group G

has been suggested as a possible non-semistable at inûnity group, but it is clear from
[OS02, equations (5)–(8), §1.2] that G has an ascending HNN presentation with depth
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one, and so by our main theorem is semistable at inûnity. We give a brief summary.
A ûnite set of words R is determined in FC = ⟨c1 , . . . , cm⟩ a free group of rank m. A
monomorphism ϕ ∶ FC → FC is deûned and R′ is deûned to be ⋃∞i=1{ϕ i(r) ∶ r ∈ R}.
he base group of their ascending HNN extension has presentation

H = ⟨c1 , . . . , cm ∶ R ∪V ∪R′⟩,
where V is the set of elements un for all u ∈ FC (and n a ûxed large odd number).
In particular, H is an inûnite torsion group. A ûnitely presented ascending HNN
extension ofH has inûnite presentation

G = ⟨t, c1 , . . . , cm ∶ t−1c i t = ϕ(c i),R ∪R′ ∪V⟩
(this follows [OS02, equation (7)]). Clearly the relationsR′ are a consequence ofR and
the conjugation relations and so can be removed. It is then argued that each relation
vn of V is ϕ−1(v′) where v′ is a consequence of R and the conjugation relations. In
particular, the above presentation of G can be reduced to the presentation

G = ⟨t, c1 , . . . , cm ∶ t−1c i t = ϕ(c i),R⟩,
and this presentation has depth 1. It seems unlikely that G has an ascending HNN
presentation with depth 0. One must wonder if for every integer N > 0, there are
ûnitely presented ascending HNN groups GN with ascending HNN presentations of
depth N , but GN does not have such a presentation of depth N − 1.

heorem 4.4 Suppose G is the ascending HNN extension with ûnite presentation

P = ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩,
where ϕ ∶ F(A) → F(A) is a (ûnite rank) free group homomorphism. hen A, the
subgroup of G generated byA, has presentation

A = ⟨A ∶ N∞(R, ϕ) ≡
∞
⋃
i=0

ϕ−i(N(
∞
⋃
j=0

ϕ j(R)))⟩.

Furthermore, we have the relations
(i) ϕ−i(N(⋃∞j=0 ϕ j(R))) ⊂ ϕ−(i+1)(N(⋃∞j=0 ϕ j(R))) for all i ≥ 0, and
(ii) ϕ(N∞(R, ϕ)) ⊂ N∞(R, ϕ) = ϕ−1(N∞(R, ϕ)).

Proof Note that

ϕ(N(
∞
⋃
j=0

ϕ j(R))) ⊂ N(
∞
⋃
j=1

ϕ j(R))) ⊂ N(
∞
⋃
j=0

ϕ j(R)) so that

N(
∞
⋃
j=0

ϕ j(R))) ⊂ ϕ−1(N(
∞
⋃
j=0

ϕ j(R))),

and so relation (i) follows.
To simplify notation, let N∞ = N∞(R, ϕ) and N i = ϕ−i(N(⋃∞j=0 ϕ j(R))) for

i ≥ 0, so that N∞ = ⋃∞i=0 N i and by (i), N i ⊂ N i+1 = ϕ−1(N i). Suppose a ∈ ϕ−1(N∞).
hen ϕ(a) ∈ N∞ and so ϕ(a) ∈ N i for some i ≥ 0. hen a ∈ ϕ−1(N i) = N i+1 ⊂ N∞,
and we have shown that ϕ−1(N∞) ⊂ N∞.

Next suppose a ∈ N∞. hen for some i ≥ 0, a ∈ N i . By (i), a ∈ N i+1 = ϕ−1(N i) ⊂
ϕ−1(N∞). We have shown that N∞(R, ϕ) ⊂ ϕ−1(N∞(R, ϕ)). Combining we have
N∞ = ϕ−1(N∞), and relation (ii) follows.
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Let A1 be the group with presentation ⟨A ∶ N∞(R, ϕ)⟩. To ûnish the theorem, we
must show that A = A1. Let p1 ∶ F(A) → A1 (determined by p1(a) = a for all a ∈ A)
be the quotient homomorphism. By (ii), the map ϕ1 ∶ A1 → A1 that extends the map
ϕ1(p1(a)) = p1(ϕ(a)) for all a ∈ A is a homomorphism. his gives a commutative
diagram:

F(A)
ϕ //

p1
��

F(A)
p1
��

A1
ϕ1 // A1 .

Next we show that ϕ1 is a monomorphism. Suppose w1 ∈ ker(ϕ1). Let w ∈ F(A)
be such that p1(w) = w1. hen p1(ϕ(w)) = 1 and so ϕ(w) ∈ ker(p1) = N∞ and
w ∈ ϕ−1(N∞) = N∞. hen w1 = p1(w) = 1 ∈ A1 and ϕ1 is a monomorphism.
Consider the ascending HNN extension

A1∗ϕ = ⟨t,A ∶ N∞(R, ϕ), t−1at = ϕ(a)⟩ for all a ∈ A

with base group A1. Since each relation in N∞(R, ϕ) is a consequence of R and
the conjugation relations, this group also has presentation P. By Britton’s lemma,
A = A1. ∎

Suppose G has ûnite presentation ⟨t,A ∶ R, t−1at = ϕ(a) for a ∈ A⟩. Here
ϕ ∶ F(A) → F(A) is a homomorphism. Let N0 ≡ N(⋃∞j=0 ϕ j(R)) ◁ F(A), N i ≡
ϕ−i(N0), and let A be the subgroup of G generated by A, so that G is the ascending
HNN extension, with base A and stable letter t. Let p ∶ F(A) → A be the homomor-
phism extending the map taking a to a for all a ∈ A.

It seems that there is some potential to ûnd a ûnitely presented group that is not
semistable at inûnity if one could ûnd a ûnitely presented ascending HNN extension
⟨t,A ∶ R, t−1at = ϕ(a) for a ∈ A⟩, such that the ascending chain of normal sub-
groups Nk of F(A) do not stabilize. he following approach gives a general method
of constructing inûnite depth ascending HNN presentations. In particular, when A0
is a non-Hopûan group and ϕ0 ∶ A0 → A0 is an epimorphism with non-trivial kernel,
then there is a corresponding ascending HNN extension with inûnite depth.

heorem 4.5 Suppose the group A0 has ûnite presentation ⟨A ∶ R⟩ and ϕ0 ∶ A0 → A0
is a homomorphism with non-trivial kernel K0 such that the following diagram (with
F(A) the free group on A and q(a) = a for a ∈ A) commutes:

F(A)
ϕ //

q

��

F(A)
q

��
A0

ϕ0 // A0 .

If the ascending sequence {K i = ϕ−i
0 (K0) = ker(ϕ i+1

0 )} of normal subgroups of A0
does not stabilize (in particular when ϕ0 is an epimorphism), then the group G with
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ascending HNN presentation

P ≡ ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩
has unbounded depth.

Proof First observe that if ϕ0 is an epimorphism, and k ∈ K0 − {1}, then there is kn
such that ϕn

0(kn) = k. In particular, kn ∈ ker(ϕn+1
0 ) − ker(ϕn

0). Note that ker(q) =
N(R)◁F(A). If r ∈ N(R), then q(ϕ(r)) = 1 and so ϕ(N(R)) ⊂ N(R) and (retaining
the notation of heorem 4.4)

N0 = N(
∞
⋃
i=0

ϕ i(R)) = N(R) = ker(q).

For the subgroup A of G determined byA, there is a commutative diagram,

F(A)
ϕ //

p

��

F(A)
p

��
A

ϕ1 // A.

Observed that A is a quotient of A0 where the element q(a) is mapped to p(a) for all
a ∈ A and the following diagram commutes:

A0
ϕ //

q0
��

A0

q0
��

A
ϕ1 // A.

(∗) If ϕ0 is an epimorphism, then since q0 is an epimorphism ϕ1 is also an epimor-
phism. In any case, G = A∗ϕ1 and when ϕ0 is an epimorphism, ϕ1 is an isomorphism.

Let N i = ϕ−i(N0) ◁ F(A). By heorem 4.4(i), N i−1 ≤ N i . For i > 0 we show
N i ≠ N i−1 when K i ≠ K i−1, so that P has unbounded depth when {K i} does not
stabilize. Choose an ∈ Kn − Kn−1. Choose an ∈ F(A) such q(an) = an . hen

q(ϕn−1(an)) = ϕn−1
0 q(an) = ϕn−1

0 (an) ≠ 1,

so ϕn−1(an) /∈ N0 = ker(q) and an /∈ Nn−1. But

qϕn(an) = ϕ0(q(ϕn−1(an))) = ϕ0(a) = 1,

so ϕn(an) ∈ ker(q) = N0 and an ∈ Nn − Nn−1. ∎

Example 4.6 When A0 is non-Hopûan and ϕ0 maps A0 onto A0 with non-trivial
kernel, heorem 4.5 produces a corresponding ascending HNN extension with un-
bounded depth.

Let A0 = BS(2, 3) = ⟨a, b ∶ b−1a2b = a3⟩, and ϕ ∶ F({a, b}) → F({a, b}) by
a → a2 and b → b, observe that ϕ i([b−iab i , a]) = [b−ia2 i

b i , a2 i] ≈ [a3 i
, a2 i ] = 1,

so that [b−iab i , a] ∈ N i . If [b−iab i , a] ∈ N i−1, then ϕ i−1([b−iab i , a]) ∈ N0 where
N0 = N(b−1a2ba−3) ◁ F({a, b})). But

ϕ i−1([b−iab i , a]) = [b−ia2 i−1
b i , a2 i−1

] ≈ [b−1a3 i−1
b, a2 i−1

],
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a reduced word of syllable length 8 in (the HNN extension) ⟨a, b ∶ b−1a2 = a3⟩. In
particular, the following ascending HNN extension presentation with stable letter t
and base group generated by {a, b} has inûnite depth:

⟨t, a, b ∶ b−1a2b = a3 , t−1at = a2 , t−1bt = b⟩.

Since ϕ1 is an isomorphism (see (∗)), ⟨A⟩ = ⟨a, b⟩ is normal in G, and the main
theorem ofM.Mihalik’s paper [Mih83] impliesG is semistable at inûnity. So this par-
ticular approach cannot yield a non-semistable at inûnity ascending HNN extension
of unbounded depth when ϕ0 is an epimorphism.

he remainder of this section is of general interest in understanding presentations
of ascending HNN extensions, but not important to the proof of our main theorem.

Remark 4.7 Consider a homomorphisms ϕ ∶ F(A) → F(A) for A ûnite where ϕ
has non-trivial kernel. One might wonder if it is possible to have a such a homomor-
phism so that (even with R = ∅), the presentation ⟨t,A ∶ t−1at = ϕ(a) for a ∈ A⟩
does not have ûnite depth? I.e., is it possible that the ascending collection of normal
subgroups of F(A) deûned by Nk = ⟨⋃k

i=1 ker(ϕ i)⟩ does not stabilize? he answer is
no.
Consider the sequence F(A) → ϕ(F(A)) → ϕ2(F(A)) → ⋅ ⋅ ⋅ of epimorphisms

where eachmap is ϕ. For i > 0, ϕ i(F(A)) is a free group of rank≤ rank(ϕ i−1(F(A))).
So, for some integer m ≥ 0, rank(ϕm(F(A))) = rank(ϕm+1(F(A))). As ûnitely
generated free groups are Hopûan, the epimorphism ϕ ∶ ϕm(F(A)) → ϕm+1(F(A))
is an isomorphism and ker(ϕm) = ker(ϕm+1).

Next we show that any homomorphism ϕ ∶ F(A) → F(A) deûning an ascending
HNN extension can be replaced by a monomorphism.

Lemma 4.8 Suppose A is a ûnite set, R is a ûnite subset of the free group F(A)
and ϕ ∶ F(A) → F(A) is a homomorphism. hen there is a ûnite set B, a ûnite set
R′ ⊂ F(B), a monomorphism ϕ′ ∶ F(B) → F(B) and an isomorphism of ascending
HNN extensions,

⟨t,A ∶ R, t−1at = ϕ(a) for a ∈ A⟩ ρÐ→⟨t,B ∶ R′ , t−1bt = ϕ′(b) for b ∈ B⟩.

Furthermore, if

qA ∶ F(A ∪ {t}) Ð→ ⟨t,A ∶ R, t−1at = ϕ(a) for a ∈ A⟩,
qB ∶ F(B ∪ {t}) Ð→ ⟨t,B ∶ R′ , t−1bt = ϕ′(b) for b ∈ B⟩

are the natural projections, then there is a epimorphism

ρ′ ∶ F(A ∪ {t}) Ð→ F(B ∪ {t})

such that
(i) ρ′(t) = t,
(ii) qB ○ ρ′ = ρ ○ qA,
(iii) ρ′(R) = R′, ( for NG(R) the normal closure of R in G) ρ′(NF(A)(R)) =

NF(B)(R′) and ρ′(NF(A∪{t})(R)) = NF(B∪{t})(R′).
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In particular, the following diagram commutes:

F(A ∪ {t})
ρ′ //

qA
��

F(B ∪ {t})

qB
��

⟨t,A ∶ R, t−1at = ϕ(a)⟩
ρ // ⟨t,B ∶ R′ , t−1bt = ϕ′(b)⟩.

(Basically ρ is conjugation by tm for some m ≥ 0.)

Proof Since free groups are Hopûan, there is an integer m ≥ 0 such that
ϕ ∶ ϕm(F(A)) → ϕm+1(F(A)) is an isomorphism (see Remark 4.7). Let B be a û-
nite set of free generators for ϕm(F(A)) (so F(B) ≡ ϕm(F(A))) and let ϕ′ ∶ F(B) →
F(B) be deûned so that ϕ′(b) is a B-word for ϕ(b) for each b ∈ B. Note that ϕ′ is a
monomorphism, since ϕ ∶ ϕm(F(A)) → ϕm+1(F(A)) < F(B) is a monomorphism.
Deûne ρ′ ∶ F(A ∪ {t}) → F(B ∪ {t}) such that ρ′(t) = t and ρ′(a) = ϕm(a) for

all a ∈ A. Note that ρ′ is an epimorphism. Let R′ = ϕm(R) (written as B-words),
and then (iii) holds. Since ρ′ of each relation of ⟨t,A ∶ R, t−1at = ϕ(a)⟩ is a relator
of ⟨t,B ∶ R′ , t−1bt = ϕ′(b)⟩, the homomorphism ρ can be deûned so that (ii) holds.
Since ρ′ is an epimorphism, ρ is an epimorphism. (Basically, ρ is conjugation by tm .)

To show that ρ is an isomorphism, it remains to show that if w ∈ ker(ρqA),
then w ∈ ker(qA) (i.e., ρ is a monomorphism). First observe that the exponent
sum of t in w is zero. Next observe that, w ∈ ker(ρqA) (resp. w ∈ ker(qA)) if
and only if t− jwt j ∈ ker(ρqA) (resp. t− jwt j ∈ ker(qA)) for every integer j ≥ 0.
Select a positive integer j such that any initial segment of t− jwt j has t-exponent
sum ≤ 0. In F(A ∪ {t}), w = (t−n1w1 tn1) ⋅ ⋅ ⋅ (t−nsws tns) where n i ≥ 0 and each
w i ∈ F(A). Let w ≡ ϕn1(w1) ⋅ ⋅ ⋅ ϕns(ws)(∈ F(A)). Now qA(w) = qA(w) and
w ∈ ker(qBρ′). Note that ρ′(w) = ϕm(w) ∈ ker(qB)(< F(B)). By heorem
4.4, ϕm(w) ∈ (ϕ′)−k(N(⋃∞i=0(ϕ′)i(R′))) for some integer k ≥ 0. By (iii) we have,
ϕm(w) ∈ ϕ−k(N(⋃∞i=0 ϕ i(ϕm(R)))), and so w ∈ ϕ−k−m(N(⋃∞i=m ϕ i(R))). By he-
orem 4.4, w (and hence w) is an element of ker(qA). ∎

5 Bounded Depth HNN Extensions are Semistable at infinity

he group G is an ascending HNN extension of a ûnitely generated group A and G
has bounded depth. We use the notation of Section 3. LetA = {a1 , . . . , an} be a ûnite
generating set for A and

P ≡ ⟨t,A ∶ R, t−1at = ϕ(a) for all a ∈ A⟩

a ûnite presentation for G, where for each a ∈ A, ϕ(a) ∈ F(A) and R ⊂ F(A). Let
X be the Cayley 2-complex for this presentation, and Λ be the Cayley graph of A
with generating set A. We assume ∗ ∈ Λ ⊂ X where ∗ is the identity vertex for X.
We must show that condition (ii) of heorem 2.3 is satisûed for each compact set C
in X. We will show that there is an integer N(C) ≥ 0 (deûned in Lemma 5.2) such
that tNAt−N is co-semistable at inûnity in X with respect to C. his requires that we
ûnd a compact set D(C) such that loops in X − (tNAt−N)D(C) can be pushed to
inûnity by proper homotopies in X − C. In every instance D(C) will have the form
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Figure 2: Special normal forms.

tN(C){∗, t−1 , . . . , t−M} for some integer M that depends on C and the depth of the
presentation P for G.

Remark 5.1 In the case that A is ûnitely presented, it is interesting to note that
our proof will show that for our choice of D(C), each loop in X − (t−NAtN)D is
homotopically trivial in X − (t−NAtN)D (see heorem 5.11). his sort of behavior is
related to the main theorems of [Wri92,GGMb,GG12], and is called strongly coaxial
when A is inûnite cyclic.

Recall that P ∶ X → R is such that for each vertex v ∈ G ⊂ X, P(v) is the exponent
sum of t in v and we say v is in level P(v). he next lemma is a direct consequence
of the normal form for elements of G (each element g ∈ G has the form tnat−m for
some n,m ≥ 0 and a ∈ A).

Lemma 5.2 Suppose C is a ûnite subcomplex of X. For each vertex v ∈ C, write

v = tn(v)av t−m(v) for av ∈ A and n(v),m(v) ≥ 0, and

N(C) = max{n(v) ∶ v ∈ C} and M(v ,C) = N(C) − n(v) +m(v)(≥ 0).
hen vtM(v ,C) ∈ tN(C)A. Note that by deûnition, N(C) − M(v ,C) = n(v) − m(v) =
P(v).

Proof For v ∈ C (see Figure 2),

v = tN(C)(tn(v)−N(C)av tN(C)−n(v))t−M(v ,C) .

If a′v = tn(v)−N(C)av tN(C)−n(v)(∈ ϕN(C)−n(v)(A) < A), then vtM(v ,C) = tN(C)a′v . ∎

Geometrically, this says that for each vertex v of C, the edge path at v with each
edge labeled t and of length M(v ,C) ends in tN(C)A.
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Lemma 5.3 Suppose C is a ûnite subcomplex of X. Let

M(C) = max{M(v ,C) ∶ v is a vertex of C}.
hen for each vertex v ∈ C,

v ∈ (tN(C)At−N(C))(tN(C){∗, t−1 , . . . , t−M(C)}).

For any non-negative integers M ,N and w ∈ (tNAt−N)(tN{∗, t−1 , . . . , t−M}),
wA ⊂ (tNAt−N)(tN{∗, t−1 , . . . , t−M}).

Proof heûrst conclusion follows from Lemma 5.2. Note thatw = tNat−m for some
a ∈ A and m ∈ {0, . . . ,M}.

hen wA ⊂ tNa(t−mAtm)t−m and as t−mAtm ⊂ A,
wA ⊂ tNAt−m ⊂ (tNAt−N)(tN{∗, t−1 , . . . , t−M}). ∎

For integers N ,M ≥ 0, deûne D(N ,M) ≡ tNA{∗, t−1 , . . . , t−M}. If C is compact
in X, and B is the bounded depth of our ascending HNN presentation P, we will
use the set D(N(C),M(C) + B + 1) to play the role of JD in X and tN(C)At−N(C)

to play the roll of J when applying heorem 2.3. First we must understand the set
(tNAt−N)D(N ,M) = tNA{∗, t−1 , . . . , t−M}, and a fewgeometric deûnitionswill help.
If v ,w ∈ G, we say the coset wA is n levels directly below vA if there is an edge path of
length n with each edge labeled t from a vertex of wA to a vertex of vA. Note that if
wA is n levels directly below vA, then for every vertex u of wA, the edge path at u of
length n and with each edge labeled t ends in vA. We say vA is n levels directly above
wA. Any cosetwA has exactly one coset that is n(≥ 0) levels directly above it, but the
cosets one level directly below vA are in one-to-one correspondence with the cosets
of t−1At in A. his means

Lemma 5.4 he set D(N ,M) = tNA{∗, t−1 , . . . , t−M} is the union of cosets vA that
are n levels directly below tNA for n ∈ {0, 1, . . . ,M}.

Note In order to avoid confusion, we can use the notation H ⋅E instead ofHE when
H is a subgroup of G and E a subset of X.

Let Q(M) = {∗, t−1 , t−2 , . . . , t−M} (M ≥ 0) and notice that the next lemma says
that it is easy to check if a vertex v of X is in either A ⋅Q(M), K0 (a special component
of X −A ⋅Q(M)) or a component of X −A ⋅Q(M) other than K0. If v is in a level > 0
then v ∈ K0. If v is in level 0 through −M, then v is in A ⋅Q if the edge path from v to
level 0, with each edge labeled t, ends in A (i.e., vA is −P(v) levels directly below A);
and v is in K0 otherwise. If v is in a level < −M, then v is in K0 if the edge path from
v to level 0, with each edge labeled t, does not end in A, and otherwise, v belongs to a
component of X − A ⋅ Q other than K0. Note that tn ∈ K0 for all n > 0, so that under
the quotient of X by A, the image of K0 is not contained in a compact set. If v ∈ K
where K is a component of X − A ⋅ Q other than K0, then vtn ∈ K for all n < 0, so
under the quotient of X by A, the image of K is not contained in a compact set. Our
terminology for this is that K and K0 are A-unbounded components of X − A ⋅ Q.

Lemma 5.5 Let Q(M) = {∗, t−1 , t−2 , . . . , t−M} for M ≥ 0.
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Figure 3: Components of X − AQ(M).

(i) A ⋅ Q(M) is the set of all vertices v ∈ X such that P(v) ∈ {−M , . . . , 0} and
vt−P(v) ∈ A. Furthermore, if v ∈ A ⋅ Q(M), then vA ⊂ A ⋅ Q(M).

(ii) X−A⋅Q(M) has an A-unbounded component K0 with stabilizer Aand the vertex
v of X − A ⋅ Q(M) is in K0 if and only if either P(v) ≥ −M or both P(v) < −M
and vt−P(v) /∈ A.

(iii) If K is any component of X − A ⋅ Q(M) other than K0, then K is A-unbounded,
and if v is a vertex of K, then P(v) < −M and vt−P(v) ∈ A.

Proof (i) his part follows directly from Lemma 5.4 (with N = 0).
(ii) Let K0 be the component of X − A ⋅ Q that contains the vertex t. Let v be a

vertex of X; then by normal forms, v = t l at−m where a ∈ A and l ,m ≥ 0. If P(v) > 0,
then l > m (Figure 3) and the normal form for v deûnes an edge path from t to v in
levels 1 and above, and hence avoiding A ⋅ Q. So if P(v) > 0, then v ∈ K0. Note that
P(at) = 1 for all a ∈ A, so that A stabilizes K0.

Suppose v ∈ X − A ⋅Q and −M ≤ P(v) ≤ 0 (Figure 3); then by part (i), vt−P(v) /∈ A
and no point of the edge path beginning at v with labeling t−P(v) is a point of A ⋅ Q.
Since P(vt−P(v)+1) = 1, the edge path at v with labeling t−P(v)+1 avoids A ⋅Q and ends
at a point of K0. So if v ∈ X − A ⋅ Q and P(v) ∈ {−M , . . . , 0}, then v ∈ K0.

Suppose v ∈ X − A ⋅ Q and P(v) < −M (Figure 3). Note that P(vt−P(v)) = 0. If
vt−P(v) /∈ A, then we have already shown that vt−P(v) ∈ K0, and by part (i), no point
of the path with labeling t−P(v) at v intersects A ⋅ Q. Hence v ∈ K0.
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For the converse, suppose v ∈ K0 and P(v) < −M. We must show vt−P(v) /∈ A.
Let α be an edge path in X − A ⋅ Q from t to v (Figure 3). Let β be a tail of α where
w, the initial point of β, is the last point of α with P(w) = −M. he ûrst edge of β
is labeled t−1. Note that conjugation relations allow us to move each A-edge of β up
to level −M so there is an edge path from w to v labeled (x1 , . . . x i , t−k) where k > 0
and x i ∈ {a1 , . . . , an}±1. Hence vtk ∈ wA and P(vtk) = −M. Since w /∈ A ⋅ Q, part
1) implies wA ∩ A ⋅ Q = ∅, so vtk /∈ A ⋅ Q. Again by Part 1), vtk t−P(v tk) /∈ A. hen
vt−P(v) = vtk t−P(v)−k = vtk t−P(v tk) /∈ A. his completes part (ii).

(iii) If v ∈ K ≠ K0 then by Part (ii), P(v) < −M and vt−P(v) ∈ A. ∎

We need a slightly stronger version of Lemma 5.5. Recall that Q(M) =
{∗, t−1 , t−2 , . . . , t−M}. hen

tNA ⋅ Q(M) = tNAt−N(tN(Q(M))).
Observe that for any integer m ≥ 0 the stabilizer of tmΛ is tmAt−m .

Lemma 5.6 Let M ,N ≥ 0 be integers.
(i) he set tNA ⋅ Q(M)(= D(N ,M)) consists of the vertices v ∈ X such that P(v) ∈

{N ,N − 1, . . . ,N − M} and vtN−P(v) ∈ tNA. Furthermore, if v ∈ tNA ⋅ Q(M),
then vA ⊂ tNA ⋅ Q(M).

(ii) Let K0 be the component of X−A ⋅Q(N) described by Lemma 5.5(ii). hen tNK0
is a (tNAt−N)-unbounded component of X− tNA ⋅Q(N)with stabilizer tNAt−N ,
and the vertex v of X − tNA ⋅ Q is in tNK0 if and only if either P(v) ≥ N −M or
P(v) < N −M and vtN−P(v) /∈ tNA.

(iii) If K is any component of X − A ⋅ Q other than K0 then tNK is a (tNAt−N)-
unbounded component of X − tNA ⋅ Q(M), and if v is a vertex of tNK, then
P(v) < N −M and vtN−P(v) ∈ tNA.

Proof (i) If v ∈ tNA ⋅ Q(M), then P(v) ∈ {N ,N − 1, . . . ,N − M}. Note that
P(t−Nv) = −N + P(v) ∈ {0, . . . ,−M}. Lemma 5.5 implies, t−Nv ∈ A ⋅Q if and only if
t−Nvt−P(t−N v) ∈ A if and only if vtN−P(v) ∈ tNA. Furthermore, if v ∈ tNA⋅Q(M), then
t−Nv ∈ A ⋅ Q(M), and by Lemma 5.5, t−NvA ⊂ A ⋅ Q(M) so that vA ⊂ tNA ⋅ Q(M).

(ii) By Lemma 5.5, tNK0 is a component of X − tN(A ⋅ Q(M)). Since t ∈ K0,
tN+1 ∈ tNK0, and so the proper ray at tN+1 with all edge labels t belongs to tNK0. In
particular, tNK0 is tNAt−N -unbounded. SinceA stabilizesA⋅Q(M), tNAt−N stabilizes
tNA ⋅ Q(M). he vertex v of X belongs to tNK0 if and only if t−Nv ∈ K0, (by Lemma
5.5), if and only if P(t−Nv) ≥ −M or both P(t−Nv) < −M and t−Nvt−P(t−N v) /∈ A, if
and only if P(v) ≥ N −M or both P(v) < N −M and vtN−P(v) /∈ tNA.

(iii) Suppose v is a vertex of tNK then t−Nv ∈ K. By Lemma 5.5, P(t−Nv) < −M
(so P(v) < N −M) and t−Nvt−P(t−N v) ∈ A (so vtN−P(v) ∈ tNA). ∎

Geometrically, the only diòerence between Lemma 5.6 and Lemma 5.5 is that in
order to check if a vertex v in a level of X less than N , belongs to either tNA ⋅ Q(M),
tNK0 or tNK for K a component of X−A⋅Q(M) diòerent than K0, one simply checks
if the end point of the path at v with each edge labeled t and ending in level N , ends
in tNA or not. It is also important to observe the following remark.
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Remark 5.7 For any integers M ,N ≥ 0, the set tNA ⋅ Q(M)(= D(N ,M)) and any
component of X − D(N ,M) is a union of cosets vA.

Lemma 5.8 Suppose M ,N ≥ 0 are integers and v is a vertex of the component tNK0
of X − tNA ⋅ Q(M). hen for any integer n ≥ 0, we have (vtnA) ∩ A ⋅ Q(M) = ∅.

Proof By Lemma 5.6(i), it suõces to show that vtn /∈ tNA ⋅ Q(M). But this follows
directly from parts (i) and (ii) of Lemma 5.6. ∎

(∗) From this point on, we assume the presentation P has bounded depth B ≥ 0.

Lemma 5.9 If α is an edge path loop in X and im (P(α)) ⊂ (−∞, L], then α is
homotopically trivial by a homotopy H such that im (P(H)) ⊂ (−∞, L + B].

Proof Using only conjugation 2-cells, α, is homotopic (by a homotopy H1) to an
edge path loop β, each of whose vertices is in level L. In particular, each edge of β
is labeled by an element of A and im (P(H1)) ⊂ (−∞, L]. he word w determined
by the edge labeling of β is in the kernel of the epimorphism p ∶ F(A) → A. So w ∈
⋃Bi=0 ϕ−i(N0(R, ϕ)). By Remark 4.1, the loop β (and hence α) is homotopically trivial
by a homotopy H such that im (P(H)) ⊂ (−∞, L + B]. ∎

Lemma 5.10 Suppose M ,N ≥ 0 are integers, α is a loop in X − tNA ⋅Q(M) and B is
the bounded depth of the presentation P.

(i) If α has image in a component of X−tNA⋅Q(M) other than tNK0, then α is homo-
topically trivial by a homotopy H such that P(H) has image in
(−∞, B + N −M].

(ii) If α has image in tNK0, v is a vertex of α and rv is the proper edge path ray at v
with each edge labeled t, then there is proper homotopy H ∶ [0,∞)×[0, 1] → tNK0
where H(x , 0) = H(x , 1) = rv(x) and H(0, y) = α(y).

Proof (i) By (iii) of Lemma 5.6, im (P(α)) ⊂ (−∞,N −M]. Lemma 5.9 ûnishes
part (i).

(ii) Let H be the homotopy that strings together the homotopies He of Lemma 3.1
for each A-edge e of α. he image of H avoids tNA ⋅ Q(M) by Lemma 5.8, and so is
in tNK0. he homotopy H is proper, since it is a combination of ûnitely many proper
homotopies. ∎

By Lemma 5.3, if C is a compact subset of X, there are integers M(C) and N(C)
such that C ⊂ tNA ⋅Q(M). In our terminology, the next result would say that when A
is ûnitely presented and N ≥ 0, the group tNAt−N is “co-simply connected at inûnity
in G”.

heorem 5.11 Suppose G is an ascending HNN extension of the ûnitely presented
group A and X is the Cayley 2-complex for the HNN presentation with stable letter t
and base A (with a ûnite presentation of A as a sub-presentation). If M ,N ≥ 0 are
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integers and α is a loop in X − tNA ⋅ Q(M) (= X − tNAt−N ⋅ (tNQ(M))), then α is
homotopically trivial in X − tNA ⋅ Q(M).

Proof Wepresent the case whereN = 0 as all others are completely analogous. Let Λ
be the Cayley 2-complex for A, determined by the presentation of Awithin our HNN
presentation of G. If K is a component of X − A ⋅ Q other than K0 and α is an edge
path loop in K, then each vertex v of α is such that P(v) < −M. Using conjugation
relations α is homotopic in K to an A-loop α1 in level −M − 1. hen α1 lies in a copy
of Λ in level −M − 1 and so is homotopically trivial in level −M − 1.

If α is an edge path loop in K0, then by Lemma 5.8, conjugation relations can be
used to show that α is homotopic to a loop α1 in a single level and this homotopy
avoids A ⋅Q. Lemma 5.8 also implies that α1 is in a copy of Λ that avoids A ⋅Q. As α1
is homotopically trivial in that copy of Λ, α1 (and hence α) is homotopically trivial in
X − A ⋅ Q. ∎

Suppose M ,N ≥ 0 are integers and s is a proper edge path ray in X − tNA ⋅ Q(M)
with initial vertex v ∈ K0. If q is the quotient of X by the action of tNAt−N and qs
has image in a compact subset of (tNAt−M)/X (so s is tNAt−N -bounded), then each
vertex of s is within edge path distance ≤ K of tNA and Ps has image in the closed
interval [N − K ,N + K].

Lemma 5.12 Suppose M ,N ≥ 0 are integers, s is a proper edge path ray in the tNK0
component of X − tNA ⋅ Q(M), and s(0) = v. Let rv be the proper edge path ray at v,
each of whose edges is labeled t. If Ps has image in a closed interval, then s is properly
homotopic to rv by a homotopy with image in tNK0.

Proof Assume that the image of Ps is [L,M]. By Lemma 5.8, one can use conjuga-
tion relations to slide each A-edge of s along t-edges to level M, by a homotopy with
image in tNK0. So s is properly homotopic to s′, the resulting proper ray, which (a�er
removing any backtracking edges (t, t−1) or (t−1 , t)) is a proper A-ray. Let r′ be the
proper edge path ray at the initial point of s′ with all edges labeled t (so r′ is a sub-ray
of rv). Let H be the proper homotopy of s′ to r′ deûned in Lemma 3.3. By Lemma 5.8,
H has image in tNK0. ∎

Proof of Theorem 1.2 Let X be the Cayley 2-complex of P. By Proposition 2.2,
tNAt−N is semistable at inûnity in X for all N ≥ 0, and in Section 2 we reduced the
proof of heorem 1.2 to showing that for each compact set C in X there is an integer
N ≥ 0 such that tNAt−N is co-semistable at inûnity in X with respect toC. hismeans
that for any ûnite subcomplexC of X there is an integerN ≥ 0, and compact setD such
that for any proper tNAt−N -bounded ray s in X−tNAt−ND and loop α in X−tNAt−ND
such that α(0) = s(0), there is a proper homotopy H ∶ [0, 1] × [0,∞) → X − C such
that H(0, t) = H(1, t) = s(t) and H(t, 0) = α.

Start with a ûnite subcomplex C of X. he integer N(C) ≥ 0 will play the part of
N . Recall that B is the bounded depth of the presentation P. Let

D = tN(C)Q(M(C) + B + 1).
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Recall that Q(M) = {∗, t−1 , . . . , t−M}. By Lemma 5.3, for each vertex v ∈ C,

vA ⊂ tN(C)At−N(C)(tN(C)Q(M(C)))
⊂ tN(C)At−N(C)(tN(C)Q(M(C) + B + 1))
= tN(C)At−N(C)D

= tN(C)A ⋅ Q(M(C) + B + 1).

If v ∈ C, then v ∈ tN(C)AQ(M(C)) so that P(v) ∈ [N(C) −M(C),N(C)]. Suppose
α is a loop in X − tN(C)At−N(C)D. hen α is either in tN(C)K0 where K0 is the special
component of X−A⋅Q(M(C)+B+1) (described in Lemma 5.5(ii)), or α is in tN(C)K
for some component K of X − A ⋅ Q(M(C) + B + 1) other than K0. If α belongs to
tN(C)K, then by Lemma 5.10(i), α is homotopically trivial by a homotopyH such that

im (P(H)) ⊂ (−∞, B + N(C) − (M(C) + B + 1)] = (−∞,N(C) −M(C) − 1].

Since P(C) ⊂ [N(C) −M(C),N(C)], the homotopy H kills α in X − C (actually in
X − A ⋅ C).

If α is in tN(C)K0, and s is a tN(C)At−N(C)-bounded proper ray in tN(C)K0 such
that α(0) = s(0), then by Lemma 5.12, s is properly homotopic (rel{s(0)}) to r the
proper edge path ray at s(0), each of whose edges is labeled t, by a homotopy with
image in tN(C)K0 ⊂ X − C. Combining the homotopy of r to s with one given by
Lemma 5.10(ii) (also in tN(C)K0) completes the proof. ∎
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