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Abstract

We propose non-asymptotic controls of the cumulative distribution function P(|Xt| ≥ ε),
for any t > 0, ε > 0 and any Lévy process X such that its Lévy density is bounded from
above by the density of an α-stable-type Lévy process in a neighborhood of the origin.
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1. Introduction and motivations

The law of any Lévy process X is the convolution between a Gaussian process, the martin-
gale M describing its small jumps, and a compound Poisson process. For most Lévy processes,
a closed-form expression for the law of its increments is not known. The core of the problem
lies in computing the distribution of the small jumps. This technical limitation makes both
inference and simulation difficult for Lévy processes. To cope with this shortcoming it is usual
to approximate a general Lévy process X by a family of compound Poisson processes, by
ignoring the jumps smaller than some level ε. Also, when the Lévy measure is of infinite vari-
ation, solutions that consist in approximating the law of Mt with a Gaussian distribution are
motivated by [10] (see also [6], [5], or [4]). This type of approximation is of interest as both
Gaussian and compound Poisson processes are well understood, in terms of both continuous
and discrete observations. The same cannot be said for the small jumps, which remain complex
objects, difficult to manipulate.

To quantify the precision of such approximations, it becomes crucially important to have
a sharp control of quantities such as P

(|Xt| > ε
)

and P(|Mt| > ε). This control, besides being
interesting in itself, is sometimes required, for instance, to get Monte Carlo approximates of
functionals of Lévy processes or to study non-asymptotic risk bounds for estimators of the
Lévy density from discrete observations of X (see [9] or [7]). This has important consequences
in various fields of application where Lévy processes are commonly used to describe real-life
phenomena. The literature on the applications of Lévy processes is abundant, ranging from
finance, biology, geophysics, and neuroscience, to name but a few fields. In this respect, we
will limit ourselves to mentioning [2] and the references therein.
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914 C. DUVAL AND E. MARIUCCI

Formally, a Lévy process X is characterized by its Lévy triplet
(
b, �2, ν

)
, where b ∈R,

� ≥ 0, and ν is a Borel measure on R such that ν({0}) = 0 and
∫
R

(
y2 ∧ 1

)
ν(dy) < ∞. The

Lévy–Itô decomposition (see [3]) allows one to write a Lévy process X of Lévy triplet(
b, �2, ν

)
as the sum of four independent Lévy processes, as follows: for all t ≥ 0,

Xt = tb + �Wt + lim
η→0

(∑
s≤t

�Xs1(η,1](|�Xs|) − t
∫

η<|x|≤1
xν(dx)

)
+
∑
s≤t

�Xs1(1,∞)(|�Xs|)

=: tb + �Wt + Mt + Zt, (1)

where �Xr denotes the jump at time r of the càdlàg process X : �Xr = Xr − lims↑r Xs. The first
term is a deterministic drift, W is a standard Brownian motion which is pathwise continuous,
and M and Z compose the discontinuous jump part of X. The process M is a centered martingale
gathering the small jumps, i.e. the jumps of size smaller than 1, and it has Lévy measure
1|x|≤1ν. The process Z, on the other hand, is a compound Poisson process gathering jumps
larger than 1 in absolute value; it has Lévy measure 1|x|>1ν. In the sequel we let (b, �) =
(γν, 0) with

γν :=
⎧⎨
⎩
∫
|x|≤1 xν(dx) if

∫
|x|≤1 |x|ν(dx) < ∞,

0 if
∫
|x|≤1 |x|ν(dx) = ∞.

The choice � = 0 has been made to avoid too cumbersome proofs. A discussion about the
general case is postponed to Section 2.5. Then, we rewrite (1) as

Xt = tb(ε) + Mt(ε) + Zt(ε), ∀1 ≥ ε > 0, (2)

where

b(ε) :=
⎧⎨
⎩

∫
|x|≤ε

xν(dx) if
∫
|x|≤1 |x|ν(dx) < ∞,

− ∫
ε≤|x|≤1 xν(dx) if

∫
|x|≤1 |x|ν(dx) = ∞;

M(ε) = (Mt(ε))t≥0 is a Lévy process accounting for the centered jumps of X with size smaller
than ε, i.e.

Mt(ε) = lim
η→0

(∑
s≤t

�Xs1η<|�Xs|≤ε − t
∫

η<|x|≤ε

xν(dx)

)
;

and Z(ε) = (Zt(ε))t≥0 is a compound Poisson process of the form

Zt(ε) :=
Nt(ε)∑
i=1

Y (ε)
i ,

where N(ε) = (Nt(ε))t≥0 is a Poisson process of intensity λε := ∫
|x|>ε

ν(dx) independent of the

sequence of independent and identically distributed random variables
(
Y (ε)

i

)
i≥1 with common

law ν|R\[−ε,ε]/λε. In the sequel we use the notation a ∧ b = min (a, b) and a ∨ b = max (a, b).
A first well-known result (see e.g. [3, Section I.5] or [16, Corollary 3]) relates the Lévy

measure to the limit of P(|Xt| ≥ ε) as t → 0 as follows.

Lemma 1. Let X be a Lévy process with Lévy measure ν. For all ε > 0 it holds that

lim
t→0

P(|Xt| ≥ ε)

t
=
∫
R\[−ε,ε]

ν(dy).

In particular, this leads to limt→0
1
t P(|Mt(ε)| ≥ ε) = 0 and limt→0

1
t P(|tb(ε) + Mt(ε)| ≥

ε) = 0.
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Non-asymptotic control for Lévy processes 915

Lemma 1 suggests that P(|Xt| ≥ ε) � λεt ‘for t small enough’; however, it gives no informa-
tion on how small t should be, on the size of the error term P(|Xt| ≥ ε) − λεt, or on what
happens if ε becomes small. Of course, P(|Xt| ≥ ε) and P(|Mt(ε)| ≥ ε) can be controlled
with elementary inequalities, such as the Markov inequality, but this often leads to subopti-
mal results. Indeed, the Markov inequality gives P(Mt(ε) > ε) ≤ tσ 2(ε)ε−2, if we denote by
σ 2(ε) := ∫ ε

−ε
x2ν(dx) the variance of M1(ε), whereas a sharper result can be achieved using

the Chernov inequality, as follows.

Lemma 2. For any ε ∈ (0, 1], t > 0 and x > 0, it holds that

P(|Mt(ε)| > x) ≤ 2e
x
ε

(
tσ 2(ε)

xε + tσ 2(ε)

) xε+tσ2(ε)
ε2

.

Moreover, if tσ 2(ε)ε−2 ≤ 1, this leads to

P(Mt(ε) > x) ≤
(

eσ 2(ε)

ε2

) x
ε

ee−1
t

x
ε and P(Mt(ε) ≤ −x) ≤

(
eσ 2(ε)

ε2

) x
ε

ee−1
t

x
ε . (3)

Lemma 2 is a modification of [9, Remark 3.1]; its proof is postponed to Appendix A. A
similar result can also be obtained using martingale arguments (see [8, Theorem 4.1]). Again,
Lemma 2 is suboptimal, as it does not allow us to derive that limt→0 P(Mt(ε) ≥ ε)/t = 0. If we
want to be more precise about the behavior for t → 0, we need additional assumptions.

The study of the behavior at small times of the transition density of a Lévy process goes back
to [12] (see also [11]) and is carried out in the real case in [14], which is also interested in the
behavior of the supremum of this quantity and its derivatives. For the cumulative distribution
function, expansions of order 2 for P(Xt ≥ y), for fixed y and t going to 0, are given in [13] in
the particular cases where X is the sum of a compound Poisson process and either a Brownian
motion or an α-stable process.

The most complete results can be found in [9] (see also [1]), which, for general Lévy pro-
cesses, establishes asymptotic expansions at any order of P(Xt ≥ y), for fixed y bounded away
from 0 and t → 0. In particular, [9] proves that d2(y) = limt→0

1
t

( 1
t P(Xt > y) − ν((y, ∞))

)
exists, when the Lévy density f is bounded outside the interval [−η, η], 0 < η < y/2 ∧ 1, and
either f is C1 in a neighborhood of y, or f is continuous in a neighborhood of y, of bounded
variation, and � = 0 (defined as in (1)). This is an asymptotic result; therefore, it provides
no information on how small t should be for the approximation of P(Xt > y) − tν((y, ∞)) by
d2(y)t2 to be accurate. Moreover, even though an explicit characterization of d2(y) is given, this
does not translate to a readily understandable dependency on y.

Our main contribution is a non-asymptotic control of P(|Xt| ≥ ε), which is valid for any
ε > 0 and any 0 < t < t0(ε). A considerable effort has been made to make the dependency on
ε explicit, both in t0(ε) and in the final bound. Concerning the hypotheses on the Lévy density
f , in the finite-variation case we do not require any continuity, but only that it is bounded
from above by an α-stable-like density in a neighborhood of 0; see the definition on the class
LK,α below. In the setting of infinite variation, we distinguish between two cases: when f is
also Lipschitz continuous in a neighborhood of ε (a similar condition to that of [9]), we find
a non-asymptotic bound of the order of t2. We also analyze the case where the continuity
hypothesis on f is dropped. Then the order in t of the non-asymptotic bound deteriorates to
t1+1/α , 1 ≤ α < 2. This is not an artifact of the proof, as an example in [13] indicates.

Section 2 gathers the main results of the paper. We begin by defining the classes of
Lévy densities that we consider. On these classes we provide a non-asymptotic control of
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916 C. DUVAL AND E. MARIUCCI

P(|Mt(ε)| ≥ ε) and P(|Xt| ≥ ε). We consider separately finite-variation Lévy processes and
infinite-variation Lévy processes, for which we detail only the symmetric case. In both cases
our results permit us to recover Lemma 1. We compare our results to examples for which the
quantity P(|Xt| ≥ ε) is known. The case of the small jumps is treated separately as an inter-
mediate step to the general case (see Theorems 1 and 3). We think that these results are of
independent interest and provide new insight into the process of the small jumps. Section 2
ends with a discussion on the validity of the results in presence of a Brownian component.
Section 3 gathers the proofs of the main results, whereas in Appendix A all auxiliary results
are established and the computations of the examples are carried out. Our proofs are elementary
and self-contained, and they do not rely on the use of the infinitesimal generator.

2. Non-asymptotic expansions

In the sequel, let ν be a Lévy measure that is absolutely continuous with respect to the
Lebesgue measure, and denote by f = dν

dx its density. Letting α ∈ (0, 2) and K be positive
constants, define the classes of functions

LK,α :=
{

f : f (x) ≤ K

|x|1+α
, ∀|x| ≤ 2

}
, LK :=

{
f : sup

|x|≥1
|f (x)| ≤ K

}
.

A Lévy density f belongs to the class LK, K > 0, if it is bounded outside a neighborhood of the
origin. It belongs to LK,α , K > 0 and α > 0, if supx∈[−2,2] f (x)|x|1+α ≤ K. In particular LK,α

contains any α̃-stable Lévy density such that α̃ ≤ α. We stress that no lower-bound condition
is required for the Lévy density. In this paper we consider only Lévy measures in these classes,
the assumptions above being crucial in our proofs. However, we emphasize that the results
recalled in Lemmas 1 and 2 hold true for any Lévy process, without any assumption on the
Lévy measure.

2.1. Finite-variation Lévy processes

We state two non-asymptotic results offering a control of the distribution function of a
finite-variation Lévy process.

Theorem 1. Let ε ∈ (0, 1] and let f be a Lévy density such that for α ∈ (0, 1) and K > 0 it holds
that f ∈ LK,α . Then there exists a constant C1 > 0, depending only on α, such that

P(|tb(ε) + Mt(ε)| ≥ ε) ≤ 2t2K2C1ε
−2α, ∀ 0 < t ≤ (1 − α)εα

K41+α
.

If, in addition, f is a symmetric function, then there exists a constant C2 > 0, depending only
on α, such that

P(|Mt(ε)| ≥ ε) ≤ 2t2K2C2ε
−2α, ∀ 0 < t ≤ εα(2 − α)

K2α+1
.

Explicit formulas for the constants C1 and C2 are given in (21) and (22), respectively.

Theorem 1 highlights how likely the process of the jumps smaller than ε is to present excur-
sions larger than their size ε in a time interval of length t. When we are dealing with a
discretized trajectory of a Lévy process, this provides relevant information on the contribution
of the small jumps to the value of the observed increment. The following result generalizes
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Theorem 1 to any Lévy process with a Lévy density in LK,α , α ∈ (0, 1), or in LK,α ∩ LK if
ε > 1. In particular it permits us to derive an order of the rate of convergence in Lemma 1.

Theorem 2. Let Xt =∑
s≤t �Xs be a finite-variation Lévy process with Lévy density f. Then

the following hold:

• If ε ∈ (0, 1] and f ∈ LK,α for some α ∈ (0, 1) and K > 0, then for all
0 < t < (1 − α)K−1εα4−(1+α) it holds that

|P(|Xt| > ε
)− λεt| ≤ t2K2ε−2α

(
2C1 + D1

)+ t2Kλεε
−αD2 + 2t2λ2

ε,

where C1, D1, and D2 depend only on α and are defined in (21) and (41).

• If ε > 1 and f ∈ LK,α ∩ LK for some α ∈ (0, 1) and K > 0, then for all
0 < t < (1 − α)(5K)−1 ∧ (1 − α)K−14−1−α it holds that

|P(|Xt| > ε
)− λεt| ≤ 2K2t2

(
D̃1 + C1

)+ 2t2λ2
1

+ 2K2t2
(

4

2 − α
(ε − 3/2 − t|b(1)|)1ε>3/2+t|b(1)|

)

+ Kt2
(

4 × 5α11<ε<1+2t|b(1)| + 8

5
+ 3

2
λ2 + 4λ1

2 − α

)
,

where C1 and D̃1 depend only on α and are defined in (21) and (49).

If in addition we suppose that ν is a symmetric measure, then we have the following:

• If ε ∈ (0, 1] and f ∈ LK,α for some α ∈ (0, 1) and K > 0, then for any 0 < t < εα

(2 − α)K−12−α−1 it holds that

|P(|Xt| > ε
)− λεt| ≤ 2t2K2ε−2α(C2 + D3) + Kt2

2(2 − α)

(
λεε

−α + 4λ2εε
−α
)+ 2t2λ2

ε,

where C2 and D3 depend only on α and are defined in (22) and (50).

• If ε > 1 and f ∈ LK,α ∩ LK for some α ∈ (0, 1) and K > 0, then for any 0 < t <

(2 − α)K−12−α−1 it holds that

|P(|Xt| > ε
)− λεt| ≤ 2t2K2C2 + Kt2

2 − α

(
λ12−α + 4K

α(1 − α)
+ λ1+ε

)
+ 2t2λ2

1,

where C2 is defined in (22).

The results of Theorems 1 and 2 are non-asymptotic. If we apply Theorem 2 to a Lévy
process X whose Lévy measure ν is concentrated on [−ε, ε], for ε ∈ (0, 1], we recover the
result of Theorem 1 up to the constant D1, as in that case λε = 0. However, Theorem is not a
corollary of Theorem 2, as the proof of the latter uses Theorem 1.

These results show that for a finite-variation Lévy process whose Lévy density lies in LK,α ,
for some α ∈ (0, 1) and K > 0, the discrepancy between P(|Xt| > ε) and λεt is in t2. Moreover,
as the role of the cutoff ε is made explicit in the upper bound, it is possible to measure the
accuracy of this approximation when ε gets small. Then, the rate of the upper bound is—up
to a constant—in t2

(
ε−2α ∨ λεε

−α ∨ λ2
ε

)
. For example, for an α-stable process with α ∈ (0, 1),

this order simplifies to t2λ2
ε .
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2.2. Symmetric infinite-variation Lévy processes

We generalize Theorems 1 and 2 to symmetric infinite-variation Lévy processes whose
Lévy density lies in LK,α, α ∈ [1, 2) and K > 0.

Theorem 3. Let ε ∈ (0, 1] and 0 < t < (ε/2)α(1 ∧ ((2 − α)/2K)). Let f be a symmetric Lévy
density such that for α ∈ [1, 2), f ∈ LK,α . Then there exists a constant E1 > 0, depending only
on α (see (30)), such that

P(|Mt(ε)| ≥ ε) ≤ 22+αKt1+1/α

ε1+α

(
1 + 4K

α(2 − α)(α − 1)

)
+ 2t2K2E1ε

−2α, α ∈ (1, 2),

P
(
Mt(ε) ≥ ε

)≤ 4t2K2

ε2

(
e2+1/e + 38

9

)
+ 4Kt2

ε2
+ 16K2

ε2
t2 ln

( ε

2t

)
, α = 1.

Theorem 4. Let f be a symmetric Lévy density and f ∈ LK,α ∩ LK for some α ∈ [1, 2) and
K > 0. Then, for all 0 < t < ((ε ∧ 1)/2)α

(
1 ∧ ((2 − α)/2K)

)
, ε > 0, it holds that

|P(|Xt| > ε
)−λεt| ≤ G1

t1+1/α

(ε ∧ 1)1+α
+ G2

t2

(ε ∧ 1)2α
+ 5K

2 − α

t2λ1

(ε ∧ 1)2
+ 4K2t2ε

2 − α
1ε>2

+ K2t21α=1

(
8

(
21ε>11t/C<1∧(ε−1) ln

(
C(1 ∧ |ε − 1|)

t

)
+ ln

(
Cρ

t

))
1

ε ∧ 1

+ 32

(ε ∧ 1)2
ln

(
ε ∧ 1

2t

))
+ 2λ2

ε∧1t2,

where C := (
1 ∧ ((2 − α)/2K

))1/α
and G1 and G2 are positive constants, depending only on

K and α, defined in (31).

Compared to Theorems 1 and 2, the rates of Theorems 3 and 4 are slower, as t2 ≤ t1+1/α for
α ∈ (1, 2). Nevertheless, the rate t1+1/α of Theorems 3 and 4 seems optimal. Indeed, as shown
in [9, Remark 3.5] (see also [13]), it is possible to build a discontinuous Lévy measure f as the
sum of an α-stable Lévy process and a compound Poisson process presenting a discontinuity
at ε that lies in LK,α and attains this rate t1+1/α . Adding a regularity assumption on f in a
neighborhood of ε, it is possible to have a finer bound in t2, as established in the following
result.

Theorem 5. Let f be a symmetric Lévy density such that f ∈ LK,α for some α ∈ [1, 2) and K >

0. Let ε > 0 and assume that f is K(ε ∧ 1)−(2+α)-Lipschitz on the interval ((3/4(ε ∧ 1), 2ε −
3/4(ε ∧ 1)). For all

0 < t ≤ (2 − α)(1 ∧ ε)α

21+αK
,

it holds that

|P(|Xt| > ε
)− λεt| ≤ t2K2((F1ε

−2α + λ1ε
−αF2

)
10<ε≤1 + (

ε2F3 + F4
)
1ε>1

)
+ 4t2λ2

1 + t4K4F5

(ε ∧ 1)4α
,

where F1, . . . , F5 are universal positive constants, depending only on α, defined in (32).

First, note that any Lévy density f that can be written as L(x)/x1+α for x ∈ [−2, 2] \ {0},
where L is differentiable and bounded, with bounded derivative, and α ∈ [1, 2), satisfies
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the assumptions of Theorem 5. Moreover, under the latter assumption, the application of
Theorem 5 to a Lévy process X whose Lévy density f is concentrated on [−ε, ε], ε ∈ (0, 1],
leads to a finer rate than that of Theorem 3, namely,

P
(|Mt(ε)| > ε

)≤ t2K2(F1ε
−2α + λ1ε

−αF2
)+ 4t2λ2

1 + t4K4F5

(ε ∧ 1)4α
.

2.3. Discussion

The results of Theorems 1–5 are non-asymptotic and show the impact of the cutoff ε in
the constants. In particular they permit us to recover, for every fixed ε > 0, on the classes
considered, the result of Lemma 1 with t → 0.

Optimality of the results. The rates of Theorems 1, 2, and 5 are of the form t2(ε ∧ 1)−2α , up
to a constant depending on K and α. This quantity is optimal in t on the classes considered,
in the sense that the rate in t cannot be improved under the general assumptions of these theo-
rems. Indeed, in Section 2.4 we show that for compound Poisson processes, for which explicit
calculations can be performed and which are included in LK,α for all α ∈ (0, 2), examples can
be built attaining this rate. As already highlighted, the rate of Theorem 3 is also optimal when
considered in this general setting. The dependency on ε of the constant ε−2α also appears to be
the right one, since, for an α-stable process, it holds that λε = O(ε−α). Therefore, in general it
is not possible to improve the rates derived in these theorems, even though we stress that this
might be possible in specific examples (see the Cauchy process in Section 2.4).

Strategy of the proofs. All the proofs are self-contained; they rely on the decomposition (2),
which holds for any Lévy process and any level ε > 0, and on Lemma 2. More precisely, to
establish Theorems 2 and 4, we consider the decomposition (2), and decomposing on the values
of the Poisson process N(ε) leads to

|P(|Xt| > ε
)− λεt| ≤ P(|tb(ε) + Mt(ε)| > ε))

+ λεt|P(|tb(ε + Mt(ε) + Y (ε)
1

∣∣> ε)e−λε t − 1
∣∣+ P

(
Nt(ε) ≥ 2

)
. (4)

The last term raises no difficulty as P
(
Nt(ε) ≥ 2

)= O
(
λ2

ε t2
)
. The first term is treated in

Theorems 1 and 3, which are established using the decomposition (2) at level ε/2 and
Lemma 2. The proof of Theorem 1 is made particularly technical by the presence of the drift
term b(ε). This is why, in the infinite-variation counterpart Theorem 3, we specialize to the
symmetric case, so that b(ε) = 0. Finally, to prove Theorems 2 and 5 (resp. Theorem 4) it
remains to show that P

(∣∣tb(ε) + Mt(ε) + Y (ε)
1

∣∣≤ ε
)= O

(
tλε

) (
resp. Oε

(
t1/α

))
, which corre-

sponds to proving that |P(∣∣tb(ε) + Mt(ε) + Y (ε)
1

∣∣> ε
)
e−λε t − 1| = O

(
λεt
) (

resp. Oε

(
t1/α

))
.

For this term, the cases of finite-variation (Theorem 2) and infinite-variation (Theorems 4
and 5) Lévy processes essentially differ. For finite-variation Lévy processes, α ∈ (0, 1), the
result P

(∣∣tb(ε) + Mt(ε) + Y (ε)
1

∣∣≤ ε
)= O

(
tλε

)
holds true, and a main difficulty here lies in

the management of the drift, which can be nonzero. For infinite-variation Lévy processes,
α ∈ [1, 2), this result is not true in general. For instance, consider the case of a Cauchy
process X and fixed ε. The Cauchy process has a Lévy density (πx2)−11R\{0} and is there-
fore in L1/π,1 ∩ L1/π and is π−1273−3(ε ∧ 1)−3-Lipschitz on the interval ((3/4(ε ∧ 1),
2ε − 3/4(ε ∧ 1)) for all ε > 0. Theorems 3, 4, and 5 thus apply. For this example, direct
calculations allow one to show that |P(|Xt| > ε

)− λεt| = O
(
λ3

ε t3
)

(see Section 2.4); how-

ever, limt→0
1
t P
(∣∣tb(ε) + Mt(ε) + Y (ε)

1

∣∣≤ ε
)= ∞, implying that P

(∣∣tb(ε) + Mt(ε) + Y (ε)
1

∣∣≤
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ε
)= O

(
tλε

)
cannot hold. Indeed, since the Lévy measure is symmetric, it leads to

b(ε) = 0 and

P
(∣∣Mt(ε) + Y (ε)

1

∣∣≤ ε
)= 1

λε

∫ −ε

−∞
P
(|Mt(ε) + z| ≤ ε

) dz

πz2
+ 1

λε

∫ ∞

ε

P
(|Mt(ε) + z| ≤ ε

) dz

πz2
.

Fatou’s lemma, together with the fact that

lim
t→0

P(Mt(ε) ∈ A)

t
= νε(A),

νε = ν1|x|≤ε, and f is symmetric, gives

λε lim inf
t→0

P
(∣∣Mt(ε) + Y (ε)

1

∣∣≤ ε
)

t
≥
( ∫ −ε

−∞
+
∫ ∞

ε

)
lim inf

t→0

P
(
Mt(ε) ∈ (−ε − z, ε − z)

)
t

dz

πz2

≥
∫ ∞

ε

νε(z − ε, z + ε)ν(dz) =
∫ 2ε

ε

νε(z − ε, ε)ν(dz)

= 1

π2

∫ 2ε

ε

2ε − z

ε(z − ε)

dz

z2
= ∞.

We derive that the decomposition (4) that leads to Theorem 2, α ∈ (0, 1), does not permit
one to obtain optimal results for α ∈ [1, 2) such as Theorem 5. These are instead obtained
by firstly adding a regularity assumption in a neighborhood of ε and secondly modifying the
decomposition (4), considering a cutoff level ε′ < ε, for example ε′ = 3ε/4 (see Lemmas 5
and 6 below).

Generalizing the results of Theorems 3, 4, and 5 to non-symmetric Lévy processes is
possible at the expense of more cumbersome proofs and modifying the conditions on t. To
exemplify this point, consider the proof of Theorem 1, for which a comparison between the
non-symmetric and the symmetric case is possible, as we propose an alternative compact proof
in the symmetric case.

2.4. Examples

We consider four examples of Lévy processes for whose laws explicit formulas are avail-
able. This permits us to conduct direct computations and expansions for the marginal laws
and to compare them with the previous results. Let us stress that even in these cases where
the law of the process is known, we do not know the law of the process corresponding to its
small jumps. Besides the compound Poisson process, it is hard to propose examples to com-
pare with Theorems 1 and 3. Finally, we present a non-asymptotic control of the marginal law
of α-stable-type processes. Proofs are postponed to Section A.7.

1. Let X be a compound Poisson process. Then, for any ε > 0,∣∣P(|Xt| > ε) − λεt
∣∣= Oε

(
t2
)

and P(|Mt(ε ∧ 1) + tb(ε ∧ 1)| > ε ∧ 1) = Oε

(
t2
)
,

as t → 0. It is possible to build examples for which these rates are sharp (see
Section A.7).

2. Let X be a gamma process of parameter (1,1), that is, a finite-variation Lévy process
with Lévy density

f (x) = e−x

x
1(0,∞)(x), λε =

∫ ∞

ε

e−x

x
dx,
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and

P(|Xt| > ε) = P(Xt > ε) =
∫ ∞

ε

xt−1


(t)
e−xdx, ∀ε > 0,

where 
(t) denotes the 
 function, i.e. 
(t) = ∫∞
0 xt−1e−xdx. Then

∣∣P(Xt > ε) − λεt
∣∣=

Oε

(
t2
)
, as t → 0.

3. Cauchy processes. Let X be a 1-stable Lévy process with

f (x) = 1

πx2
1R\{0} and P

(|Xt| > ε
)= 2

∫ ∞
ε
t

dx

π (x2 + 1)
, ∀ε > 0.

Then ∣∣P(|Xt| > ε
)− tλε

∣∣= Oε

(
t3
)
, as t → 0. (5)

For this example, the bound of Theorem 5 is suboptimal. However, it is hopeless to try to
improve Theorem 5 relying on the same strategy of proof, i.e. using compound Poisson
approximations, and a different approach should be considered.

4. α-stable-type processes. Results for the cumulative distribution function for α-stable
processes were already known (see e.g. [13]). The following result is a generalization
to any Lévy process whose Lévy measure behaves as an α-stable process in a neighbor-
hood of the origin, such as a tempered stable Lévy process (see e.g. [6, Section 4.2] or
[15]). This result is a consequence of Theorems 2, 4, and 5, observing that, under the
assumptions of Corollary 1,

2K1ε
−α/α ≤ λε,1 ≤ 2K2ε

−α/α, εα ≤ 2K2

αλε,1
, and ε−α ≤ αλε

2K1
,

for λε,1 defined as in Section 3.1.

Corollary 1. Let X be a symmetric Lévy process with a Lévy density f. Suppose there exist
α ∈ (0, 2), K1 > 0, and K2 > 0 such that K1|x|−(1+α) ≤ |f (x)| ≤ K2|x|−(1+α), for all 0 < |x| ≤ 2.
Let ε ∈ (0, 1] and t > 0. We have the following:

• If α ∈ (0, 1), there exists a constant AK1,K2,α > 0, depending only on K1, K2, and α, such
that

|P(|Xt| > ε
)− λεt| ≤ AK1,K2,αt2λ2

ε, ∀ tλε ≤ 2−α(2 − α)α−1.

• If α ∈ [1, 2) and f ∈ LK2 , there exist two constants BK1,K2,α > 0 and B̃, depending only
on K1, K2, and α, such that for any tλε ≤ 21−αK2(1 ∧ (2 − α)/2K2)α−1, it holds that

|P(|Xt| > ε
)− λεt| ≤ BK1,K2,αt1+1/αλ1+1/α

ε

(
1α∈(1,2) + ln

(
B̃

λεt

)
1α=1

)
.
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• If α ∈ [1, 2) and f is globally Kε−(2+α)-Lipschitz on the interval ((3/4ε, 2ε − 3/4ε),
there exists a constant CK1,K2,α > 0, depending only on K1, K2, and α, such that

|P(|Xt| > ε
)− λεt| ≤ CK1,K2,αt2λ2

ε, ∀ tλε ≤ 2−α(2 − α)α−1.

2.5. Extension

A natural question is whether the above results hold true for general Lévy processes, that
is in presence of a Gaussian part, � > 0 in (1). The answer is essentially positive, but to avoid
cumbersome proofs we have chosen to take � = 0. If � > 0, the proofs can be adapted follow-
ing the same steps as in Section 3, replacing Mt(ε) with �Wt + Mt(ε), to yield similar results
to those presented in Section 2.

More precisely, in order to mimic what is done in Section 3 for pure jump Lévy processes,
we need to generalize Lemma 2. Adapting its proof, we obtain the following result. For any
ε ∈ (0, 1], t > 0, and x > 0, it holds that

P
(
�Wt + Mt(ε) > x

)≤ e
x
ε

(
tσ 2(ε)

xε + tσ 2(ε)

) xε+tσ2(ε)
ε2

exp

(
t
�2

2ε2
ln2

(
1 + xε

tσ 2(ε)

))
.

In particular, using that u �→ u ln2 (1 + 1/u) is bounded by 1 for u > 0, we observe that the
additional term

e
t �2

2ε2 ln2
(

1+ xε
tσ2(ε)

)
≤ e

�2x
2εσ2(ε)

is bounded.
Similarly, it is possible to have a more general drift b in the triplet (see (1)). Proofs can

be adapted at the cost of a more stringent condition on t. Indeed, the condition on t in the
above theorems ensures that tb(ε) ≤ ε/2; a similar condition should be satisfied in presence of
a general drift b.

3. Proofs

3.1. Preliminaries

Assume b ≥ a > 0, and define λa := ∫
|x|>a f (x)dx and λa,b := ∫

b>|x|>a f (x)dx, with the con-

vention λa,a = 0. Recall that σ 2(a) := ∫
0<|x|<a x2f (x)dx, and for finite-variation processes the

drift is denoted by b(a) := ∫
0<|x|<a xf (x)dx. Furthermore, we write Y (a) (resp. Y (a,b)) for a

random variable with density f 1(−a,a)c/λa (resp. f 1[−b,−a]∪[a,b]/λa,b). With this notation, fol-
lowing (2), consider the independent decomposition which plays an essential role in the sequel:
for all t > 0,

Mt(ε) = Mt(η) + Zt(η, ε) − t
(
b(ε) − b(η)

)
, ∀ 0 < η < ε ≤ 1, (6)

where Zt(η, ε) =∑Nt(η,ε)
i=1 Y (η,ε)

i , N(η, ε) being a Poisson process of intensity λη,ε independent

of
(

Y (η,ε)
i

)
. Therefore, for all 0 < x ≤ δ and t > 0 it holds that

P(Nt(x, δ) ≥ 1) ≤ λx,δt and P(Nt(x, δ) ≥ 2) ≤ (λx,δt)2. (7)
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In the sequel we make intensive use of the following inequalities. For any 0 < x ≤ y ≤ 2 and f
in LK,α , it holds that

σ 2(x)

x2
=
∫ x
−x u2f (u)du

x2
≤ 2K

2 − α
x−α, (8)

λx,y =
∫

y>|u|>x
f (u)du ≤ 2K

α

(
x−α − y−α

)
, (9)

λx,y =
∫

y>|u|>x
f (u)du ≤ 2K

α
x−α, (10)

b(x) =
∫

|u|≤x
uf (u)du ≤ 2K

1 − α
x1−α, if α ∈ (0, 1). (11)

3.2. Proof of Theorem 1

First, note that

P(|tb(ε) + Mt(ε)| > ε) = P(tb(ε) + Mt(ε) > ε) + P(tb(ε) + Mt(ε) < −ε).

We consider only the term P(tb(ε) + Mt(ε) > ε), as P(tb(ε) + Mt(ε) < −ε) can be treated
analogously. Define

η := sup

{
ε

4
≤ u < ε: u ≤ ε − t

∫ u
−u xf (x)dx

2
, tλε/8,u < 1

}
.

Observe that if f ∈ LK,α , K > 0, α ∈ (0, 1), ε ∈ (0, 1], and 0 < t ≤ (1 − α)K−1εα4−(1+α), then
the set

Aε,t :=
{

ε

4
≤ u < ε: u ≤ ε − tb(u)

2
, tλε/8,u < 1

}
is not empty, as ε/4 ∈ Aε,t and tλε/8,ε/4 ≤ (1 − α)(2α − 1)/(2α) < 1, using (9).

By means of (6) and the definition of b( · ), we have

P(tb(ε) + Mt(ε) > ε) = P
(
Mt(η) + Zt(η, ε) > ε − tb(η)

)
≤ P(Mt(η) > ε − tb(η)) + λη,εtP

(
Mt(η) + Y (η,ε)

1 > ε − tb(η)
)

+ P
(
Nt(η, ε) ≥ 2

)
, (12)

where we decomposed on the values of the Poisson process N(η, ε). Using (7), we have
P
(
Nt(η, ε) ≥ 2

)≤ (λη,εt)2. We thus only have to control the first and second summands in
(12). For the first one, we apply Lemma 2, using that t ≤ (1 − α)K−1εα4−(1+α) implies that
tσ 2(x)x−2 ≤ 1 for all x ∈ [ε/4, ε]. From the definition of η and (3) it follows that

P(Mt(η) > ε − tb(η)) ≤ P(Mt(η) > 2η) ≤
(

eσ 2(η)

4η2

)2

ee−1
t2.

Hence, using (8) and the fact that η ≥ ε/4 and 42α−1e2+1/e(2 − α)−2 ≤ 4e2+1/e, we have

P(Mt(η) > ε − tb(η)) ≤ 4e2+1/et2K2ε−2α . (13)
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For the second term in (12), set ε′ := ε − tb(η) and notice that ε′ ≥ ε/2. It holds that

λη,εP

(
Mt(η) + Y (η,ε)

1 > ε′)=
∫

η<|y|<ε

P
(
Mt(η) > ε′ − y

)
f (y)dy

≤ P
(
Mt(η) > ε′ + η

) ∫ −η

−ε

f (x)dx +
∫

η<y<ε

P
(
Mt(η) > ε′ − y

)
f (y)dy =: T1 + T2.

From ε′ > 0 it follows that P
(
Mt(η) > ε′ + η) ≤ P

(
Mt(η) > η). The Markov inequality and (8),

combined with the fact that f ∈ LK,α and η ≥ ε/4, yield

T1 ≤ 2K2tη−α(2 − α)−1
∫ ε

η

|x|−(1+α)dx ≤ 2K2

α(2 − α)
η−2αt ≤ tK2ε−2αC1,α

with C1,α := 21+4α

α(2 − α)
. (14)

To treat the term T2 we suppose that b(η) ≥ 0; the case b(η) < 0 is handled similarly. After
a change of variable, we obtain

T2 =
∫ ε′−η

−tb(η)
P
(
Mt(η) > x

)
f
(
ε′ − x

)
dx ≤

∫ 0

−tb(η)
f
(
ε′ − x

)
dx +

∫ η/2

0
P
(
Mt(η) > x

)
f
(
ε′ − x

)
dx

+
∫ η

η/2
P
(
Mt(η) > x

)
f
(
ε′ − x

)
dx +

∫ ε′−η

η

P
(
Mt(η) > x

)
f
(
ε′ − x

)
dx

=: T2,1 + T2,2 + T2,3 + T2,4.

First observe that for f ∈ LK,α and ε′ ≥ ε/2 we get

f
(
ε′ − x

)≤ K

|ε′ − x|1+α
≤ K(ε′)−(1+α) ≤ K21+αε−(1+α), ∀x ∈ [−tb(η), 0].

Furthermore, using that b(η) ≤ 2K(1 − α)−1η1−α ≤ 2K(1 − α)−1ε1−α , we conclude that

T2,1 ≤ 22+αtK2

1 − α
ε−2α . (15)

Next we consider T2,2. By (6), for any x̃ ∈ (0, η), we write Mt(η) = Mt(x̃) + Zt(x̃, η) − t(b(η) −
b(x̃)). Observe that, as 0 < t ≤ (1 − α)K−1εα4−(1+α), it holds that 2Ktη1−α(1 − α)−1 ≤ η/2.
Consider x ∈ (2Ktη1−α(1 − α)−1, η/2) and set x̃ := x − 2Ktη1−α(1 − α)−1. Using that f ∈
LK,α we have

|b(η) − b(x̃)| =
∣∣∣∣
∫

|u|∈[x̃,η]
uf (u)du

∣∣∣∣≤ 2Kη1−α(1 − α)−1,

from which we derive that P(Mt(x̃) > x + t(b(η) − b(x̃))) ≤ P(Mt(x̃) > x̃). It follows that for
x ∈ (2Ktη1−α(1 − α)−1, η/2) we may write, decomposing on the values of N(x̃, η),

P
(
Mt(η) > x

)= P
(
Mt(x̃) + Zt(x̃, η) > x + t(b(η) − b(x̃))

)
≤ P

(
Mt(x̃) > x̃

)+ P(Nt(x̃, η) ≥ 1)

≤ t
2K

2 − α
(x̃)−α + tλx̃,η ≤ 2Kt(x̃)−α(2 + α)

α(2 − α)
,
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where, in the second-to-last inequality, we used the Markov inequality and (8), and in the
last inequality we used (7) and (10). Consequently, using that η ≤ ε and noticing that 3/8ε ≤
ε′ − x ≤ 1 for all x ∈ (0, η/2), we derive

T2,2 ≤
∫ 2Ktη1−α

1−α

0
f
(
ε′ − x

)
dx + 2(2 + α)Kt

α(2 − α)

∫ η/2

2Ktη1−α

1−α

(
x − 2Ktη1−α

1 − α

)−α

f
(
ε′ − x

)
dx

≤ 2K2tε−2α

1 − α

(
8

3

)1+α

+ 2(2 + α)K2t

21−αα(2 − α)(1 − α)

(
8

3

)1+α

ε−2α

= 2K2tε−2α

1 − α

(
8

3

)1+α(
1 + 2 + α

21−αα(2 − α)

)
. (16)

To treat the term T2,3 we proceed analogously. Let x ∈ [η/2, η] and Z̃t(x, η) be a centered
version of Zt(x, η), that is,

Z̃t(x, η) =
Nt(x,η)∑

i=1

(
Y (x,η)

i −E[Y (x,η)
i ]

)
.

In particular, by the definition of η, it follows that tλx,η < 1 and Lemma 7 applies. On the one
hand we derive that∣∣P(Mt(x) + Zt(x, η) −E

[
Zt(x, η)

]
> x

)− P
(
Mt(x) + Z̃t(x, η) > x

)∣∣
≤ 2tλx,η

∣∣∣E[Y (x,η)
1

]∣∣∣ sup
|y|∈[x,η]

∣∣f (y)/λx,η| ≤ tK22+αη−(1+α)
∫

x<|u|<η

ηf (u)

λx,η
du ≤ 22+αtKη−α,

where we used that f ∈ LK,α . On the other hand, we have that

P
(
Mt(x) + Z̃t(x, η) > x

)≤ P
(
Mt(x) > x

)+ P
(
Nt(x, η) ≥ 1

)≤ 10Ktx−α

α(2 − α)
≤ 20Ktη−α

α(2 − α)
,

where we used the Markov inequality, (8), (7), (10), and that x > η/2. Finally, by the triangle
inequality and using that ε′ − η ≥ η ≥ ε/4 and E[Zt(x, η)] = t(b(η) − b(x)), we deduce that

T2,3 ≤ 28Ktη−α

α(2 − α)

∫ η

η/2
f
(
ε′ − x

)
dx ≤ 28K2tη−α(ε′ − η)−α

α2(2 − α)
≤ 28 × 42αK2tε−2α

α2(2 − α)
. (17)

Then, for the term T2,4, the Markov inequality and (8), for any x ∈ [η, ε′ − η], lead to

P(Mt(η) > x) ≤ 2K

2 − α
η−αt.

Therefore, using that ε′ − η ≥ η ≥ ε/4, we get

T2,4 ≤ 2K

2 − α
η−αt

∫ ε′−η

η

f
(
ε′ − x

)
dx ≤ 2K2

(2 − α)α
η−2αt ≤ 21+4αK2

α(2 − α)
ε−2αt. (18)

Gathering Equations (15), (16), (17), and (18) yields

T2 ≤ tK2ε−2αC2,α, (19)
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with

C2,α =
(

22+α

1 − α
+ 24α+3(21−αα(2 − α) + 2 + α)

α(2 − α)(1 − α)31+α
+ 28 × 42α

α2(2 − α)
+ 21+4α

α(2 − α)

)
.

Combining (14) and (19), we conclude that if b(η) ≥ 0, then

λη,εtP
(

Mt(η) + Y (η,ε)
1 > ε′)≤ t2K2ε−2α(C1,α + C2,α). (20)

The case b(η) < 0 is treated similarly and therefore not detailed here. Inserting in (12)
Equations (13), (10), and (20), we conclude that

P(tb(ε) + Mt(ε) > ε) ≤ t2K2ε−2α
(
4e2+1/e + 64α−2 + C1,α + C2,α

) =: t2K2ε−2αC1, (21)

as desired.
For a symmetric Lévy measure, the above computations can be simplified. In this case

b(ε) = 0 and one can directly take η = ε/2 in the previous lines. More precisely, it holds that

P
(
Mt(ε) > ε

)≤ P
(
Mt(ε/2) > ε

)+ (
tλε/2,ε

)2 + tλε/2,εP

(
Mt(ε/2) + Y (ε/2,ε)

1 > ε
)

.

To control the first two summands, use Lemma 2
(
using that 4tσ 2(ε/2) ≤ ε2

)
and (10). It

follows that

P(Mt(ε/2) > ε) ≤ t2ε−2αK2e2+1/e 41+α

(2 − α)2
,

(tλε/2,ε)2 ≤ t2ε−2αK2 41+α

α2
.

To treat the last term we proceed as follows:

λε/2,εP(Mt(ε/2) + Y (ε/2,ε)
1 > ε) =

∫ ε

ε/2
+
∫ −ε/2

−ε

P(Mt(ε/2) > ε − z)f (z)dz

≤
∫ ε

ε/2

(
P(Mt(ε − z) > ε − z) + tλε−z,ε/2

)
f (z)dz + P(Mt(ε/2) > ε3/2)

2
λε/2,ε

≤ t
∫ ε

ε/2

(
σ 2(ε − z)

(ε − z)2
+ λε−z,ε/2

)
f (z)dz + P(Mt(ε/2) > ε3/2)

2
λε/2,ε

≤ 41+αtK2ε−2α

α(1 − α)(2 − α)
+ P(Mt(ε/2) > ε3/2)

2
λε/2,ε,

where in the last inequality we used (8) and (10). The term P(Mt(ε/2) > ε3/2) is controlled by
applying Lemma 2, using that 4tσ 2(ε/2) ≤ ε2. By means of (8) it follows that

P(Mt(ε/2) > ε3/2)

2
≤ t2ε−2αK2e3+1/e21+2α

(2 − α)2
.

Collecting all the pieces together, one derives the following result: for all t > 0 such that
t ≤ εα(2 − α)K−12−α−1 (implying that tλε/2,ε ≤ 1), it holds that P(Mt(ε) > ε) ≤ t2ε−2αK2C2,

where

C2 := 22α+1e2+1/e(2 + e)

(2 − α)2
+ 41+α

α(1 − α)(2 − α)
+ 41+α

α2
. (22)
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3.3. Proof of Theorem 2

To prove Theorem 2 we first introduce an auxiliary result.

Lemma 3. Let f be a Lévy density and ε > 0. Set ρ := ε ∧ 1 and Q := |λρ tP
(∣∣Mt(ρ) + tb(ρ) +

Y (ρ)
1

∣∣> ε
)− λεt|. Then the following hold:

• If ε ∈ (0, 1] and f ∈ LK,α for some α ∈ (0, 1) and K > 0, then

Q ≤ t2(K2D1ε
−2α + Kλεε

−αD2), ∀ 0 < t < (1 − α)K−1εα4−(1+α),

where D1 and D2 are defined as in (41).

• If ε > 1 and f ∈ LK,α ∩ LK for some α ∈ (0, 1) and K > 0, then for all 0 < t < (1 −
α)(5K)−1 it holds that for D̃1 as defined in (49),

Q ≤ 2K2t2
(

D̃1 + 4

2 − α
(ε − 3/2 − t|b(1)|)1ε>3/2+t|b(1)|

)
+ Kt2

(
4 × 5α11<ε<1+2t|b(1)| + 8

5
+ 3λ2 + 4λ1

2 − α

)
.

If in addition we suppose that ν is a symmetric measure, then the following hold:

• If ε ∈ (0, 1] and f ∈ LK,α for some α ∈ (0, 1) and K > 0, it holds that

Q ≤ t2K

2(2 − α)

(
λεε

−α + 4λ2εε
−α
)+ 2t2K2D3ε

−2α, ∀ t > 0,

where D3 is defined as in (50).

• If ε > 1 and f ∈ LK,α ∩ LK for some α ∈ (0, 1) and K > 0, it holds that

Q ≤ t2K

2 − α

(
λ12−α + 4K

α(1 − α)
+ λ1+ε

)
, ∀ t > 0.

Proof of Theorem 2. Using the decomposition Xt = Mt(ρ) + tb(ρ) + Zt(ρ), ρ = ε ∧ 1, we
derive, decomposing on the Poisson process N(ρ), that

|P(|Xt| > ε
)− λεt| =

∣∣∣∣P(∣∣Mt(ρ) + tb(ρ)
∣∣> ε

)
e−λρ t + λρ tP

(∣∣Mt(ρ) + tb(ρ) + Y (ρ)
1

∣∣> ε
)

e−λρ t

− λεt +
∞∑

n=2

P

(∣∣∣∣∣Mt(ρ) + tb(ρ) +
n∑

i=1

Y (ρ)
i

∣∣∣∣∣> ε

)
P(Nt(ρ) = n)

∣∣∣∣
≤ P(|Mt(ρ) + tb(ρ)| > ρ) + |λρ tP

(∣∣Mt(ρ) + tb(ρ) + Y (ρ)
1

∣∣> ε
)

− λεt|
+ λρ t

(
1 − e−λρ t)+ P

(
Nt(ρ) ≥ 2

)
:= I1 + I2 + I3 + I4.

The term I1 is controlled with Theorem 1, I2 with Lemma 3; for I3 use that 1 − e−x ≤ x for
all x > 0 to get I3 ≤ λ2

ρ t2; and finally, it follows from an argument similar to (7) that I4 =
P(Nt(ρ) ≥ 2) ≤ λ2

ρ t2 (as 1 − e−x − xe−x ≤ x2 for all x > 0).

https://doi.org/10.1017/apr.2021.55 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.55


928 C. DUVAL AND E. MARIUCCI

3.4. Proof of Theorem 3

As ν is symmetric it holds that P(|Mt(ε)| ≥ ε) = 2P
(
Mt(ε) ≥ ε

)
. Using the same reasoning

as in the proof of Theorem 1, we get

P
(
Mt(ε) ≥ ε

)≤ P
(
Mt(ε/2) ≥ ε

)+ tλε/2,εP

(
Mt(ε/2) + Y (ε/2,ε)

1 ≥ ε
)

+ (
tλε/2,ε

)2. (23)

By means of Lemma 2 together with (8), we get that

P
(
Mt(ε/2) ≥ ε

)≤ t2
41+αK2e2+1/e

(2 − α)2ε2α
, (24)

and, using (10), that (
tλε/2,ε

)2 ≤ t2K241+α

α2ε2α
. (25)

Finally, using the symmetry of ν, we have that

λε/2,εP

(
Mt(ε/2) + Y (ε/2,ε)

1 ≥ ε
)

=
∫ ε

ε/2

(
P(Mt(ε/2) ≥ ε − z) + P(Mt(ε/2) ≥ ε + z)

)
f (z)dz

≤
∫ ε

ε/2
P(Mt(ε/2) ≥ ε − z)f (z)dz + P(Mt(ε/2) ≥ ε3/2)

2
λε/2,ε =: T1 + T2.

To control the term T1, observe that

T1 =
∫ t1/α

0
P(Mt(ε/2) ≥ z)f (ε − z)dz +

∫ ε/2

t1/α

P(Mt(ε/2) ≥ z)f (ε − z)dz

≤ Kt1/α

(ε − t1/α)1+α
+ 21+αK

ε1+α

∫ ε/2

t1/α

P(Mt(ε/2) ≥ z)dz.

Next, for z ∈ (t1/α, ε/2), the decomposition Mt(ε/2) = Mt(z) + Zt(z, ε/2), Equation (7), the
Markov inequality, and (8) lead to

P(Mt(ε/2) ≥ z) ≤ P(Mt(z) ≥ z) + tλz,ε/2 ≤ tσ 2(z)

z2
+ 2tK

∫ ε/2

z

dx

x1+α
≤ 2Ktz−α

(
1

2 − α
+ 1

α

)
.

Therefore, for any α ∈ (1, 2),

∫ ε/2

t1/α

P(Mt(ε/2) ≥ z)dz ≤ 4Kt
1
α

α(2 − α)(α − 1)
;

then, using that ε − t1/α ≥ ε/2, we derive that

T1 ≤ 21+αKt1/α

ε1+α

(
1 + 4K

α(2 − α)(α − 1)

)
, α ∈ (1, 2). (26)

If, instead, α = 1, we get

T1 ≤ 4Kt

ε2
+ 16K2

ε2
t ln

( ε

2t

)
. (27)
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To control the term T2 we use once again the Markov inequality together with (8) and (10) to
obtain

T2 ≤ tσ 2(ε/2)

9(ε/2)2

λε/2,ε

2
≤ 22α+1K2t

9α(2 − α)ε2α
, α ∈ [1, 2). (28)

Gathering (26) and (28) we have, for α ∈ (1, 2),

λε/2,εP

(
Mt(ε/2) + Y (ε/2,ε)

1 ≥ ε
)

≤ 21+αKt1/α

ε1+α

(
1 + 4K

α(2 − α)(α − 1)

)
+ 22α+1K2t

9α(2 − α)ε2α
.

(29)

Combining (23) with (24), (25), and (29), we conclude that for all α ∈ (1, 2) it holds that

P
(
Mt(ε) ≥ ε

)≤ t2K2

ε2α
E1 + 21+αKt1+1/α

ε1+α

(
1 + 4K

α(2 − α)(α − 1)

)
,

with

E1 :=
(

4e2+1/e

(2 − α)2
+ 41+α

α2
+ 22α+1

9α(2 − α)

)
. (30)

If, instead, α = 1, then using (27) we have

P
(
Mt(ε) ≥ ε

)≤ 4t2K2

ε2

(
e2+1/e + 38

9

)
+ 4Kt2

ε2
+ 16K2

ε2
t2 ln

( ε

2t

)
.

This concludes the proof.

3.5. Proof of Theorem 4

Lemma 4. Let f be a symmetric Lévy density such that f ∈ LK,α ∩ LK for some α ∈ [1, 2)
and K > 0. Let ε > 0 and set ρ = ε ∧ 1. Then, for all 0 < t < ((ε∧1)/2)α

(
1 ∧ ((2 − α)/2K)

)
, it

holds that

∣∣λρ tP
(
|Mt(ρ) + Y (ρ)

1 | > ε
)

− λεt
∣∣≤ L1

t1+1/α

(ε ∧ 1)1+α
+ 8K2

α(2 − α)

t2

(ε ∧ 1)2α
+ 5K

2 − α

t2λ1

(ε ∧ 1)2

+ 4K2t2

2 − α
ε1ε>2 + 8K2t21α=1

(
21ε>11t/C<1∧(ε−1) ln

(C(1 ∧ |ε − 1|)
t

)
+ ln

(Cρ

t

)) 1

ε ∧ 1
,

where C := (
1 ∧ ((2 − α)/2K

))1/α
and L1 is defined in (68).

Proof of Theorem 4. The result follows from Theorem 3 and Lemma 4 using the
decomposition

|P(|Xt| > ε) − λεt| ≤ P(|Mt(ρ)| > ρ) + |λρ tP
(∣∣Mt(ρ) + Y (ρ)

1

∣∣> ε
)− λεt| + 2λ2

ρ t2

≤ G1
t1+1/α

(ε ∧ 1)1+α
+ G2

t2

(ε ∧ 1)2α
+ 5K

2 − α

t2λ1

(ε ∧ 1)2
+ 4K2t2

2 − α
ε1ε>2

+ K2t21α=1

(
8

(
21ε>11t/C<1∧(ε−1) ln

(
C(1 ∧ |ε − 1|)

t

)
+ ln

(
Cρ

t

))
1

ε ∧ 1

+ 32

(ε ∧ 1)2
ln

(
ε ∧ 1

2t

))
+ 2λ2

ε∧1t2,
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with ρ := ε ∧ 1 and

G1 = L1 + 1α∈(1,2)2
2+αK

(
1 + K

α(2 − α)(α − 1)

)
+ 1α=1

(
8K2

(
e2+1/e + 38

9

)
+ 8K

)
,

(31)

G2 = 8K2

α(2 − α)
+ K2E11α∈(1,2).

�

3.6. Proof of Theorem 5

We first introduce two auxiliary lemmas whose proofs can be found in the appendix.

Lemma 5. Let f be a symmetric Lévy density such that f ∈ LK,α for some α ∈ [1, 2) and K > 0.
Let ε ∈ (0, 1]. Then there exist three positive constants H1, H2, and H3, dependent only on α,
such that for all

0 < t ≤ (2 − α)εα

21+αK
,

it holds that

P(|Mt(3ε/4)| > ε)

2
≤ K2t2H1

ε2α
+ t2ε−2αK2H21α∈(1,2) + t4K4H3

ε4α
+ 32K2t2

ε2
ln (2)1α=1.

For explicit formulas for H1, H2, and H3, see (53) and (58).

Lemma 6. Let f be a symmetric Lévy density f in LK,α for some α ∈ [1, 2) and K > 0. Let
ε > 0, set ρ = 3/4(ε ∧ 1), and assume that f is K(ε ∧ 1)−(2+α)-Lipschitz on the interval
((3/4(ε ∧ 1), 2ε − 3/4(ε ∧ 1)). Then for all t > 0 it holds that∣∣λρ tP

(∣∣∣Mt(ρ) + Y (ρ)
1

∣∣∣> ε
)

− λεt
∣∣≤ K2t2

(
H4ε

−2α10<ε≤1 + ε2H51ε>1

)
+ H6Kt2λ1(ε ∧ 1)−α,

where H4, H5, and H6 are positive universal constants, depending only on α, defined in (67).

Proof of Theorem 5. Let ρ := 3/4(ε ∧ 1); using (2) at the point ρ and P(|Mt(ρ)| > ε) ≤
P(|Mt(ρ)| > 1 ∧ ε), we derive

|P(|Xt| > ε
)− λεt| ≤ P(|Mt(ρ)| > 1 ∧ ε) + |λρ tP

(∣∣∣Mt(ρ) + Y (ρ)
1

∣∣∣> ε
)

− λεt| + λρ t
(
1 − e−λρ t)+ P

(
Nt(ρ) ≥ 2

)
: = I1 + I2 + I3 + I4.

By Lemma 5 and Lemma 6 it follows that

I1 ≤ 2K2t2H1

(ε ∧ 1)2α
+ 2t2(ε ∧ 1)−2αK2H21α∈(1,2) + 2t4K4H3

(ε ∧ 1)4α
+ 64K2t2

(ε ∧ 1)2
ln (2)1α=1,

I2 ≤ K2t2
(
H4ε

−2α10<ε≤1 + ε2H51ε>1
)+ H6Kt2λ1(ε ∧ 1)−α .

Furthermore, by (7) and (9), it holds that

I3 + I4 ≤ 2(λρ t)2 = 2t2(λρ,1 + λ1)2 ≤ 4t2(λρ,1)2 + 4t2λ2
1

≤ 16t2K2

α2

((
4

3

)α

(ε ∧ 1)−α − 1

)2

+ 4t2λ2
1.
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Therefore

|P(|Xt| > ε
)− λεt| ≤ t2K2((F1ε

−2α + λ1ε
−αF2

)
10<ε≤1

+ (ε2F3 + F4)1ε>1
)+ t4K4F5(ε ∧ 1)−4α + 4t2λ2

1,

with F2 = H6
K , F3 = H5, F5 = 2H3, and

F1 := 2H1 + 2H21α∈(1,2) + H4 + 64 ln (2)1α=1 + 16(4/3)2α

α2
,

F4 := 2H1 + 2H21α∈(1,2) + 64 ln (2)1α=1 + 16

α2
, (32)

where in defining F4 we used that ((4/3)α − 1)2 ≤ 1. �

Appendix A. Technical lemmas and additional proofs

A.1. Proof of Lemma 2

For any u > 0 we have that

E
[
euMt(ε)]≤ exp

(
t
∫

(eu|y| − u|y| − 1)νε(dy)

)
.

Therefore, using that
∫ |y|kνε(dy) ≤ εk−2σ 2(ε) for all k ≥ 2, we have

P(Mt(ε) > x) ≤ exp

(
−ux + t

∫
(eu|y| − u|y| − 1)νε(dy)

)

≤ exp

(
u2tσ 2(ε)

2
− ux + tσ 2(ε)

∞∑
k=3

ukεk−2

k!
)

= exp

(
−ux + t

σ 2(ε)

ε2
(euε − 1 − uε)

)
. (33)

Substituting

u∗ = 1

ε
ln

(
1 + xε

tσ 2(ε)

)
in (33), we find that

P(Mt(ε) > x) ≤ e
x
ε

(
tσ 2(ε)

xε + tσ 2(ε)

) xε+tσ2(ε)
ε2

,

as claimed. To derive (3), we use that u−u ≤ ee−1
for all u > 0. Indeed, set

u = xε + tσ 2(ε)

ε2

and notice that(
tσ 2(ε)

xε + tσ 2(ε)

) xε+tσ2(ε)
ε2 =

(
tσ 2(ε)

ε2

)u

u−u ≤ ee−1
(

tσ 2(ε)

ε2

) xε+tσ2(ε)
ε2

.

The first part of Equation (3) then follows under the assumption tσ 2(ε)ε−2 ≤ 1. Analogous
arguments, with Mt(ε) replaced by −Mt(ε), allow us to deduce the right-hand part of
Equation (3).
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A.2. Proof of Lemma 3

First, we consider the general case where ν is not symmetric. We control the quantity J =
λρP

(∣∣Mt(ρ) + tb(ρ) + Y (ρ)
1

∣∣> ε
)− λε as Q = |J|t. It holds that

J =
∫ ∞

ρ

(
P(Mt(ρ) + tb(ρ) < −ε − z)f (z) + P(Mt(ρ) + tb(ρ) > ε + z)f (−z)

)
dz

−
∫ ∞

ε

(
P(Mt(ρ) + tb(ρ) ≤ ε − z)f (z) + P(Mt(ρ) + tb(ρ) > z − ε)f (−z)

)
dz

+
∫ ε

ρ

(
P(Mt(ρ) + tb(ρ) > ε − z)f (z) + P(Mt(ρ) + tb(ρ) < −ε + z)f (−z)

)
dz

=: R − S + T . (34)

Recall ρ = ε ∧ 1; both assumptions on t ensure that t|b(ρ)| ≤ ρ/2, and thus

R ≤
∫ ∞

ρ

(
P(Mt(ρ) < −ρ)f (z) + P(Mt(ρ) > ρ)f (−z)

)
dz.

By means of the Markov inequality and (8) we then derive

|R| ≤ 2K

2 − α
tλρρ−α . (35)

To treat the terms S and T we distinguish the cases ε ∈ (0, 1] and ε > 1. Moreover, we restrict
to the case b(ρ) ≥ 0; the case b(ρ) < 0 can be obtained similarly and leads to the same result.
Decompose S := S1 + S2, where

S1 + S2 =
∫ ∞

−tb(ρ)
P(Mt(ρ) > x)f (−ε − tb(ρ) − x)dx +

∫ ∞

tb(ρ)
P(Mt(ρ) ≤ −x)f (x + ε − tb(ρ))dx.

We detail only the computations for the term S1, those for the term S2 being analogous.

Case ε ∈ (0, 1]:
In this case, ρ = ε, and it holds that

|S1| ≤
∫ tb(ε)

−tb(ε)
f (−ε − tb(ε) − x)dx +

∫ ε/2

tb(ε)
P(Mt(ε) > x)f (−ε − tb(ε) − x)dx

+
∫ ε

ε/2
P(Mt(ε) > x)f (−ε − tb(ε) − x)dx +

∫ ∞

ε

P(Mt(ε) > x)f (−ε − tb(ε) − x)dx

= S1,1 + S1,2 + S1,3 + S1,4.

From the fact that f ∈ LK,α and (11), it follows that

S1,1 ≤ 2Ktb(ε)ε−(1+α) ≤ 4K2tε−2α

1 − α
. (36)

To control the term S1,2 we proceed as for the control of the term T2,1 in the proof of
Theorem 1. Observe that 0 < t ≤ (1 − α)K−1εα4−(1+α) implies 2Ktε1−α(1 − α)−1 < ε/2. Let
x ∈ (2Ktε1−α(1 − α)−1, ε/2) and set x̃ := x − 2Ktε1−α(1 − α)−1. In particular we can write
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Mt(ε) = Mt(x̃) + Zt(x̃, ε) − t(b(ε) − b(x̃)). From the assumption f ∈ LK,α it also follows that
|b(ε) − b(x̃)| ≤ 2Kε1−α(1 − α)−1, and so

P(Mt(x̃) > x + t(b(ε) − b(x̃))) ≤ P(Mt(x̃) > x̃).

Therefore, for all x ∈ (2Ktε1−α(1 − α)−1, ε/2), the Markov inequality and (8) lead to

P(Mt(ε) > x) ≤ P(Mt(x̃) > x + t(b(ε) − b(x̃))) + P(Nt(x̃, ε) ≥ 1) ≤ P(Mt(x̃) > x̃) + tλx̃,ε

≤ 2(2 + α)Ktx̃−α

α(2 − α)
.

Furthermore, by means of (11), t|b(ε)| ≤ 2Ktε1−α(1 − α)−1, and f ∈ LK,α , we get

∫ 2K/(1−α)tε1−α

tb(ε)
f (−ε − tb(ε) − x)dx ≤

∫ 2Ktε1−α(1−α)−1

0
f (−ε − tb(ε) − x)dx ≤ 2K2

1 − α
tε−2α

and ∫ ε/2

2
1−α

Ktε1−α

x̃−αf (−ε − tb(ε) − x)dx ≤ K

ε1+α

∫ ε/2

2
1−α

Ktε1−α

(
x − 2Ktε1−α(1 − α)−1

)−α

dx

≤ K

1 − α
ε−2α .

We derive that

S1,2 ≤ 2K2

1 − α
tε−2α + 2(2 + α)K2

α(2 − α)(1 − α)
tε−2α . (37)

To treat the term S1,3 we notice that, for any t ∈ (0, (1 − α)K−1εα4−(1+α)) and x ∈ [ε/2, ε],
we have that tλx,ε ≤ 1, and hence, by Lemma 7, we derive that for all x ∈ [ε/2, ε],

P
(
Mt(ε) > x

)≤ P
(
Mt(x) + Z̃t(x, ε) > x

)+ 2tε sup
|y|∈[x,ε]

f (y),

where

Z̃t(x, ε) :=
Nt(x,η)∑

i=1

(
Y (x,η)

i −E

[
Y (x,η)

i

])
.

Then, using (7), the Markov inequality, (8), and (10), we get

P(Mt(x) + Z̃t(x, ε) > x) ≤ P(Mt(x) > x) + P(Nt(x, ε) ≥ 1) ≤ 2(2 + α)Ktx−α

(2 − α)α
.

Moreover, the fact that f ∈ LK,α implies sup|y|∈[x,ε] f (y) ≤ Kx−(1+α) ≤ K21+αε−(1+α) for x ∈
[ε/2, ε] and so we deduce that

P(Mt(ε) > x) ≤ 2α+1Ktε−α

(
2 + 2 + α

(2 − α)α

)
.
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Combining this with
∫ ε

ε/2 f (−ε − tb(ε) − x)dx ≤ λε, we obtain

S1,3 ≤ λε2α+1Ktε−α

(
2 + 2 + α

(2 − α)α

)
. (38)

Finally, for the term S1,4 we have that

S1,4 ≤ P(Mt(ε) > ε)
∫ −2ε−tb(ε)

−∞
f (x)dx ≤ P(Mt(ε) > ε)λε.

From the Markov inequality and (8) we then derive

S1,4 ≤ 2K

2 − α
tλεε

−α . (39)

Combining (36), (37), (38), and (39) yields

|S1| ≤ 2K2

1 − α
tε−2α

(
3 + 2 + α

α(2 − α)

)
+ 2Ktε−αλε

(
1 + 2α

(
2 + 2 + α

α(2 − α)

))
.

The term S2 can be controlled in a similar way; in particular it holds that

| − S| ≤ 4K2

1 − α
tε−2α

(
3 + 2 + α

α(2 − α)

)
+ 4Ktε−αλε

(
1 + 2α

(
2 + 2 + α

α(2 − α)

))
. (40)

Finally, we observe that when ε ∈ (0, 1] the term T is identically zero.
Gathering Equations (34), (35), and (40), we conclude that for ε ∈ (0, 1],

|λεtP
(
|Mt(ε) + tb(ε) + Y (ε)

1 | > ε
)

− λεt| ≤ t2
(
K2D1ε

−2α + Kλεε
−αD2

)
,

where

D1 := 4

1 − α

(
3 + 2 + α

α(2 − α)

)
and D2 := 4

( 1

2 − α
+ 1 + 2α

(
2 + 2 + α

α(2 − α)

))
. (41)

Case ε > 1: In this case ρ = 1, and using that f ∈ LK,α ∩ LK we readily derive

S1 ≤ 2Ktb(1) + K

( ∫ 1/2

tb(1)
+
∫ ∞

1/2
P(Mt(1) > x)dx

)
=: S̃1,1 + S̃1,2 + S̃1,3. (42)

The term S̃1,2 is the analogue of S1,2 above. Observe that under the assumptions 0 < t ≤ (1 −
α)(5K)−1 and f ∈ LK,α , we get t|b(1)| ≤ 1/2. For any x ∈ (2Kt(1 − α)−1, 1/2), set x̂ := x −
2Kt(1 − α)−1. The same reasoning as for the term S1,2 allows us to conclude that, for any
x ∈ (2Kt(1 − α)−1, 1/2

)
,

P(Mt(1) > x) ≤ P(Mt(x̂) > x̂) + t(λx̂,2 + λ2) ≤ 4

(2 − α)α
Ktx̂−α + tλ2, (43)
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where in the last inequality we used the fact that f ∈ LK,α together with the Markov inequality,
(8), and (10). Therefore, from (43) and using again that f ∈ LK, we get

S̃1,2 ≤ Kt

(
2K

1 − α
− b(1)

)
+ 4K2t

α(2 − α)

∫ 1/2

2Kt(1−α)−1

(
x − 2Kt

1 − α

)−α

dx + tKλ2

2

≤ Kt

(
2K

1 − α
− b(1)

)
+ 4K2t

α(2 − α)(1 − α)
+ tKλ2

2
. (44)

Furthermore, by the Markov inequality and (8), we deduce that

S̃1,3 ≤ 4K2t

2 − α
. (45)

Gathering (42), (44), and (45), we conclude that

S1 ≤ 2Ktb(1) + Kt

(
2K

1 − α
− b(1)

)
+ 8K2t

α(2 − α)(1 − α)
+ tKλ2

2
.

Thus the term S in (34) can be bounded by

|S| ≤ 4Ktb(1) + 2Kt

(
2K

1 − α
− b(1)

)
+ 16K2t

α(2 − α)(1 − α)
+ tKλ2. (46)

By means of (35), the term R in (34) is bounded by

|R| ≤ 2Ktλ1

2 − α
. (47)

To control J it remains to control the term T in (34). We provide an upper bound for

T1 :=
∫ ε

1
P(Mt(1) + tb(1) > ε − z)f (z)dz =

∫ ε−1−tb(1)

−tb(1)
P(Mt(1) ≥ x)f (ε − x − tb(1))dx;

the control of the quantity
∫ ε

1 P(Mt(1) + tb(1) < −ε + z)f (−z)
)
dz can be treated similarly. We

have, using t|b(1)| ≤ 1/2, that

T1 = 1ε≥1+2tb(1)

( ∫ tb(1)

−tb(1)
+
∫ 1/2∧(ε−1−tb(1))

tb(1)
+
∫ ε−1−tb(1))

1/2∧(ε−1−tb(1))
P(Mt(1) ≥ x)f (ε − x − tb(1))dx

)

+ 11<ε<1+2tb(1)

∫ tb(1)

−tb(1)
P(Mt(1) ≥ x)f (ε − x − tb(1))dx = T1,1 + T1,2.

For f ∈ LK, recalling the definition of S̃1,2 given in (42) and that we assumed b(1) ≥ 0, for
ε ≥ 1 + 2tb(1) we write

T1,1 ≤ 2Ktb(1) + K
∫ 1/2∧(ε−1−tb(1))

tb(1)
P(Mt(1) > y)dy + K

∫ ε−1−tb(1)

1/2∧(ε−1−tb(1))
P(Mt(1) > y)dy

≤ K
(

2tb(1) + S̃1,2 + P(Mt(1) > 1/2)(ε − 3/2 − tb(1))11/2<ε−1−tb(1)

)
≤ Kt

(
2b(1) + 2K

1 − α
+ 4K

α(2 − α)(1 − α)
+ λ2

2
+ 8K

2 − α
(ε − 3/2 − tb(1))1ε>3/2+tb(1)

)
,
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where we used (44), the Markov inequality, and (8). For the term T1,2, using f ∈ LK,α together
with (11) and the assumption t < (1 − α)(5K)−1, we get

T1,2 ≤ 2Ktb(1)(ε − 2tb(1))−1−α11<ε<1+2tb(1) ≤ 4Kt5α11<ε<1+2tb(1).

This implies that

T ≤ Kt

(
1ε≥1+2t|b(1)|

(
6K

1 − α
+ 4K

α(2 − α)(1 − α)
+ λ2

2

+ 8K

2 − α
(ε − 3/2 − t|b(1)|)13/2+t|b(1)|<ε

)
+ 5α411<ε<1+2t|b(1)|

)
. (48)

Combining (34), (46), (47), and (48), and using (10), we conclude that, for any ε > 1, 0 < t <

(1 − α)(5K)−1, and f ∈ LK,α ∩ LK, using t|b(1)| ≤ 1/2, we have

J ≤ 2K2t
(

D̃1 + 4

2 − α
(ε − 3/2 − t|b(1)|)13/2+t|b(1)|<ε

)
+ Kt

(
4 × 5α11<ε<1+2t|b(1)| + 8

5
+ 3λ2 + 4λ1

2 − α

)
,

where we used the notation

D̃1 := 5

1 − α
+ 10

α(2 − α)(1 − α)
. (49)

Case ν symmetric and ε > 0: In the case where ν is symmetric the proof can be simplified.
Since b(ρ) ≡ 0, Mt(ρ) = Mt(x) + Zt(x, ρ) for all x ∈ (0, ρ), t > 0, and it holds that

λρP(|Mt(ρ) + Y (ρ)
1 | > ε) − λε = 2

( ∫ ∞

ρ

(
P(Mt(ρ) > ε + z) − P(Mt(ρ) < ε − z)

)
f (z)dz

)

≤ λρP(Mt(ρ) > 2ρ) + 2

( ∫ ρ

0
P(Mt(ρ) > x)f (x + ε)dx + P(Mt(ρ) > ρ)

∫ ∞

ρ

f (x + ε)dx

)
.

By the same arguments as those used to treat the term S1,2 above, one finds that for any x ∈
(0, ε) and t > 0,

P(Mt(ρ) > x) ≤ 2(2 + α)Ktx−α

α(2 − α)
.

Therefore, by the Markov inequality, (8), and the fact that f ∈ LK,α , we conclude that for all
ε ∈ (0, 1) and t > 0,∣∣∣λρP

(∣∣∣Mt(ρ) + Y (ρ)
1

∣∣∣> ε
)

− λε| ≤ tK

2(2 − α)

(
λεε

−α + 4λ2εε
−α
)+ 2tK2D2ε

−2α,

with

D3 := 2(2 + α)

(2 − α)α(1 − α)
. (50)

If instead ε > 1, then assuming in addition that f ∈ LK, we derive∣∣∣λ1P

(∣∣∣Mt(1) + Y (1)
1

∣∣∣> ε
)

− λε

∣∣∣≤ tK

2 − α

(
λ12−α + 4K

α(1 − α)
+ λ1+ε

)
.

This concludes the proof.
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A.3. Proof of Lemma 5

First, by the symmetry of ν, it holds that P(|Mt(ρ)| > ε) = 2P(Mt(ρ) > ε), where we write
ρ := 3ε/4. Since ε/2 < ρ < ε together with (6) and (7), we obtain

P
(
Mt(ρ) > ε

)≤ P
(
Mt(ε/2) > ε

)+ tλε/2,ρP

(
Mt(ε/2) + Y (ε/2,ρ)

1 > ε
)

+ (
tλε/2,ρ

)2. (51)

Applying the second part of Lemma 2 and using (8), we derive

P
(
Mt(ε/2) > ε

)+ (
tλε/2,ρ

)2 ≤ K2t2ε−2αH1, (52)

with

H1 := 41+α

(
e2+1/e

(2 − α)2
+ 1

α2

)
. (53)

Using again the symmetry of ν we can establish

λε/2,ρP

(
Mt(ε/2) + Y (ε/2,ρ)

1 > ε
)

=
∫ ε/2

ε/4
P
(
Mt(ε/2) > y

)
f (ε − y)dy +

∫ ρ

ε/2
P
(
Mt(ε/2) > ε + y

)
f (y)dy

≤
∫ ε/2

ε/4
P
(
Mt(ε/2) > y

)
f (ε − y)dy + P

(
Mt(ε/2) > 3/2ε

)λε/2,ρ

2

=: T1 + T2. (54)

Applying (6), (7), the Markov inequality, and (8), for any y ∈ (ε/4, ε/2) we have

P
(
Mt(ε/2) > y

)≤ P(Mt(y) > y) + tλy,ε/2 ≤ 4Kty−α

α(2 − α)
.

It follows that

T1 ≤ 4Kt

α(2 − α)

∫ ε/2

ε/4
y−αf (ε − y)dy ≤ 23+αK2t

α(2 − α)ε1+α

(
(ε/4)1−α

(α − 1)
1α∈(1,2) + ln (2)1α=1

)
. (55)

Furthermore, note that Lemma 2 applies as

t ≤ (2 − α)εα

21+αK

implies 4tσ 2(ε/2)ε−2 ≤ 1. Together with (8), this gives

T2 ≤ t323(1+α)e3+1/eK4

α(2 − α)3ε4α
. (56)

From (54), (55), and (56), we obtain that

λε/2,ρP

(
Mt(ε/2) + Y (ε/2,ρ)

1 > ε
)

≤tε−2αK2H21α∈(1,2) + t3K4H3

ε4α
+ 16K2t

ε2
ln (2)1α=1, (57)

with

H2 := 21+3α

α(2 − α)(α − 1)
and H3 := 23(1+α)e3+1/e

α(2 − α)3
. (58)

Finally, gathering (51), (52), and (57), we derive

P(Mt(ρ) > ε) ≤ K2t2ε−2αH1 + t2ε−2αK2H21α∈(1,2) + t4K4H3

ε4α
+ 16K2t2

ε2
ln (2)1α=1.
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A.4. Proof of Lemma 6

Using that ν is symmetric gives

λρP

(
|Mt(ρ) + Y (ρ)

1 | > ε
)

= 2
∫ ∞

ρ

(
P(Mt(ρ) > ε − z) + P(Mt(ρ) > ε + z)

)
ν(dz).

Moreover, since ρ < ε, and using again the symmetry, we obtain

λρ tP(|Mt(ρ) + Y (ρ)
1 | > ε) − λεt

=2t

[ ∫ ε

ρ

P(Mt(ρ) > ε − z)ν(dz) −
∫ ∞

ε

P(Mt(ρ) ≤ ε − z)ν(dz)

]

+ 2t
∫ ∞

ρ

P(Mt(ρ) > ε + z)ν(dz) =: 2t(R1 + R2). (59)

We begin by controlling the term R1. Recalling that ρ = 3/4(ε ∧ 1) and setting η := ε −
3/4(ε ∧ 1), we have∫ ε

ρ

P(Mt(ρ) > ε − z)ν(dz) =
∫ η

0
P(Mt(ρ) > x)f (ε − x)dx,∫ ∞

ε

P(Mt(ρ) ≤ ε − z)ν(dz) =
∫ ∞

ε

P(Mt(ρ) > z − ε)ν(dz)

=
∫ ∞

0
P(Mt(ρ) > x)f (ε + x)dx,

where we used the symmetry of ν in the second line. The triangle inequality gives

|R1| ≤
∣∣∣∣
∫ η

0
P(Mt(ρ) > x)(f (ε − x) − f (ε + x))dx

∣∣∣∣+
∣∣∣∣
∫ ∞

η

P(Mt(ρ) > x)f (ε + x)dx

∣∣∣∣
=: R1,1 + R1,2. (60)

Therefore, by (6), (7), the Markov inequality, (8), and the fact that f is K(ε ∧ 1)−(2+α)-
Lipschitz on the interval

(
3/4(ε ∧ 1), 2ε − 3/4(ε ∧ 1)

)
, it follows that

R1,1 ≤ 2K(ε ∧ 1)−(2+α)

[
10<ε≤1

∫ ε/4

0
(P(Mt(x) > x) + tλx,3/4ε)xdx

+ 1ε>1

∫ (ε−3/4)∧3/4

0
(P(Mt(x) > x) + tλx,3/4)xdx

+ 1ε>1P(Mt(3/4) > 3/4)
∫ ε−3/4

(ε−3/4)∧3/4
xdx

]

≤8tK2(ε ∧ 1)−(2+α)

α(2 − α)

(
10<ε≤1

∫ ε/4

0

dx

xα−1
+ 1ε>1

∫ (ε−3/4)∧3/4

0

dx

xα−1

)

+ 1ε≥3/2
41+α3−αK2tε2

2 − α

≤ 22α−1

α(2 − α)2
K2tε−2α10<ε≤1 + 8tK2

α(2 − α)2
(ε − 3/4)2−α11<ε≤3/2 + 41+αε2K2t

3α(2 − α)
1ε>3/2.

(61)
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Concerning the term R1,2, we have

R1,2 ≤ 10<ε≤1

( ∫ ε3/4

ε/4
P(Mt(ε3/4) > x)f (x + ε)dx + P(Mt(ε3/4) > ε3/4)

∫ ∞

ε3/4
f (x + ε)dx

)

+ 11<ε<3/2

( ∫ 3/4

ε−3/4
P(Mt(3/4) > x)f (x + ε)dx + P(Mt(3/4) > 3/4)

∫ ∞

3/4
f (x + ε)dx

)

+ 1ε≥3/2P(Mt(3/4) > 3/4)
∫ ∞

ε−3/4
f (x + ε)dx. (62)

Using (6), (7), the Markov inequality, (8), and (10), we get

P(Mt(ε3/4) > x) ≤ P(Mt(x/2) > x) + tλx/2,ε3/4 ≤ 22+αKtx−α

α(2 − α)
, ∀x ≤ 3ε

2
, ε < 1,

P
(
Mt(3/4) > 3/4(ε ∧ 1)

)≤ tK
22α+1

3α(2 − α)
(ε ∧ 1)−α . (63)

Therefore, from (62), (63), and (10), using the fact that f ∈ LK,α ∩ LK, we derive

R1,2 ≤ 10<ε≤1

(
tK2ε−2α

( 23α

α(α − 1)(2 − α)
+ 24α+1

21αα(2 − α)

)
+ tKε−αλ1

22α+1

3α(2 − α)

)

+ 11<ε<3/2tK

(
23αM

α(α − 1)(2 − α)
+ 22α+1

3α(2 − α)
λ7/4

)
+ 1ε≥3/2tKλ9/4

2(4/3)α

2 − α
. (64)

Gathering Equations (60), (61), and (64), we get

R1 ≤ 10<ε≤1

(
tK2ε−2α

(
22α−1

α(2 − α)2
+ 23α

α(α − 1)(2 − α)
+ 24α+1

21αα(2 − α)

)
+ tKε−αλ1

22α+1

3α(2 − α)

)

+ 11<ε<3/2tK

(
8K

α(2 − α)2
(ε − 3/4)2−α + 23αK

α(α − 1)(2 − α)
+ 22α+1

3α(2 − α)
λ7/4

)
(65)

+ 1ε≥3/2

(
41+αε2K2t

3α(2 − α)
+ tKλ9/4

2(4/3)α

2 − α

)
.

To complete the proof it remains to control the term R2 in (59). The Markov inequality, (8),
the symmetry of ν, and the fact that ρ > 1/2(ε ∧ 1) yield

R2 ≤ P(Mt(ρ) > ρ)

2
(λρ,1 + λ1) ≤ 2αKt(1 ∧ ε)−α

2 − α

(
2α+1K(1 ∧ ε)−αα−1 + λ1

)
. (66)

Therefore, from (59), (65), and (66), we conclude that

∣∣∣λρ tP
(
|Mt(ρ) + Y (ρ)

1 | > ε
)

− λεt
∣∣∣≤ K2t2

(
H4ε

−2α10<ε≤1 + ε2H51ε>1
)+ H6Kt2λ1(ε ∧ 1)−α,
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where H4, H5, and H6 are positive universal constants, depending only on α, defined as
follows:

H4 := 22α−1

α(2 − α)2
+ 23α

α(α − 1)(2 − α)
+ 24α+1

21αα(2 − α)
+ 22α+2

α(2 − α)
,

H5 :=
(

8(3/4)2−α

α(2 − α)2
+ + 23α

α(α − 1)(2 − α)

)
11<ε<3/2 + 41+α

3α(2 − α)
1ε≥3/2, (67)

H6 := 10<ε≤1
22α+1

3α(2 − α)
+ 11<ε<3/2

22α+1

3α(2 − α)
+ 1ε≥3/2

2(4/3)α

2 − α
.

A.5. Proof of Lemma 4

The decomposition (59) as in the proof of Lemma 6 in λρ tP(|Mt(ρ) + Y (ρ)
1 | > ε) − λεt =

: 2t(R1 + R2) still holds with

|R2| ≤ tK10<ε≤1

(
Kε−2α

α(2 − α)
+ ε−αλ1

2(2 − α)

)
+ tK

1ε>1λ1

(2 − α)(ε + 1)2
.

Set C = (
1 ∧ ((2 − α)/2K

))1/α and note that C(ε ∧ 1)/2 > t1/α . Using the symmetry of f we
get

|R1| ≤
∫ t1/α/C

0

(
f (y + ε) + 21ε>1f (ε − y)

)
dy +

∫ ρ

t1/α/C

(
P(Mt(y) > y) + tλy,ρ

)
f (ε + y)dy

+ P(Mt(ρ) > ρ)
∫ ∞

ρ

f (y + ε)dy

+ 1ε>1

(
1t1/α/C<1∧(ε−1)

∫ 1∧(ε−1)

t1/α/C

(
P(Mt(y) > y)

+ tλy,1
)
f (ε − y)dy + 2P

(
Mt(1) > 1

) ∫ ε−1

1∧(ε−1)
f (ε − y)dy

)
.

Next, as f ∈ LK,α ∩ LK, it follows from Equations (6), (7), (8), and (10) and the Markov
inequality that

|R1| ≤ Kt1/α

C

(
1

(ε ∧ 1)1+α
+ 21ε>1

(ε − t1/α/C) ∧ 1

)
+ 2Kt

2 − α

(
ρ−α

(
Kα−1(ρ + ε)−α + λ1

2

)

+ K1ε>2(ε − 2)

)
+ 4K2t1/αCα−11α∈(1,2)

α(2 − α)(α − 1)

(
1

(ε + t1/α/C) ∧ 1
+ 1ε>1

(ε − t1/α/C) ∧ 1

)

+ 4K2t1α=1

(
ln

(
C(1 ∧ |ε − 1|)

t

)
1ε>1

(ε − t/C) ∧ 1
+ ln

(
Cρ

t

)
1

(ε + t/C) ∧ 1

)

≤ Kt1/α

C

(
1

(ε ∧ 1)1+α
+ 2

ε ∧ 1

)
+ 2Kt

2 − α

(
Kα−1(ε ∧ 1)−2α + λ1(ε ∧ 1)−α

2
+ K1ε>2ε

)

+ 12K2t1/αCα−11α∈(1,2)

α(2 − α)(α − 1)

1

ε ∧ 1
+ 4K2t1α=1

ε ∧ 1

(
21ε>11t/C<1∧(ε−1) ln

(C(1 ∧ |ε − 1|)
t

)

+ ln

(
Cρ

t

))
,
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with the convention that 0 ln 0 = 0. Therefore, we get∣∣∣λρ tP
(
|Mt(ρ) + Y (ρ)

1

∣∣∣> ε
)

− λεt| ≤ L1
t1+1/α

(ε ∧ 1)1+α
+ 8K2

α(2 − α)

t2

(ε ∧ 1)2α
+ 5K

2 − α

t2λ1

(ε ∧ 1)2

+ 4K2t2

2 − α
ε1ε>2 + 8K2t21α=1

(
21ε>11t/C<1∧(ε−1) ln

(C(1 ∧ |ε − 1|)
t

)
+ ln

(
Cρ

t

))
1

ε ∧ 1
,

where

L1 = 2K

C
+ 4K

C
+ 24K2Cα−11α∈(1,2)

α(2 − α)(α − 1)
. (68)

A.6. A result for compound Poisson processes

Lemma 7. Let N be a Poisson random variable with mean 0 < λ ≤ 1 and (Yi)i≥0 a sequence
of independent and identically distributed random variables independent of N with bounded
density g (with respect to the Lebesgue measure). Furthermore, let M be any random variable
independent of

(
N, (Yi)i≥0

)
. Then, for all x ∈R,∣∣∣∣∣P

(
M +

N∑
i=1

Yi −E

[
N∑

i=1

Yi

]
> x

)
− P

(
M +

N∑
i=1

(Yi −E[Yi]) > x

)∣∣∣∣∣≤ 2λe−λ|E[Y1]|‖g‖∞.

Proof. Note that∣∣∣∣∣P
(

N∑
i=1

Yi −E

[
N∑

i=1

Yi

]
> x

)
− P

(
N∑

i=1

(Yi −E[Yi]) > x

)∣∣∣∣∣≤ ‖g‖∞|E[Y1]|E[|N − λ|].

Observe that, for λ ≤ 1, it holds that E[|N − λ|] = 2λe−λ. We conclude the proof by observing
that for any real random variable Z1 independent of Z2 and Z3 and any z ∈R, it holds that
|P(Z1 + Z2 > z) − P(Z1 + Z3 > z)| ≤ supx∈R |P(Z2 > x) − P(Z3 > x)|. �

A.7. Proofs of the examples

1. Compound Poisson processes. Let X be a compound Poisson process with intensity
λ = ν(R) < ∞ and jump density f /λ. Write Xt =∑Nt

i=1 Yi. For any ε > 0, it holds that

P
(|Xt| > ε

)= tλεe−λt +
∞∑

n=2

P

(∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣> ε

)
P(Nt = n).

Using P(Nt ≥ 2) = O(t2) we obtain |P(|Xt| > ε
)− tλε| = O(t2), as t → 0. For f a Lévy

density such that f = f 1[ε,∞), it holds that λ = λε, and later computations simplify to

P(|Xt| > ε) = P(Nt ≥ 1) = 1 − e−λε t = λεt − t2
∑
k≥2

tk−2(−λε)k/k!.

In that case, the rate is exactly of the order of t2. Next, considering the small jumps, it

holds for ε ∈ (0, 1] that tb(ε) + Mt(ε) =∑N(0,ε)
t

i=1 Y (0,ε)
i , and using (7),

P(|tb(ε) + Mt(ε)| ≥ ε) =
∞∑

k=2

P(N(0,ε)
t = k)P

(∣∣∣∣∣
k∑

i=1

Y (0,ε)
i

∣∣∣∣∣≥ ε

)
≤ t2(λ − λε)2.
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This is exactly of order t2 for any Lévy density such that f = f 1[3ε/4,∞).

2. Gamma processes. Set 
(t, ε) = ∫∞
ε

xt−1e−xdx, so that 
(t, 0) = 
(t). Using that

(t, ε) is analytic, we can write

∣∣∣∣λε − P(Xt > ε)

t

∣∣∣∣= 1

�
(t)

∣∣∣∣�
(t, 0)
(0, ε) −
∞∑

k=0

�k

k!
{

∂k

∂tk

(t, ε)

∣∣∣∣
t=0

}∣∣∣∣
≤ 
(0, ε)

∣∣∣∣1 − t
(t, 0)

t
(t)

∣∣∣∣+
∣∣∣∣ 1

t
(t)

∞∑
k=1

tk

k!
{

∂k

∂tk

(t, ε)

∣∣∣∣
t=0

}∣∣∣∣. (69)

As 
(t, 0) is a meromorphic function with a simple pole at 0 and residue 1, there exists
a sequence (ak)k≥0 such that


(t) = 1

t
+

∞∑
k=0

aktk.

Therefore,

1 − t
(t, 0) = t
∞∑

k=0

aktk,

and
1 − t
(t)

t
(t)
= t

∑∞
k=0 aktk

1 + t
∑∞

k=0 aktk
= O(t), as t → 0.

Let us now study the term
∞∑

k=1

tk

k!
( ∂k

∂tk

(t, ε)

)∣∣
t=0.

We have ∣∣∣∣ ∂k

∂tk

(t, ε)

∣∣∣∣
t=0

∣∣∣∣≤
∣∣∣∣e−1

∫ 1

ε

x−1( ln (x))kdx

∣∣∣∣+
∣∣∣∣
∫ ∞

1
e−x( ln (x))kdx

∣∣∣∣
= e−1 | ln (ε)|k+1

k + 1
+
∫ ∞

1
e−x( ln (x))kdx.

Let x0 be the largest real number such that

e
x0
2 = ( ln (x0))k.

This equation has two solutions if and only if k ≥ 6. If no such point exists, take x0 = 1.
Then∫ ∞

1
e−x( ln (x))kdx ≤

∫ x0

1
e−x( ln (x))kdx +

∫ ∞

x0

e− x
2 dx ≤ ( ln (x0))k(e−1 − e−x0

)+ 2e− x0
2

≤ e
x0
2 −1 + e− x0

2 ≤ kk + 1,
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where we used the inequality x0 < 2k ln k, for each integer k. Summing up, we get∣∣∣∣
∞∑

k=1

tk

k!
{

∂k

∂t

(t, ε)

∣∣∣∣
t=0

}∣∣∣∣≤ e−1
∞∑

k=1

tk

k!
| ln (ε)|k+1

k + 1
+

5∑
k=1

2e− 1
2

tk

k! +
∞∑

k=6

tk

k! (kk + 1)

≤ | ln (ε)|[et| ln (ε)| − 1
]+ ∞∑

k=6

t
k
2

k!
(

k

e

)k

+ O(t) ≤ ( ln (ε))2t + O(t).

In the last two steps, we have used first that t < e−2 and then the Stirling approximation
formula to deduce that the last remaining sum is O(t3). Clearly, the factor 1

t
(t) ∼ 1, as
t → 0, in (69) does not change the asymptotic. Finally we derive that∣∣tλε − P(Xt > ε)

∣∣∣= O
(
t2
)
, as t → 0,

as desired.

3. Cauchy processes. Observe that λε = 2
πε

and

P
(|Xt| > ε

)= 2

π

(π

2
− arctan

(ε

t

))
.

Hence, to prove (5), it is enough to show that

lim
t→0

2

π

∣∣∣∣ε3

t3

(
π

2
− arctan

(ε

t

))
− ε2

t2

∣∣∣∣< ∞. (70)

Set y = t
ε
; we compute the limit in (70) by means of de l’Hôpital’s rule:

2

π
lim
y→0

∣∣∣∣ 1

y3

(
π

2
− arctan

(1

y

))
− 1

y2

∣∣∣∣= 2

π
lim
y→0

∣∣∣∣
π
2 − arctan

(
1
y

)
− y

y3

∣∣∣∣
= lim

y→0

y2

(1 + y2)3πy2
< ∞.
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