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Abstract We study a class of flat bundles, of finite rank N , which arise naturally from the Donaldson–

Thomas theory of a Calabi–Yau threefold X via the notion of a variation of BPS structure. We prove

that in a large N limit their flat sections converge to the solutions to certain infinite-dimensional
Riemann–Hilbert problems recently found by Bridgeland. In particular this implies an expression for

the positive degree, genus 0 Gopakumar–Vafa contribution to the Gromov–Witten partition function of

X in terms of solutions to confluent hypergeometric differential equations.
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1. Introduction and main results

In this Introduction we describe the circle of ideas and main results of this paper. All

definitions and proofs are given in the following sections.

Let X be a complex projective Calabi–Yau threefold. Write 0 for its numerical

Grothendieck group endowed with the skew-symmetric bilinear Euler form 〈−,−〉.
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104 J. Scalise and J. Stoppa

Some of the aims of (generalised, unrefined) Donaldson–Thomas theory (see [22, 23])

are

(1) to define deformation invariants DT(α, Z) ∈ Q, virtually enumerating objects in

Db(X) which have prescribed class α ∈ 0 and which are semistable with respect

to a numerical Bridgeland stability condition, locally described by a central charge

Z ∈ Hom(0,C);
(2) to define underlying Bogomol’nyi-Prasad-Sommerfield (BPS ) invariants �(α, Z) ∈

Q via a known, universal multi-cover formula, and to prove that in fact they take

values in Z (at least for sufficiently general Z);

(3) to prove that the variation of DT(α, Z) (equivalently �(α, Z)) when we deform

the stability condition Z is given by a known, universal expression, the JS/KS

wall-crossing formula (due to Joyce–Song and Kontsevich–Soibelman).

Thanks to the work of several authors these aims have now been achieved in some

special but highly nontrivial cases (see in particular [3, 27]). A much simpler example is

discussed at the end of this Introduction.

This general theory leads to formulate the abstract notions of a BPS structure (0, Z , �)
on a lattice 0 with a form 〈−,−〉, and of its variation, which simply describe the outcome

of (1)–(2) above for a fixed Z , respectively (3) above when varying Z . (In general one

allows 0 to be a nontrivial local system along a variation, but in the present paper we

will only need to consider framed variations, for which the local system is in fact trivial).

So Z is an element of Hom(0,C) and � a map of sets 0→ Q (or 0→ Z in the integral

case), satisfying certain constraints, including the JS/KS formula when Z varies. The

function DT is then defined from � by inverting the multi-cover formula.

This idea is due to Kontsevich and Soibelman ([23, § 2], [24, § 2]). It is somewhat

analogous to introducing the abstract notion of a (variation of) Hodge structure starting

from the case of (a family of) Kaehler manifolds. In this analogy the JS/KS formula may

be compared to Griffiths transversality: it is the most nontrivial constraint on a variation.

The terminology adopted in the present paper was introduced by Bridgeland in [5] in

order to single out a special case of Kontsevich and Soibelman’s more general notions

of stability data and wall-crossing structures. Important motivation for this abstract

approach comes from the fact that variations of BPS structure appear naturally in other

contexts, notably in symplectic geometry (see e.g. [8, 24, 25]) and in the Gross–Siebert
programme for mirror symmetry (see e.g. [4, 17, 18]).

One of the main aims of the present paper is to show how some very special but

interesting variations of BPS structure (which correspond roughly to the case of torsion

coherent sheaves on X supported in dimension at most 1) can be described effectively in

terms of classical objects, namely linear complex differential equations of hypergeometric

type. At the same time we relate this description to recent work of Bridgeland [5]. As

an application we find an expression for the positive degree, genus 0 Gopakumar–Vafa

contribution to the Gromov–Witten partition function of a Calabi–Yau threefold X in

terms of solutions to confluent hypergeometric differential equations.

We will follow two closely related approaches, based respectively on Riemann–Hilbert
factorisation problems (RH problems) and on flat bundles (of Frobenius type). In our
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loose analogy with variations of Hodge structure the latter correspond to the Gauss–

Manin connection, the former to the inverse problem of reconstructing the Gauss–Manin

connection from its monodromy.

RH problems are a special type of boundary value problems for holomorphic functions

and form a classical topic in complex analysis and mathematical physics (see e.g. [13]). A

BPS structure (0, Z , �) induces in a very natural way various RH problems, formulated

for maps from C∗ to an affine algebraic torus T, given by characters of 0 twisted by

the form 〈−,−〉. The BPS invariants � prescribe the boundary behaviour of the maps

along certain rays in C∗. Unlike the classical case the corresponding structure group is

always infinite-dimensional, and for the purposes of the present paper it is a subgroup of

Bir(T). This idea is due to Gaiotto, Moore and Neitzke (see [15]) and was studied e.g. in

[5, 12, 20].

Let us recall a recent result in this connection, concerning the case of finite, uncoupled

BPS structures. These are the simplest objects in the theory, and are defined by the

condition that the Euler pairing vanishes when restricted to the locus where � 6= 0, i.e.

to active classes (which are finitely many, in the finite case). In particular we will see

that the function � is in fact constant along a variation of uncoupled BPS structure.

Geometrically such structures correspond to the case of torsion coherent sheaves on X
supported in dimension at most 1, as discussed at the end of this Introduction. It is

convenient to introduce a special multi-valued meromorphic function on C∗, given by

3(w) =
ew0(w)
√

2πww−
1
2
,

where 0(w) is the classical gamma function (see e.g. [11, Ch. I]). Given a ray ` ⊂ C∗
emanating from 0 ∈ C we also introduce the half-plane

H` = {z ∈ C∗|z = uv with u ∈ ` and =(v) > 0} ⊂ C∗.

Theorem 1 (Bridgeland [5, Theorem 5.3]). Let (0, Z , �) be a finite, integral, uncoupled

BPS structure. Suppose ξ ∈ T is such that ξ(γ ) = 1 when �(γ ) 6= 0. Then the

infinite-dimensional, birational RH problem with values in T attached to (0, Z , �), with

t → 0 asymptotics prescribed by ξ , admits a unique solution 9(t). Its component along

β ∈ 0 is given explicitly by the collection of functions

9H`,β(t) =
∏

γ |�(γ ) 6=0,Z(γ )∈H`

3

(
Z(γ )

t

)�(γ )〈β,γ 〉
, t ∈ H`

for generic ` ⊂ C∗.

We will relate this infinite-dimensional result to large rank limits of classical,

finite-dimensional flat bundles (i.e. systems of linear complex ordinary differential

equations [ODEs]).

A central notion for us is that of a Frobenius bundle, introduced by Hertling (following

Dubrovin [10]) in his study of geometric structures on unfolding spaces of singularities (see

[19, § 5.2]). A Frobenius bundle K is a holomorphic bundle over a complex manifold M
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with additional data, including a flat connection ∇r , a Higgs field C and a holomorphic

quadratic form g (the ‘metric’). Barbieri and the second author (see [1]) showed that

under some conditions there is a correspondence between variations of BPS structure and

Frobenius bundles of a special form. The main ingredient is a holomorphic generating

function f (Z) for the invariants DT(α, Z) introduced by Joyce (see [21]).

Proposition 2 (see Theorem 34 and Proposition 35). There is a correspondence between

(1) framed variations of BPS structure (0, Z , �) over a complex manifold M, which

are either uncoupled or satisfy suitable conditions; and

(2) Frobenius bundle structures K on the trivial bundle over M with fibre the group

algebra C[0], with values in formal power series, such that the Higgs field C equals

−d Z and the flat connection ∇r is given by the adjoint action of the holomorphic

generating function f (Z).

The correspondence is not canonical but depends on a suitable choice of a basis for 0.

Note that the bundle K is infinite-dimensional, generated by the global sections xα, α ∈ 0

corresponding to the generators of the group algebra. For all finite subsets 1 = {αi } ⊂ 0

there is a finite-dimensional subbundle K1 ⊂ K spanned by {xαi }, and the metric g gives

a canonical projection K → K1. Our first result in this paper characterises uncoupled

variations of BPS structure in terms of these finite-dimensional subbundles.

Theorem 3. Let (0, Z , �) be a framed variation of BPS structure over a complex manifold

as in Proposition 2, K the corresponding Frobenius bundle. The following are equivalent.

(1) The BPS structures in (0, Z , �) are uncoupled.

(2) For all 1 the canonical projection K → K1 induces a Frobenius bundle structure

on the finite-dimensional subbundle K1 ⊂ K .

Remark 4. We will see that in the uncoupled case the Frobenius bundles K , K1 actually

fit in 1-parameter families K h̄ , K1,h̄ induced by rescaling the form

〈−,−〉 7→ i h̄〈−,−〉 (1.1)

for h̄ ∈ R>0. This is a special case of a more general construction, which extends to the

coupled case, see Remark 36.

Fix an uncoupled variation of BPS structure (0, Z , �) as above. The simplest nontrivial

example of a Frobenius subbundle K1 ⊂ K has rank 2 and is obtained by choosing 1 =

{mγ +mβ,mβ} where γ is an active class, 〈γ, β〉 6= 0 and m > 0. We take into account the

extra parameter h̄ of the rescaling (1.1) and call this Frobenius bundle K1,h̄ the simple

oscillator spanned by γ , β with frequency m. We will see that this Frobenius bundle is

determined by classical objects, namely GL(2,C) fundamental solutions Y (m)h̄ (t) to the

system of complex linear differential equations

∂

∂t
Y (m)h̄ (t) = (−t−2U (m)

+ t−1V (m)
h̄ )Y (m)h̄ (t) (1.2)
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where

U (m)
=

(
m Z(γ +β) 0

0 m Z(β)

)
,

V (m)
h̄ =

〈γ, β〉h̄
2π

�(γ )

(
0 (−1)m〈γ,β〉

−(−1)m〈γ,β〉 0

)
.

Turning the system into a single ODE in a standard way shows that K1,h̄ is given by

fundamental solutions to the confluent hypergeometric differential equation

u′′(z)+
(

1
z
− z1− z2

)
u′(z)+

(
µ2

z2 −
z1

z
+ z1z2

)
u(z) = 0 (1.3)

with the choice of parameters

z = t−1, z1 = m Z(γ +β), z2 = m Z(β), µ = −(−1)m〈γ,β〉
〈γ, β〉h̄

2π
�(γ ).

Remark 5. By a slight abuse of notation we will also refer to the standard normalisation

9
(m)
h̄ (t) of the GL(2,C) fundamental solution Y (m)h̄ (t) (determined by the asymptotic

condition 9
(m)
h̄ (t)→ I for t → 0) as a simple oscillator. We will show that 9

(m)
h̄ (t) =

I + O(h̄) and log9(m)h̄ (t) ∈ M2(C) is off-diagonal modulo h̄2 for all t .

In view of Theorem 3 it seems natural to ask if the solution of the infinite-dimensional

RH problem 9H`,β(t) of Theorem 1 can be recovered in a large rank limit, i.e. as the

limiting behaviour along an infinite increasing sequence of Frobenius subbundles K1 ⊂ K .

One of our main results confirms this expectation.

Theorem 6. Let (0, Z , �) be a framed variation of uncoupled BPS structure. Fix a basis

{β j } for 0 and let {γi } be any finite collection of active classes. Let ξ̂ denote the vector

(1, 1)T ∈ C2 and 5 be the linear function on C2 given by 5(w1, w2)
T
= w1+w2.

(1) For all N > 0, the Frobenius bundle K attached to (0, Z , �) contains a canonical,

finite-dimensional Frobenius subbundle isomorphic to the direct sum of all the

simple oscillators spanned by γi , β j with frequency m = 1, . . . , N .

(2) Suppose now (0, Z , �) is finite and {γi } is a maximal set of active classes such that

all the Z(γi ) lie in a half-plane H`. Let 9
(m),i j
h̄ denote the simple oscillator spanned

by γi , β j with frequency m. Then we have an expansion

exp

1
h̄

∞∑
m=1

∑
i |〈γi ,β j 〉6=0

(−1)m〈γi ,β j 〉

m
5 log9(m),i j

h̄ ((2π)−1√
−1t)ξ̂


=

∏
i

3

(
Z(γi )

t

)�(γ )〈β j ,γi 〉

+ O(h̄)

for all t ∈ C∗ such that <(Z(γi )/t) > 0 for all i . Integrality is not required. If

(0, Z , �) is also integral the latter product equals the function 9H`,β j (t) appearing

in Theorem 1.
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Thus the solution to the infinite-dimensional, birational RH problem attached to

(0, Z , �), with asymptotics prescribed by ξ ∈ T, turns out to be the leading order term

in the h̄ → 0, N →∞ limit of a sum of simple oscillators, at least in a nonempty open

sector of H`.

Remark 7. Evaluating at ξ̂ (more precisely at
⊕

i,m ξ̂) is the finite-dimensional analogue

of evaluating at a special point ξ ∈ T as in Theorem 1. Similarly the linear functional⊕
i,m

(−1)m〈γi ,β j 〉

m 5 is the finite-dimensional analogue of the torus character projecting

along the β j component as in Theorem 1. In terms of matrix entries we have

5 log9(m),i j
h̄

(
(2π)−1√

−1t
)
ξ̂ = log9(m),i j

h̄

(
(2π)−1√

−1t
)
(12)
+ O(h̄2)

where for a matrix A we write A(kl) = Akl + Alk . We will see that in fact there is an

explicit formula

5 log9(m),i j
h̄ (t)ξ̂ = −(−1)m〈γi ,β j 〉m〈γi , β j 〉h̄�(γi )

×
1
π

∫
∞

0
arctan

((
Z(γi )

t

)−1

s

)
e−ms ds+ O(h̄2).

Remark 8. Both Theorem 1 and the proof of Theorem 6 are very much inspired by a

calculation of Gaiotto (see [14, § 3.1]). We note that the idea of looking at large rank,

weak coupling limits of the form h̄ → 0, N →∞ is familiar from the ‘large N limit’ in

the theory of matrix models, with the standard notation gs = 1/N , N →∞ (see e.g. [26,

Ch. I, § 1.1]). It seems interesting to ask if the higher order terms in the h̄ expansion of

Theorem 6(2) also have a natural interpretation.

We consider now the case when (0, Z , �) is a miniversal variation of finite, integral

BPS structure. This means that fixing a basis {β j } one can use the central charges Z(β j )

as local coordinates on the base. If v j (t, Z) is a vector function of t, Z with vector index j ,
we follow [5, § 3.4] and define a tau function τv for v as a solution to

∂

∂t
log v j

=

∑
p

〈β j , βp〉
∂

∂Z(βp)
log τv, (1.4)

for all j , which is invariant under a common rescaling of t and all Z(β j ). Define a

multi-valued meromorphic function on C∗ by

ϒ(w) =
−ζ ′(−1)e

3
4w

2
G(w+ 1)

(2π)w/2ww2/2
,

where G(w) is the Barnes G-function (see [28, p. 264]).

Theorem 9 (Bridgeland [5, Theorem 3.4]). Let (0, Z , �) be a miniversal variation of

finite, integral, uncoupled BPS structure. Then the vector function 9H`,β j (vector index j)
admits the tau function

τ`(t, Z) =
∏

γ |�(γ )6=0,Z(γ )∈H`

ϒ

(
Z(γ )

t

)�(γ )
, t ∈ H`. (1.5)
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The tau function τ`(t, Z) plays an important role because it can be related more directly

to Gromov–Witten partition functions, as we explain below. We can prove an analogue

of Theorem 6 for tau functions. Write {γi } for the active classes as above. Introduce the

scalar functions

log τ (m),ih̄ (
√
−1t) =

�(γi )

2π
h̄
∫
∞

0
s log

(
s2
+

(
Z(γi )

t

)2
)

e−ms ds (1.6)

(compare to the explicit formula in Remark 7).

Theorem 10. Let (0, Z , �) be a miniversal variation of finite, uncoupled BPS structure.

Let notation and assumptions be as in Theorem 6.

(1) The vector function (vector index j)

exp

1
h̄

∞∑
m=1

∑
i |〈γi ,β j 〉6=0

(−1)m〈γi ,β j 〉

m
5 log9(m),i j

h̄ ((2π)−1√
−1t)ξ̂


admits the tau function

exp

1
h̄

∞∑
m=1

∑
i |�(γi )6=0

log τ (m),ih̄ ((2π)−1√
−1t)


modulo h̄, i.e. this solves (1.4) up to O(h̄).

(2) In the integral case the latter function equals the tau function τ`(t, Z) given by (1.5).

By Theorem 6(2) this implies Theorem 9, i.e. the tau function τ`(t, Z) of the

infinite-dimensional, birational RH problem attached to (0, Z , �) is the tau function

for the leading order term in the h̄ → 0, N →∞ expansion of a sum of simple oscillators

(at least in a nonempty, open sector).

Let us return to the geometric case of a Calabi–Yau threefold X . Theorem 10 can

be used in conjunction with results from [5] to show that a certain (Gopakumar–Vafa)

contribution to the Gromov–Witten partition function of X can be expressed in terms of

solutions to the confluent hypergeometric equation (1.3), i.e. in terms of a sum of simple

oscillators.
To explain this we recall that Bridgeland [5, § 6] constructs a miniversal variation

of uncoupled BPS structure where 0 = H2∗(X,Z) (modulo torsion), 〈−,−〉 is the

intersection pairing, and �(α) vanishes except when α = (n, β, 0, 0), when it is the BPS

invariant enumerating coherent sheaves on X supported in dimension 6 1 and with Chern

character dual to α (see [22, § 6]). Central charges of active classes are specified by

Z(n, β, 0, 0) =
∫
β
ωC− n, ωC denoting a complexified Kähler class. Note that these BPS

structures are not finite. Their formal tau function is given by the right hand side of

(1.5), regarded as a formal infinite product.

Proposition 11 (Bridgeland–Iwaki [5, § 6.3]). Consider the positive degree, genus 0
Gopakumar–Vafa contribution to the Gromov–Witten partition function of X , given
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explicitly by

χ(X)
∑
g>2

(−1)g−1 B2g B2g−2

4g(2g− 2)(2g− 2)!
λ2g−2

+

∑
g>2

∑
β∈H2(X,Z)

GV(0, β)
(−1)g−1 B2g

2g(2g− 2)!
Li3−2g(xβ)λ2g−2.

(1.7)

Assuming the conjectural relation �(n, β, 0, 0) = GV(0, β) for all n, with β a positive

curve class (see [22, Conjecture 6.20]), the change of variables

λ = 2π t, xβ = exp(2π ivβ), vβ =

∫
β

ωC (1.8)

gives the logarithm of the formal tau function for sheaves on X supported in dimension

61, i.e. the logarithm of the right hand side of (1.5) regarded as a formal infinite product.

The following result thus follows immediately from Theorem 10.

Corollary 12. Assume the conjectural relation �(n, β, 0, 0) = GV(0, β) as above. Then,

after the change of variables (1.8), the positive degree, genus 0 Gopakumar–Vafa

contribution to the Gromov–Witten partition function of X (1.7) can be written as a

sum of simple oscillator tau functions

1
h̄

∞∑
m=1

∑
β,n

log τ (m),(n,β,0,0)h̄ ((2π)−1√
−1t)

regarded as a formal power series in t, vβ , where log τ (m),(n,β,0,0)h̄ is given by setting

γi = (n, β, 0, 0) in the right hand side of (1.6).

Remark 13. Bridgeland [6] has shown how to extend Theorems 1 and 9 to the variation

of BPS structure of sheaves on X with dimension 61 when X is the resolved conifold.

The corresponding tau function turns out to be another classical special (double sine)

function. We expect that this function can be recovered from sums of simple oscillators

as in Theorem 10.

Plan of the paper

Section 2 contains the required background on BPS structures, their variations, and the

associated Frobenius bundles. Sections 3–5 discuss and prove Theorem 6 for the special

case of rank 2 BPS structures, i.e. when rk(0) = 2. Section 6 completes the proof for

arbitrary rank of 0. Given the results of the previous sections this is mostly a matter of

notation. Section 7 proves Theorem 10.

2. BPS structures and Frobenius bundles

In this section we introduce BPS structures, their variations, and the corresponding

Frobenius bundles. Since many references for this material are already available we will

be quite brief.
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Remark 14. Definitions 21, 26 and the wall-crossing identity (2.1) below are only given

for the sake of motivation, in incomplete form. They are never used in the present paper.

However we will point out the main difficulties involved and give references which contain

a fully rigorous treatment.

Definition 15 ([5, § 2.1], [23, § 2]). A BPS structure comprises a finite rank lattice

0 (charge lattice), endowed with a skew-symmetric integral bilinear form 〈−,−〉

(intersection form), an element Z ∈ Hom(0,C) (central charge) and a map of sets

� : 0→ Q (BPS spectrum), with constraints given by �(α) = �(−α) (symmetry) and

the property that there is a fixed C > 0 such that �(γ ) 6= 0 implies

|Z(γ )| > C‖γ ‖

for some fixed choice of norm on 0⊗R (support property). The rank of a BPS structure

is the rank of 0. We say that a BPS structure is integral if � takes values in Z.

Note that the required symmetry models the shift functor [1] acting on Db(X).

Definition 16 ([5, § 2.2], [23, § 2.5]). Let (0, Z , �) be a BPS structure. The corresponding

DT spectrum is the map of sets DT : 0→ Q defined by

DT(α) =
∑

k>0|k−1α∈0

�(α/k)
k2 .

The maps �, DT are equivalent data (by virtue of the Möbius inversion formula).

Definition 17 [5, § 2.1]. An element γ ∈ 0 is called an active class if �(γ ) 6= 0. An active

ray ` ⊂ C∗ is a ray of the form R>0 Z(γ ) where γ is an active class. We say ` is generic

if it is not active. A BPS structure is finite if there are finitely many active classes.

The following definition is central to this paper.

Definition 18 ([5, Definition 2.3], [15, § 4]). We say that a BPS structure (0, Z , �) is

uncoupled if we have 〈γi , γ j 〉 = 0 for all active classes γi .

To formulate the correct notion of a variation we need some further ingredients.

Definition 19. In this paper we always denote by C[0] the group algebra of 0 endowed

with the twist of the usual associative, commutative product by the form 〈−,−〉,

xαxβ = (−1)〈α,β〉xα+β .

The torus of twisted characters is the affine algebraic torus

T = SpecC[0].

We write T+ for the usual affine algebraic torus SpecC[0]∗, where C[0]∗ denotes the

usual group algebra with untwisted commutative product. Then T is a torsor for T+ (see

[5, § 2.4], [23, § 2.5]).
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Note that one can think of xα ∈ C[0] as a map T→ C∗ (a twisted character), and

similarly of yα ∈ C[0]∗ as a usual character T+→ C∗.

Lemma 20 ([5, § 2.4], [23, § 2.5]). The pairing

[xα, xβ ] = (−1)〈α,β〉〈α, β〉xα+β

defines a Poisson bracket on the commutative algebra C[0].

Proof. This is a straightforward computation.

Definition 21 ([5, § 2.5], [23, § 2.5]). Given a ray ` we define

DT(`) =
∑

γ∈0|Z(γ )∈`

DT(γ )xγ .

The BPS automorphism attached to an active ray ` is

S(`) = exp([DT(`),−]) ∈ Aut(C[0]).

Remark 22. The sum defining DT(`) is either empty or infinite, and the vector field

[DT(`),−] may be ill-defined. It turns out that one can always make sense of S(`) as a

formal automorphism, and when the BPS structure is finite and integral S(`) is in fact an

element of Bir(T), the group of birational automorphism of T (see [5, § 2.7], [23, § 2.5]).

Definition 23 ([5, § 3.3], [23, § 2.3]). A variation of BPS structure is a family of BPS

structures (0p, �p, Z p) as above, parametrised by points p of a complex manifold M ,

where 0p fit together in a local system, Z p are holomorphic sections of Hom(0p,C) (the

central charges), and �(αp, Z p) satisfy the JS/KS wall-crossing formula. This means

that the product ∏
`⊂V

Sp(`) ∈ Aut(Tp) (2.1)

is locally constant, where Tp is the local system of algebraic affine tori Spec(C[0p]),

V ⊂ C∗ is the interior of a convex sector, and
∏
`⊂V is computed writing the ensuing

automorphisms from left to right according to the clockwise ordering of rays `. (The

crucial point is that, in any fixed local trivialisation of the local system, the relative

order of active rays depends on p ∈ M). A variation is called framed if the local system

0p is trivial. A framed variation is called miniversal if fixing a basis β j of 0 induces local

coordinates Z(β j ) on M .

Remark 24. In general one regards (2.1) as a formal automorphism and only imposes

local constancy modulo a sequence of powers of a maximal ideal (see [5, Appendix A],

[23, § 2]). When the BPS structures are finite and integral this is not necessary and

one simply requires that (2.1) is a locally constant section of Bir(Tp). When the

BPS structures are uncoupled the condition that (2.1) is locally constant always holds

automatically, since Sp(`) commute (this is clear from Definition 21).
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We briefly introduce RH problems, a classical topic in complex analysis and

mathematical physics, appearing quite naturally in the context of BPS structures.

Definition 25 [13, Ch. II, § 1]. Let G be a Lie group acting holomorphically on a complex

manifold X , Σ ⊂ C∗ the support of an oriented path, J : Σ → G a map. An RH problem

with values in X defined by J consists of finding a map 8(t) : C∗ \Σ → X with the

following properties:

(1) 8 is analytic in C∗ \Σ ;

(2) the limits 8−(t) of 8 from the minus side of Σ and the limit 8+(t) from the plus

side of Σ exist for all t ∈ Σ and are related by

8+(t) = J (t) ·8−(t);

(3) 8(t) has prescribed asymptotic behaviour as t → 0.

A BPS structure (0, Z , �) induces in a very natural way various RH problems, with

values in T and in Aut(T).

Definition 26 ([5, § 3.1], [15, § 5.1], [12, § 3.2]). The RH problem of a BPS structure

(0, Z , �) with values in Aut(T) is obtained with the choices Σ =
⋃
γ |�(γ ) 6=0 `γ and

J |` = S` for all rays ` ⊂ Σ . The t → 0 asymptotics imposed on a solution 8̃(t) are

eZ/t8̃(t)→ I , where Z is regarded naturally as a vector field on T and I ∈ Aut(T) is the

identity. We define the corresponding RH problem with values in T and t → 0 asymptotics

ξ by using the natural action of Aut(T) on T and evaluating 8̃ at a point ξ ∈ T. The

t → 0 asymptotics imposed on a solution 8(t) are then 8(t) = (eZ/t8̃(t))(ξ)→ ξ .

Remark 27. The main difficulty with this general definition is that Σ ⊂ C∗ might be

dense. This does not happen in the finite integral case of course, and in that case J
takes values in Bir(T). In that case one needs to make sure that ξ does not lie in the

indeterminacy locus.

Composing with twisted characters we define the components

8α(t) = xα ◦8.

Definition 28 [5, Problem 3.1]. The birational RH problem of a finite, integral BPS

structure (0, Z , �) (as in Theorem 1) with t → 0 asymptotics ξ ∈ T is the RH problem

in the sense of Definition 26, with values in T and where J takes values in Bir(T), with

the additional constraint that for some k > 0 we have for all α ∈ 0

|t |−k < |8α(t)| < |tk
|, |t | � 0.

Definition 29 [5, Equation (12)]. Suppose 8 is a solution to the birational RH problem

(0, Z , �). We define a map 9 : C∗ \Σ → T+ (as in Theorem 1), using the simply

transitive action of T+ on T, by
eZ/t8 = 9 · ξ.
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We write 9α = yα ◦9 for its components. Clearly 8 and 9 are equivalent data, and we

still call 9 a solution to the birational RH problem.

Remark 30. The functions 9`,β appearing in Theorem 1 denote the unique analytic

continuation to the half-plane H` of the restriction of 9β to a sector between active rays

containing the generic ray `.

Next we turn to Frobenius bundles, modelled on Dubrovin’s Frobenius manifolds [10].

Let M be a complex manifold.

Definition 31 [19, Definition 5.6]. A Frobenius bundle is a holomorphic vector bundle

K → M endowed with data (∇r ,C,U ,V, g), in the holomorphic category, with values in

the bundle K , where

• ∇
r is a flat connection,

• C is a Higgs field, that is a 1-form with values in endomorphisms, with C ∧C = 0,

• U ,V are endomorphisms,

• g is a nondegenerate symmetric bilinear form (called the holomorphic metric, although

it is not positive definite),

satisfying the conditions

∇
r (C) = 0,

[C,U] = 0,

∇
r (V) = 0,

∇
r (U)− [C,V] +C = 0 (2.2)

and the conditions on the metric g

∇
r (g) = 0,

g(CX a, b) = g(a,CX b),

g(Ua, b) = g(a,Ub),

g(Va, b) = −g(a,Vb). (2.3)

Remark 32. The conditions (2.2) are in fact equivalent to the flatness of a suitable

meromorphic connection on the pullback of K to the product M ×P1, as discussed in

[19, § 5.2].

Remark 33. For our purposes we will need to work over a ring of formal power series. In

other words we will consider a situation in which all the objects involved in Definition 31

are in fact formal power series in some auxiliary variables, and the conditions (2.2),

(2.3) are satisfied in the sense of formal power series with respect to these variables.

This extension is straightforward, and it is commonplace in the theory of Frobenius

manifolds.
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It turns out that, under some conditions on the family, variations of BPS structure

are equivalent to certain Frobenius bundles. This construction uses the holomorphic

generating function for DT invariants introduced by Joyce [21]. We consider the class of

framed variations of BPS structure (0, Z , �), over a complex manifold M , satisfying the

following conditions:

(C1) There exists a fixed basis {βi } for 0 such that � is always supported in the double

cone Z>0{βi } ∪Z60{βi }.

(C2) For some fixed ray ` ⊂ C∗ we have Z({βi }) ⊂ H` along the variation. (One may

assume ` = R>0, H` = H without loss of generality.)

Conditions C1, C2 are quite restrictive, but they are satisfied in several concrete

examples, discussed in detail in [1, 2]. Given a variation satisfying C1, C2, with a

fixed basis {βi }, we introduce a vector of formal parameters s, with components si ,

corresponding to the basis elements βi . Writing α ∈ 0 as α =
∑

j a jβ j we set s|α| =∏
j s
|α j |

j . Moreover we define combinatorial coefficients c(α1, . . . , αk) ∈ Q, given by a sum

over connected trees T with vertices labelled by {1, . . . , k}, endowed with an orientation

compatible with the labelling (i.e. such that i → j implies i < j),

c(α1, . . . , αk) =
∑

T

1
2k−1

∏
{i→ j}⊂T

(−1)〈αi ,α j 〉〈αi , α j 〉.

Theorem 34 (Joyce [21, Theorem 3.7], [1, Proposition 3.17]). Suppose (0, Z , �) is a

framed variation of BPS structure over a complex manifold M, satisfying the conditions

C1, C2, with a fixed basis {βi }. Then there exist unique multi-valued holomorphic functions

Jk : (C∗)k → C∗, satisfying J1 ≡
1

2π i and suitable growth conditions (see [21, § 3]), such

that

f α(Z) =
∑

α1+···+αk=α,Z(αi )6=0

c(α1, . . . , αk)Jk(Z(α1), . . . , Z(αk))
∏

i

s|αi | DT(αi , Z)

is a well-defined formal power series in s, whose coefficients are holomorphic functions

of Z . When (0, Z , �) is uncoupled the result holds without assuming the conditions

C1, C2.

In the uncoupled case the result follows at once from the explicit formula for f α(Z) we

prove in Lemma 60.

We define the corresponding Joyce holomorphic generating function as the well-defined

formal power series in s with coefficients in C[0] given by

f (Z) =
∑
α 6=0

f α(Z)xα.

Proposition 35 [1, Proposition 3.17]. Let (0, Z , �) be a framed variation of BPS structure

as in Theorem 34. Let K → M be the trivial infinite-dimensional bundle with fibre C[0].
Then the choices

∇
r
= d +

∑
α 6=0

[ f α(Z)xα,−]
d Z(α)
Z(α)

,
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C = −d Z ,

U = Z , V = [ f (Z),−],
g(xα, xβ) = δαβ

satisfy the Frobenius bundle conditions (2.2), (2.3) in the sense of formal power series

in the variables s.

Remark 36. We may deform the Poisson bracket on C[0] by

[xα, xβ ]h̄ = (i h̄)[xα, xβ ] = (−1)〈α,β〉(i h̄)〈α, β〉xα+β ,

and the combinatorial coefficients by

ch̄(α1, . . . , αk) =
∑

T

1
2k−1

∏
{i→ j}⊂T

(−1)〈αi ,α j 〉(i h̄〈αi , α j 〉).

Under the assumptions of Theorem 34 it is possible to find a lift DTh̄ : 0→ Q[h̄] (with

DT = DTh̄ |h̄=1) such that

f αh̄ (Z) =
∑

α1+···+αk=α,Z(αi ) 6=0

ch̄(α1, . . . , αk)Jk(Z(α1), . . . , Z(αk))
∏

i

s|αi | DTh̄(αi , Z)

is a well-defined formal power series in s, h̄ whose coefficients are holomorphic functions

of Z . This may be proved as in [1, Proposition 3.17]. The lift is not canonical but depends

on the choice of an initial point Z0. The 1-parameter family K h̄ of (1.1) is then given by

the deformations

∇
r
h̄ = d +

∑
α 6=0

[ f αh̄ (Z)xα,−]h̄
d Z(α)
Z(α)

,

V = [ fh̄(Z),−]h̄,

where fh̄(Z) =
∑
α 6=0 f αh̄ (Z)xα.

Clearly in the uncoupled case we have f αh̄ (Z) = f α(Z) so only the Poisson bracket is

deformed as above.

An advantage of working with Frobenius bundles is that the holomorphic data

(∇r ,C,U ,V) can be canonically projected to a subbundle K ′ ⊂ K using the metric g.

This seems especially useful if K ′ is finite-dimensional. However in general the resulting

bundle is no longer Frobenius, i.e. the connection ∇r is not flat. This construction is

studied in detail in [2]. We will see that requiring flatness for all such projections in fact

characterises uncoupled BPS structures.

3. A1 Frobenius bundles

In this section we study a general uncoupled variation of BPS structure (0,Z, �) of

rank 2, i.e. with rk(0) = 2.

In order to make contact with the material of [5, § 5.1] we write the charge lattice 0 as

Zγ ⊕Zγ ∨ and refer to the rank 2 uncoupled case as the (double) A1 case. However for us
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the pairing 〈γ, γ ∨〉 is arbitrary (while it is fixed to −1 in loc. cit.). The BPS spectrum is

constant in Z ∈ Hom(0,C) and vanishes except for �(±γ ) = �. It follows that the DT

spectrum vanishes except for

DT(±kγ ) =
�

k2 .

Let f (Z) denote the Joyce holomorphic generating function. In general, as we explained

in the previous section, this is a Laurent series f (Z) =
∑
α 6=0 f α(Z)xα with coefficients in

C[[s]] (and in fact an element of C[0][[s]]). In the present double A1 case we have formal

parameters

s = s1 = sγ , s2 = sγ∨ .

Lemma 37. For the double A1 we have for k ∈ Z \ {0}

f kγ (Z) =
1

2π i
�

k2 sk

(a constant, independent of Z) while all the other f α(Z) vanish identically. In particular

we have the symmetry f α = f −α.

Proof. The formal power series f α(Z) can be written as a sum over trees T with vertices

labelled by charges αi . The contribution of T is weighted by factors of
∏

i DT(αi ) and∏
i→ j 〈αi , α j 〉. In the present double A1 case the first factor vanishes unless all the vertices

of T are labelled by integral multiples of γ . But for such T the second factor vanishes

unless there is only a single vertex, labelled by kγ . The contribution for this T is the

constant DT(kγ ) = �

k2 , multiplied by J1 ≡
1

2π i .

Corollary 38. For the Frobenius type structure of the double A1 we have

∇
r
= d +

∑
k 6=0

�

2π ik2 sk
[xkγ ,−]

d Z(kγ )
Z(kγ )

,

V =
∑
k 6=0

�

2π ik2 sk
[xkγ ,−].

Proof. This follows at once from Lemma 37 and the general formulae for ∇r , V of

Proposition 35.

Fix a finite subset 1 = {αi } ⊂ 0, i = 1, . . . , N .

Definition 39. We denote by K1 ⊂ K the rank N subbundle spanned by {xαi }, i =
1, . . . , N . We write π : K → K1 for the orthogonal projection with respect to g.

Note that K1 ⊂ K is preserved by the endomorphism U and Higgs field C .

Lemma 40. The collection of holomorphic objects (π∇r ,C,U , πV, g) is a Frobenius type

structure on K1.
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Proof. Let us first check that the connection π∇r is flat. Fixing i = 1, . . . , N we compute

π∇r (xαi ) =
∑
α 6=0

π( f α(−1)〈α,αi 〉〈α, αi 〉xα+αi ) d log Z(α)

=

N∑
j=1

(−1)〈α j ,αi 〉〈α j , αi 〉 f α j−αi xα j d log Z(α j −αi ).

So writing π∇r
= d + A in the frame xαi we have

A j i = (−1)〈α j ,αi 〉〈α j , αi 〉 f α j−αi d log Z(α j −αi ). (3.1)

By Lemma 37 f α is constant in Z , so the curvature 2-form F(A) = d A+ A∧ A of π∇r

is given by

F(A) j i =

N∑
k=1

(−1)〈α j ,αk 〉+〈αk ,αi 〉〈α j , αk〉〈αk, αi 〉

× f α j−αk f αk−αi d log Z(α j −αk)∧ d log Z(αk −αi ). (3.2)

By Lemma 37 the product f α j−αk f αk−αi vanishes unless the classes α j −αk , αk −αi
are both multiples of γ . But in that case the 2-form d log Z(α j −αk)∧ d log Z(αk −αi )

vanishes.

Similarly we check that πV is flat with respect to π∇r . Fixing i = 1, . . . , N we compute

πV(xαi ) =
∑
α 6=0

π( f α(−1)〈α,αi 〉〈α, αi 〉xα+αi )

=

N∑
j=1

(−1)〈α j ,αi 〉〈α j , αi 〉 f α j−αi xα j .

So the matrix V representing πV in the frame xαi is

V j i = (−1)〈α j ,αi 〉〈α j , αi 〉 f α j−αi . (3.3)

In particular, by Lemma 37, V is constant in Z , so in the frame xαi we have

π∇r (πV) = [A, V ].

Using (3.1) and (3.3) we compute

[A, V ]kl =

N∑
p=1

(−1)〈αk ,αp〉+〈αp,αl 〉〈αk, αp〉〈αp, αl〉 f αk−αp f αp−αl

× (d log Z(αk −αp)− d log Z(αp −αl)).

By Lemma 1, the product f αk−αp f αp−αl vanishes unless αk −αp, αp −αl are both

multiples of γ . But in that case we have

d log Z(αk −αp) = d log Z(αp −αl) = d log Z(γ ).

So [A, V ] vanishes identically. Checking the other conditions for a Frobenius type

structure is straightforward.

Definition 41. In the following we call the structure (π∇r ,C,U , πV, g) evaluated at the

natural point s = 1 the Frobenius type structure on K1.
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To the Frobenius type structure on K1 we can associate a family of meromorphic

connections on the trivial rank N holomorphic bundle over P1, parametrised by Z ∈ M .

This is given by

∇(Z) = d +
(

U (Z)
t2 −

V
t

)
dt (3.4)

where U , V are the N × N matrices representing U , πV with respect to the frame xαi . In

particular V is a constant skew-symmetric matrix, independent of Z .

Definition 42 [19, Definition 5.6 and Theorem 5.7]. The meromorphic connections ∇(Z)
of the Frobenius type structure K1 are the meromorphic connections (3.4), depending

on Z .

Lemma 43. We have

U (Z)i j = Z(αi )δi j , Vi j = (−1)〈αi ,α j 〉〈αi , α j 〉 f αi−α j .

In particular U (Z) is diagonal and V is skew-symmetric.

Proof. The expression for U (Z) follows at once from U(Z) = Z . The expression for V
is (3.3).

The simplest nontrivial Frobenius bundle K1 contained in K has rank N = 2 and is

given by the following example.

Example 44. Let 11
= {α1, α2} = {γ + γ

∨, γ ∨}. Then we have

∇(Z) = d +

(
1
t2

(
Z(γ + γ ∨) 0

0 Z(γ ∨)

)
−

1
t
〈γ, γ ∨〉

2π i
�

(
0 (−1)〈γ,γ

∨
〉

−(−1)〈γ,γ
∨
〉 0

))
dt.

Remark 45. Note that since �(γ − γ ∨) = 0 the more obvious choice 1 = {γ, γ ∨} yields

the essentially trivial connection

∇(Z) = d +
1
t2

(
Z(γ ) 0

0 Z(γ ∨)

)
dt.

The previous example can be immediately generalised.

Lemma 46. For all k > 1 choose 1k
= {α1, . . . , α2k} with {α2i−1, α2i } = {i(γ + γ ∨), iγ ∨}.

Then the meromorphic connection of the Frobenius type structure on K1k has U , V block

diagonal, with blocks

U (i)
=

(
i Z(γ + γ ∨) 0

0 i Z(γ ∨)

)
,

V (i)
=
〈γ, γ ∨〉

2π
√
−1
�

(
0 (−1)i〈γ,γ

∨
〉

−(−1)i〈γ,γ
∨
〉 0

)
for i = 1, . . . , k. The rank of K1k is N = 2k.
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Proof. We only need to check that V is block diagonal with blocks V (i) as above, for

i = 1, . . . , k. According to Lemma 43 for all k, l we have Vkl = (−1)〈αk ,αl 〉〈αk, αl〉 f αk−αl .

We compute

f α2i−α2 j = f (i− j)γ∨
= 0, f α2i−1−α2 j = f iγ+(i− j)γ∨

=
1

2π
√
−1i2

δi j�,

f α2i−1−α2 j−i = f (i− j)(γ+γ∨)
= 0.

It follows that Vkl vanishes except for

V(2i−1)(2i) = (−1)〈i(γ+γ
∨),iγ∨〉

〈i(γ + γ ∨), iγ ∨〉 f iγ+(i− j)γ∨

= (−1)i〈γ,γ
∨
〉
〈γ, γ ∨〉

2π
√
−1
�,

V(2i)(2i−1) = −V(2i−1)(2i) = −(−1)i〈γ,γ
∨
〉
〈γ, γ ∨〉

2π
√
−1
�.

The bundle K1k of the previous lemma is the simplest nontrivial rank N = 2k Frobenius

subbundle of K .

Definition 47. For all even N > 0 we define the A1 simple oscillator of rank N to be the

Frobenius type structure on K1N/2 ⊂ K constructed in Lemma 46.

We will study K1N/2 in more detail in the next section. Let us go back to a general

Frobenius type structure K1 ⊂ K .

Lemma 48. The generalised monodromy of the meromorphic connections ∇(Z) of K1 is

constant in Z .

Proof. This is a standard result for the family of meromorphic connections underlying a

Frobenius type structure, see e.g. [7, § 3.3] and [19, § 5.2] (based on Dubrovin [10]).

We close this section by giving a standard formula for the generalised monodromy of

∇(Z) (i.e. its Stokes factors, see e.g. [7, § 2]). In particular this shows explicitly that the

Stokes factors are constant in Z .

There is a classical formula for the Stokes factors of a linear connection of the form

d −
(
3

t2 +
f
t

)
dt,

where 3 is diagonal and f is off-diagonal, in terms of periods, see e.g. [7, Theorem 4.5].

Periods appear here in the guise of multilogarithms, i.e. the iterated integrals

Mn(w1, . . . , wn) = (−2π i)n
∫
[0,w1+···+wn ]

dt
t −w1

◦ · · · ◦
dt

t − (w1+ · · ·+wn−1)

(see e.g. [7, § 7]).
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Remark 49. The functions Mn(w1, . . . , wn) are also known as hyperlogarithms, see e.g.

[16, § 2], where these are defined as the multi-valued functions

I (a1 : . . . : am+1) =

∫ am+1

0

dt
t − a1

◦ · · · ◦
dt

t − am
.

In particular we have

Mn(w1, . . . , wn) = (−2π i)n I (w1 : w1+w2 : . . . : w1+ · · ·+wn).

According to loc. cit. I (a1 : . . . : am+1) is invariant under the affine transformations ai 7→

λai +β, so in particular we have

Mn(λw1, . . . , λwn) = Mn(w1, . . . , wn).

We apply the classical formula to the connection ∇(Z), of the form

d −
(
−U (Z)

t2 +
V
t

)
dt.

Note that according to Lemma 43 −U (Z) is diagonal, with ordered eigenvalues −Z(αi ),

and V is off-diagonal.

Definition 50. We introduce a function m : 1×1→ Z such that m(αi , α j ) equals m if

αi −α j = mγ for m ∈ Z, while m(αi , α j ) = 0 if αi −α j is not a multiple of γ .

In the following we write Ei j to denote the elementary matrix with (Ei j )kl = δikδ jl and

I for the identity matrix.

Lemma 51. Let ` = ±R>0 Z(γ ). Consider all sequences 1 6 i1 6= i2 6= · · · 6= in+1 6 N with

Z(αin+1 −α1) ∈ ` and n > 0. Then the Stokes factor S` for the connection ∇(Z) of (3.4)

is the sum of all products of the form

Mn(m(αi2 , αi1),m(αi3 , αi2), . . . ,m(αin+1 , αin ))

(−1)m(αi1 ,αi2 )〈γ,αi2 〉m(αi1 , αi2)〈γ, αi2〉 f
m(αi1 ,αi2 )γ

(−1)m(αi2 ,αi3 )〈γ,αi3 〉m(αi2 , αi3)〈γ, αi3〉 f
m(αi2 ,αi3 )γ

· · ·

(−1)m(αin ,αin+1 )〈γ,αin+1 〉m(αin , αin+1)〈γ, αin+1〉 f
m(αin ,αin+1 )γ Ei1in+1

where the empty product corresponding to n = 0 conventionally equals I . All the other

Stokes factors are trivial. In particular the Stokes factors of ∇(Z) are constant in Z .

Proof. Let ` = R>0 Z(α j −αi ) be any potential Stokes ray, i.e. the ray spanned by a

difference of eigenvalues of −U (Z). The formula discussed in [7, § 1.2] shows that the

Stokes factor attached to ` is a sum of contributions

Mn(Z(αi2 −αi1), . . . , Z(αin+1 −αin ))Vi1i2 · · · Vin in+1 Ei1in+1 , (3.5)

for each sequence 1 6 i1 6= i2 6= · · · 6= in+1 6 N with Z(αin+1 −α1) ∈ `. Here n > 0 is

arbitrary, and the term corresponding to n = 0 conventionally equals I . Lemma 43 shows

Vik ik+1 = (−1)〈αik ,αik+1 〉〈αik , αik+1〉 f
αik−αik+1 ,
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and according to Lemma 37 this vanishes unless αik −αik+1 is a multiple of γ . It follows

that the contribution (3.5) to S` can be written as

Mn(m(αi2 , αi1)Z(γ ), . . . ,m(αin+1 , αin )Z(γ ))

(−1)m(αi1 ,αi2 )〈γ,αi2 〉m(αi1 , αi2)〈γ, αi2〉 f
αi1−αi2 · · ·

(−1)m(αin ,αin+1 )〈γ,αin+1 〉m(αin , αin+1)〈γ, αin+1〉 f
αin−αin+1 Ei1in+1 .

By Remark 49 we have

Mn(m(αi2 , αi1)Z(γ ), . . . ,m(αin+1 , αin )Z(γ )) = Mn(m(αi2 , αi1), . . . ,m(αin+1 , αin )).

By Definition 50 and Lemma 37 we have

f αin−αin+1 = f m(αin ,αin+1 )γ .

Finally we see that the general contribution (3.5) to S` vanishes unless all αik −αik+1 are

(nonzero) multiples of γ . But then αi1 −αin+1 is also a multiple of γ , i.e. ` must be one

of the rays ±Z(γ ). The Lemma follows.

4. A1 simple oscillators

In the present section we collect some (rather standard) computations for the rank N
Frobenius bundles K1N/2 ⊂ K contained in the double A1 infinite-dimensional Frobenius

type structure, i.e. our A1 simple oscillators. Recall from Lemma 46 that the meromorphic

connection ∇ of K1N/2 is a direct sum

∇ =

N/2⊕
m=1

∇
(m)
=

N/2⊕
m=1

d + (t−2U (m)
− t−1V (m)) dt,

where

U (m)
=

(
m Z(γ + γ ∨) 0

0 m Z(γ ∨)

)
,

V (m)
=
〈γ, γ ∨〉

2π i
�

(
0 (−1)m〈γ,γ

∨
〉

−(−1)m〈γ,γ
∨
〉 0

)
.

Lemma 52. The Stokes rays of ∇(m) are ±`γ . The corresponding Stokes factors are given

by

S`γ =

1 2i sinh

(
−
(−1)m〈γ,γ

∨
〉

2
〈γ, γ ∨〉�

)
0 1

 ,

S−`γ =

 1 0

−2i sinh

(
−
(−1)m〈γ,γ

∨
〉

2
〈γ, γ ∨〉�

)
1

 .
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Proof. We use standard Fourier–Laplace methods, see e.g. [7, § 8]. The Fourier–Laplace

transform of ∇(m) is the Fuchsian connection with simple poles at z1, z2

∇̂ = d −
(

A1

z− z1
+

A2

z− z2

)
dz

where we set z1 = −m Z(γ + γ ∨), z2 = −m Z(γ ∨), and the nilpotent residues are given by

A1 = −
(−1)m〈γ,γ

∨
〉
〈γ, γ ∨〉

2π i
�

(
0 −1
0 0

)
,

A2 = −
(−1)m〈γ,γ

∨
〉
〈γ, γ ∨〉

2π i
�

(
0 0
1 0

)
.

Suppose φ(z) = ( u
v ) is a horizontal section of ∇̂. Then

φ̃(z) = φ((z2− z1)z+ z1) =

(
ũ(z)
ṽ(z)

)

solves d
dz

(
ũ
ṽ

)
= −

(−1)m〈γ,γ
∨
〉
〈γ,γ∨〉

2π i �

(
−

1
z ṽ

1
z−1 ũ

)
and so we have

z(1− z)
d2

dz2 ũ+ (1− z)
d
dz

ũ+
(
〈γ, γ ∨〉

2π

)2

�2ũ = 0,

a standard hypergeometric equation

z(1− z)
d2

dz2 ũ+ (c− (a+ b+ 1)z)
d
dz

ũ− (ab)ũ = 0

with parameters

a = iV21 = −(−1)m〈γ,γ
∨
〉
〈γ, γ ∨〉

2π
�,

b = −a = iV12,

c = 1.

So the unique solution φ̃(0)(z) at z = 0 with φ̃(0)(0) = e1 =
(

1
0
)

is given in terms of Gauss

hypergeometric functions as

φ̃(0)(z) =

 2 F1(−a, a, 1; z)
2π i

(−1)m〈γ,γ∨〉〈γ, γ ∨〉
1
�

z
d
dz 2 F1(−a, a, 1; z)

 (4.1)

and similarly the unique solution φ̃(1)(z) at z = 1 with φ̃(1)(1) = e2 =
(

0
1

)
is given by

φ̃(1)(z) =

−
(−1)m〈γ,γ

∨
〉
〈γ, γ ∨〉

2π i
�(1− z), 2 F1(1− a, 1+ a, 2; 1− z)

−z
d
dz
(1− z)2 F1(1− a, 1+ a, 2; 1− z)
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(see [11, Ch. II, § 2.1]). It is well known that the Fourier–Laplace transform allows to

express Stokes factors for ∇(m) in terms of the analytic continuation of solutions to ∇̂,

see e.g. [7, § 9]. In particular applying the formulae in loc. cit. § 9.2 we find

S`γ =

(
1 2π iV21(φ̃

(0)(1))1
0 1

)
, S−`γ =

(
1 0

2π iV12(φ̃
(1)(0))2 1

)
.

On the other hand we have

φ̃(0)(1) = 2 F1(−a, a, 1; z) by (4.1)

=
1

0(1− a)0(1+ a)
(see [28, Ch. XIV, p. 282])

=
sin(πa)
πa

(by Euler reflection [11, Ch. I, § 1.2, Equation (8)]).

Using the relation a = iV21 gives the result for S`γ . The computation for S−`γ is

completely analogous.

Let Y (m)(t) = Y (m)i j (t) be the GL(2,C) fundamental solution to ∇(m). Define

9
(m)
i j (t) = eZ j /t Y (m)i j (t) (4.2)

where Z1 = m Z(γ + γ ∨), Z2 = m Z(γ ∨). Recall Y (m)(t) is characterised by the

asymptotics 9(m)(t)→ I as t → 0 in a sector.

Lemma 53. The functions 9
(m)
i j (t) satisfy the integral equations

9
(m)
11 (t) = 1− η

∫
−`γ

dt ′

t ′
t

t ′− t
9
(m)
12 (t

′)em Z(γ )/t ′ ,

9
(m)
12 (t) = η

∫
`γ

dt ′

t ′
t

t ′− t
9
(m)
11 (t

′)e−m Z(γ )/t ′ ,

9
(m)
21 (t) = −η

∫
−`γ

dt ′

t ′
t

t ′− t
9
(m)
22 (t

′)em Z(γ )/t ′ ,

9
(m)
22 (t) = 1+ η

∫
`γ

dt ′

t ′
t

t ′− t
9
(m)
21 (t

′)e−m Z(γ )/t ′

where

η =
1

2π i
(S`γ )12 = −

1
2π i

(S−`γ )21 =
1
π

sinh

(
−
(−1)m〈γ,γ

∨
〉

2
〈γ, γ ∨〉�

)
.

Proof. The function 9(m)(t) is uniquely characterised as the solution to a RH problem

with contour given by the rays±`γ , jumps S±`γ as in Lemma 52, asymptotics9(m)(t)→ I
as t → 0 in a sector, and polynomial growth as t →∞. Standard results allow to recast

this RH problem in terms of integral equations as claimed, see e.g. [13, Ch. 3, § 1]. Our

present application is in fact a limiting case of [9, Proposition 2.2]. A reference which is
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very close to our notation is [15, Appendix C]. Indeed our function 9(t) is precisely the

function 8(x) appearing in loc. cit. Equation (6), evaluated at x = βt−1 and in the limit

β → 0, with parameters µ12 = −µ21 = η. Note that the change of variable y = βt ′−1,

x = βt−1 turns the integral kernel dy(y− x)−1 appearing in loc. cit. Equation (6) into

our kernel t dt ′(t ′(t ′− t))−1.

5. A1 large N limit

We continue our study of the rank N simple oscillator K1N/2 ⊂ K . We regard the

Frobenius bundle structure on K1N/2 as depending on the free parameter 〈γ, γ ∨〉 via

the formulae of Lemma 46.

Definition 54. Let h̄ ∈ R>0. The rescaled simple oscillator K1N/2,h̄ is obtained by replacing

〈γ, γ ∨〉� 7→ (
√
−1h̄)〈γ, γ ∨〉� (5.1)

in the formulae of Lemma 46.

In other words K1N/2,h̄ is the projection of the deformed bundle K h̄ discussed in

Remark 36. By Definition 54 the meromorphic connection ∇h̄ of K1N/2,h̄ splits just as

before

∇h̄ =

N/2⊕
m=1

∇
(m)
h̄ =

N/2⊕
m=1

d + (t−2U (m)
− t−1V (m)

h̄ ) dt,

where

V (m)
h̄ =

〈γ, γ ∨〉h̄
2π

�

(
0 (−1)m〈γ,γ

∨
〉

−(−1)m〈γ,γ
∨
〉 0

)
.

Lemma 55. The Stokes rays of ∇
(m)
h̄ are ±`γ . The corresponding Stokes factors are given

by

S`γ ,h̄ =

1 2i sinh

(
−
(−1)m〈γ,γ

∨
〉

2
〈γ, γ ∨〉i h̄�

)
0 1


=

(
1 (−1)m〈γ,γ

∨
〉
〈γ, γ ∨〉h̄�

0 1

)
+ O(h̄2),

S−`γ ,h̄ =

 1 0

−2i sinh

(
−
(−1)m〈γ,γ

∨
〉

2
〈γ, γ ∨〉i h̄�

)
1


=

(
1 0

−(−1)m〈γ,γ
∨
〉
〈γ, γ ∨〉h̄� 1

)
+ O(h̄2).

Proof. The result follows at once from Lemma 52.
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Let Y (m)h̄ (t) = Y (m)h̄,i j (t) be the GL(2,C) fundamental solution to ∇
(m)
h̄ . Define

9
(m)
h̄,i j (t) = eZ j /t Y (m)h̄,i j (t) (5.2)

where Z1 = m Z(γ + γ ∨), Z2 = m Z(γ ∨).

Lemma 56. The functions 9
(m)
h̄,i j (t) satisfy

9
(m)
h̄,11(t) = 1+ O(h̄2),

9
(m)
h̄,12(t) =

1
2π i

(−1)m〈γ,γ
∨
〉
〈γ, γ ∨〉h̄�

∫
`γ

dt ′

t ′
t

t ′− t
e−m Z(γ )/t ′

+ O(h̄2),

9
(m)
h̄,21(t) = −

1
2π i

(−1)m〈γ,γ
∨
〉
〈γ, γ ∨〉h̄�

∫
−`γ

dt ′

t ′
t

t ′− t
em Z(γ )/t ′

+ O(h̄2),

9
(m)
h̄,22(t) = 1+ O(h̄2).

Proof. By Lemma 55 the functions 9
(m)
i j,h̄(t) satisfy equations identical to those of

Lemma 53, with η replaced by

1
2π i

(S`γ ,h̄)12 = −
1

2π i
(S−`γ ,h̄)21 =

1
π

sinh

(
−
(−1)m〈γ,γ

∨
〉

2
〈γ, γ ∨〉i h̄�

)
.

Expanding around h̄ = 0 gives the result.

Corollary 57. We have

log9(m)h̄ =

(
0 δ(m)(t)

−δ(m)(−t) 0

)
+ O(h̄2)

where

δ(m)(t) =
1

2π i
(−1)m〈γ,γ

∨
〉
〈γ, γ ∨〉h̄�

∫
`γ

dt ′

t ′
t

t ′− t
e−m Z(γ )/t ′ .

Proof. The result follows from Lemma 56, by making the change of variable t ′ 7→ −t ′ in

the integral for 9
(m)
21,h̄(t).

Corollary 58. We have

log9(m)h̄ (t)(12) = (−1)m〈γ,γ
∨
〉
〈γ, γ ∨〉h̄�

t
π i

∫
`γ

dt ′

(t ′)2− t2 e−m Z(γ )/t ′
+ O(h̄2).

Proof. Following the notation of the previous lemma we have

(log9(m)h̄ (t))12+ (log9(m)h̄ (t))21 = δ
(m)(t)− δ(m)(−t).

So the claim follows from a straightforward calculation.

Let ξ̂ denote the vector (1, 1)T ∈ C2 and 5 be the linear function on C2 given by

5(w1, w2)
T
= w1+w2.
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Proposition 59. We have

exp

(
1
h̄

∞∑
m=1

(−1)m〈γ,γ
∨
〉

m
5 log9(m)h̄ ((2π)−1i t)ξ̂

)
= 9γ∨(t)+ O(h̄).

Proof. In this proof we write Z = Z(γ ) for brevity. Note that we have 5 log9(m)h̄

((2π)−1i t)ξ̂ = log9(m)h̄ ((2π)−1i t)(12)+ O(h̄2). By the previous lemma we have

(log9(m)h̄ (i t))12+ (log9(m)h̄ (i t))21 = (−1)m〈γ,γ
∨
〉
〈γ, γ ∨〉h̄�

×
t
π

∫
`γ

dt ′

(t ′)2+ t2 e−m Z/t ′
+ O(h̄2).

By the definition of `γ we are integrating over t ′ = Zs, s > 0, so we have

t
π

∫
`γ

dt ′

(t ′)2+ t2 e−m Z(γ )/t ′
=

1
π

∫
∞

0

(
Z
t

)
ds( Z

t

)2
s2+ 1

e−m/s

=
1
π

∫
∞

0

(
Z
t

)−1 ds( Z
t

)−2
s2+ 1

e−ms

(using the change of variable s 7→ s−1). The right hand side can be rewritten as

1
π

∫
∞

0
e−ms d

ds
arctan

((
Z
t

)−1

s

)
ds

and so integrating by parts as

−m
1
π

∫
∞

0
arctan

((
Z
t

)−1

s

)
e−ms ds.

By these identities we can rewrite the series

1
h̄

∞∑
m=1

(−1)m〈γ,γ
∨
〉

m
((log9(m)h̄ (i t))12+ (log9(m)h̄ (i t))21)

as

−〈γ, γ ∨〉�
1
π

∫
∞

0
arctan

((
Z
t

)−1

s

)
∞∑

m=1

e−ms ds

= 〈γ ∨, γ 〉�
1
π

∫
∞

0
arctan

((
Z
t

)−1

s

)
1

es − 1
ds+ O(h̄).

Binet’s formula for the log gamma function is the identity

log0(z) =
(

z−
1
2

)
log z− z+

1
2

log(2π)+
1
π

∫
∞

0

arctan(s/(2π z))
es − 1

ds

valid for <(z) > 0 (see [11, p. 22, Equation (9)]). Applying this identity shows

1
h̄

∞∑
m=1

(−1)m〈γ,γ
∨
〉

m
log9(m)h̄ ((2π)−1i t)(12) = 〈γ

∨, γ 〉� log3
(

Z(γ )
t

)
+ O(h̄)

= log9γ∨(t)+ O(h̄)

as required.
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6. Finite uncoupled case

In this section we spell out how to extend our results from the A1 case to a finite,

uncoupled variation of BPS structure. This is mostly a matter of notation.

In this case there is a finite subset {γi } ⊂ 0 such that �(±γi ) is nonvanishing, and we

have 〈γi , γ j 〉 = 0 for all i, j . We also fix a reference basis {βi } for 0.

Lemma 60. For a finite uncoupled variation of BPS structure we have for k ∈ Z \ {0}

f kγ j (Z) =
�(γ j )

2π ik2 skγ j

(a constant, independent of Z) while all the other f α(Z) vanish identically. In particular

we have the symmetry f α = f −α.

Proof. The proof is the same as that of Lemma 37.

Let us still denote by (K ,∇,C,U ,V, g) the Frobenius type structure underlying a finite,

uncoupled variation of BPS structure.

Corollary 61. For a finite uncoupled variation of BPS structure we have

∇
r
= d +

∑
i,k 6=0

�(γi )

2π ik2 skγi [xkγi ,−]
d Z(kγi )

Z(kγi )
,

V =
∑

i,k 6=0

�(γi )

2π ik2 skγi [xkγi ,−].

Proof. The proof is the same as that of Corollary 38.

Just as in the A1 case we write K1 ⊂ K for the finite-dimensional subbundle spanned

by the sections xαi , where 1 = {αi } ⊂ 0 is a subset with N elements.

Theorem 62. Let (0, Z , �) be a framed variation of BPS structure. For all finite 1 ⊂ 0

write K1 ⊂ K for the subbundle spanned by xα, α ∈ 1, endowed with the structure induced

by the canonical projection K → K1. Then K1 is Frobenius if and only if (0, Z , �) is

uncoupled.

Proof. In one direction the proof is the same as that of Lemma 40. The converse is

established in [2, Lemma 20]. More precisely choose 1 = {αi , α j , αk} such that α j −αk ,

αk −αi are active classes with 〈α j −αk, αk −αi 〉 6= 0 and

〈α j , αi 〉〈α j −αk, αk −αi 〉 6= 〈α j , αk〉〈αk, αi 〉.

This is always possible if (0, Z , �) is not uncoupled. Then it is shown in loc. cit. that

the projection of ∇r to K1 is not flat.

As usual once we project to a finite-dimensional subbundle K1 we always evaluate at

the geometric point si = 1, i = 1, . . . , N , and we consider the meromorphic connections

of K1

∇(Z) = d +
(

U (Z)
t2 −

V
t

)
dt.
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As in Lemma 43 we have

U (Z)i j = Z(αi )δi j ,

Vi j = (−1)〈αi ,α j 〉〈αi , α j 〉 f αi−α j .

Definition 63. Fix an active class γi and a basis element β j with 〈γi , β j 〉 6= 0. For all

k > 1 choose 1k
i j = {α1, . . . α2k} ⊂ 0 with (α2m−1, α2m) = (m(γi +β j ),mβ j ). We define the

(even) rank N simple oscillator between γi , β j as the Frobenius bundle K
1

N/2
i j

.

Lemma 64. The meromorphic connections of the Frobenius bundle K
1

N/2
i j

have U , V block

diagonal, with blocks

U (m),i j
=

(
m Z(γi +β j ) 0

0 m Z(β j )

)
,

V (m),i j
=
〈γi , β j 〉

2π
√
−1
�(γi )

(
0 (−1)m〈γi ,β j 〉

−(−1)m〈γi ,β j 〉 0

)
for m = 1, . . . , N/2.

Proof. The proof is the same as that of Lemma 46.

Definition 65. The rank N simple oscillator of a finite, uncoupled variation of BPS

structure with respect to a basis element β j is the Frobenius bundle

Kβ j (N ) =
⊕

i |〈γi ,β j 〉6=0

K
1

N/2
i j
.

In the following we denote the meromorphic connections of Kβ j (N ) by ∇β j .

By construction ∇β j splits as a direct sum

∇β j =

⊕
m,i |〈γi ,β j 〉6=0

∇
(m),i j

=

⊕
m,i |〈γi ,β j 〉6=0

d + (t−2U (m),i j
− t−1V (m),i j ) dt.

In particular we have the rescaling

〈γi , β j 〉 7→ 〈γi , β j 〉
√
−1h̄

acting on all our structures. For the meromorphic connections we have

∇h̄,β j =

⊕
m,i |〈γi ,β j 〉6=0

∇
(m),i j
h̄ =

⊕
m,i |〈γi ,β j 〉6=0

d + (t−2U (m),i j
− t−1V (m),i j

h̄ ) dt,

where

V (m),i j
h̄ =

〈γi , β j 〉h̄
2π

�(γi )

(
0 (−1)m〈γi ,β j 〉

−(−1)m〈γi ,β j 〉 0

)
.

Let Y (m),i j
h̄ (t) = Y (m)h̄,pq(t) be the GL(2,C) fundamental solution to ∇

(m),i j
h̄ . Define

9
(m),i j
h̄,pq (t) = eZq/t Y (m),i j

h̄,pq (t) (6.1)

where Z1 = m Z(γi +β j ), Z2 = m Z(β j ). Write ξ̂ ∈ C2, 5 ∈ Hom(C2,C) for the usual

vector and linear functional.
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Theorem 66. We have

exp

1
h̄

∞∑
m=1

∑
i |〈γi ,β j 〉6=0

(−1)m〈γi ,β j 〉

m
5 log9(m),i j

h̄ ((2π)−1√
−1t)ξ̂


= 9β j (t)+ O(h̄).

Proof. As in Lemma 55 one proves that the Stokes rays of ∇
(m),i j
h̄ are ±`γi and the

corresponding Stokes factors are given by

Si j
`γ ,h̄ =

1 2
√
−1 sinh

(
−
(−1)m〈γi ,β j 〉

2
〈γi , β j 〉

√
−1h̄�(γi )

)
0 1


=

(
1 (−1)m〈γi ,β j 〉〈γi , β j 〉h̄�(γi )

0 1

)
+ O(h̄2),

Si j
−`γ
=

 1 0

−2
√
−1 sinh

(
−
(−1)m〈γi ,β j 〉

2
〈γi , β j 〉

√
−1h̄�(γi )

)
1


=

(
1 0

−(−1)m〈γi ,β j 〉〈γi , β j 〉h̄�(γi ) 1

)
+ O(h̄2).

As in Lemma 56 this implies the identities

9
(m),i j
h̄,11 (t) = 1+ O(h̄2),

9
(m),i j
h̄,12 (t) =

1

2π
√
−1
(−1)m〈γi ,β j 〉〈γi , β j 〉h̄�(γ j )

∫
`γi

dt ′

t ′
t

t ′− t
e−m Z(γi )/t ′

+ O(h̄2),

9
(m),i j
h̄,21 (t) = −

1

2π
√
−1
(−1)m〈γi ,β j 〉〈γi , β j 〉h̄�(γ j )

∫
−`γi

dt ′

t ′
t

t ′− t
em Z(γi )/t ′

+ O(h̄2),

9
(m),i j
h̄,22 (t) = 1+ O(h̄2).

From here we can proceed as in the proof of Proposition 59.

7. Tau functions

Suppose fh̄(t, Z(γ )) is a scalar function depending on the parameter h̄, admitting a formal

power series expansion in h̄ around h̄ = 0.

Definition 67. A first order tau function for exp( fh̄(t, Z(γ ))) is a function τh̄(t, Z) which

is invariant under common rescaling of t , Z(γ ), admits a formal power series expansion

in h̄ around h̄ = 0, and such that the first nonzero terms in the expansions in h̄ of the

quantities
∂

∂t
fh̄(t, Z(γ )), 〈γ ∨, γ 〉

∂

∂Z(γ )
log τh̄(t, Z(γ ))

around h̄ = 0 are the same.
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Lemma 68. The function given by

log τ (m)h̄ (i t) =
�

2π
h̄
∫
∞

0
s log

(
s2
+

(
Z(γ )

t

)2
)

e−ms ds

is a first order tau function for exp
(
(−1)m〈γ,γ

∨
〉

m (log9(m)h̄ (i t))(12)

)
.

Proof. In the rest of the proof we write Z = Z(γ ) and suppress O(h̄2) terms. According

to the proof of Proposition 59 we have

(−1)m〈γ,γ
∨
〉

m
(log9(m)h̄ (i t))(12) = 〈γ

∨, γ 〉F
(

Z
t

)
(7.1)

where the function F(w) is given by

F(w) = h̄�
1
π

∫
∞

0
arctan

( s
w

)
e−ms ds.

Suppose the function H(w) satisfies H ′(w) = wF ′(w). Then we have

∂

∂Z
H
(

Z
t

)
=

1
t

H ′
(

Z
t

)
=

Z
t2 F ′

(
Z
t

)
.

From the general form (7.1) we get

(−1)m〈γ,γ
∨
〉

m
∂

∂t
(log9(m)h̄ )(12) = 〈γ

∨, γ 〉
∂

∂t
F
(

Z
t

)
= −〈γ ∨, γ 〉

Z
t2 F ′

(
Z
t

)
.

So e−H gives a tau function for exp
(
(−1)m〈γ,γ

∨
〉

m (log9(m)h̄ (i t))(12)

)
. A solution H(w) is

given by choosing the primitive

h̄�
1
π

∫
w
∂

∂w
arctan

( s
w

)
dw = −h̄�

1
π

1
2

s log(s2
+w2)

and integrating in e−ms ds.

We can now prove a large rank limit in the A1 case.

Corollary 69. The function

exp

(
1
h̄

∞∑
m=1

(−1)m〈γ,γ
∨
〉

m
log9(m)h̄ ((2π)−1i t)(12)

)
(which equals 9γ∨(t)+ O(h̄) by Proposition 59) admits the first order tau function

exp

(
1
h̄

∞∑
m=1

log τ (m)h̄ ((2π)−1i t)

)
,

and the latter equals the tau function τ`(t, Z(γ )) of (1.5). In particular this implies

Theorem 9 in the rank 2 case.
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Proof. The claim that the second exponential is a first order tau function follows from

Lemma 68 by summing over all frequencies and multiplying by h̄−1 throughout. To prove

the second exponential equals τ`(t, Z(γ )) recall from the proof of Lemma 68 that

1
h̄

∞∑
m=1

log τ (m)h̄ ((2π)−1i t) = −
∞∑

m=1

�

π

∫
∞

0
w

d
dw

arctan
( s
w

)
|
w=(2π)−1 Z

t
e−ms ds.

By the proof of Proposition 59 the right hand side equals

�w
d

dw
log3(w)|

w= Z
t
.

Now we use the identity

w
d

dw
log3(w) =

d
dw

logϒ(w)

(see [5, Lemma 5.4]), which follows at once from the identity for the Barnes G-function

d
dw

log G(w+ 1) =
1
2

log(2π)+
1
2
−w+w

d
dw

log0(w)

(see [28, p. 268, Equation (50)]). The upshot is the required identity

1
h̄

∞∑
m=1

log τ (m)h̄ ((2π)−1i t) = � logϒ
(

Z
t

)
= log τ`(t, Z).

The last claim that τ`(t, Z) is a tau function for 9(t) now follows from the fact that both

functions are independent of Z(γ ∨).

We consider now the case of a finite, uncoupled variation of BPS structure, and follow

the notation of § 6. In particular we have a basis {β j }, yielding local coordinates Z(β j ).

The active classes are {γi }, and we write

γi =
∑

p

ci pβp.

Recall we have elementary simple oscillators ∇
(m),i j
h̄ , or equivalently in terms of solutions

the functions 9
(m),i j
h̄ .

Lemma 70. Fix i, j . The function given by

log τ (m),ih̄ (
√
−1t) =

�(γi )

2π
h̄
∫
∞

0
s log

(
s2
+

(
Z(γi )

t

)2
)

e−ms ds

is a first order tau function for the scalar

exp
(
(−1)m〈γi ,β j 〉

m
(log9(m),i j

h̄ (
√
−1t))(12)

)
.

Proof. The proof is the same as that of Lemma 68.
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Suppose v
j
h̄ (t, Z) is a vector function of the local coordinates Z(βk), with one component

for each β j , depending on the additional parameter h̄.

Definition 71. A first order tau function for the vector exp(v j
h̄ (t, Z)) is a scalar function

τh̄(t, Z) which is invariant under common rescaling of t , Z and satisfies

∂

∂t
v

j
h̄ =

∑
p

〈β j , βp〉
∂

∂Z(βp)
log τh̄

for all j .

Theorem 72. Fix a finite, uncoupled variation of BPS structure as above. The vector

function

exp

1
h̄

∞∑
m=1

∑
i |〈γi ,β j 〉6=0

(−1)m〈γi ,β j 〉

m
log9(m),i j

h̄ ((2π)−1√
−1t)(12)


(which equals the vector 9β j (t)+ O(h̄) by Theorem 66) admits the first order tau function

exp

(
1
h̄

∞∑
m=1

∑
i

log τ (m),ih̄ ((2π)−1i t)(12)

)
, (7.2)

and the latter equals τ`(t, Z). This implies in particular Theorem 9.

Proof. Fix i, j , and evaluate at (2π)−1t . We have

∂

∂t
(log9(m),i j

h̄ )(12) = 〈γi , β j 〉
∂

∂Z(γi )
log τ (m),ih̄

=

∑
p

〈βp, β j 〉ci p
∂

∂Z(γi )
log τ (m),ih̄

=

∑
p

〈βp, β j 〉
∂Z(γi )

∂Z(βp)

∂

∂Z(γi )
log τ (m),ih̄

=

∑
p

〈βp, β j 〉
∂

∂Z(βp)
log τ (m),ih̄ .

To prove the first part of the claim sum over all i and note that the right hand side

vanishes when 〈γi , β j 〉 = 0. Arguing as in Corollary 69 shows that the function 7.2 equals

τ`(t, Z) =
∏

i ϒ
�(γi )

(
Z(γi )

t

)
as required. The last claim that τ`(t, Z) is a tau function for

9(t) follows at once.
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