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Abstract. I extend the previously given truth-maker semantics and logic for imperatives to
deontic statements.

In this part of the article, I am interested in providing a semantics and logic for deontic
sentences and working out their connection with the previous semantics and logic for
imperatives.

The standard approach to deontic logic is in terms of possible worlds. It is supposed that
with each world is associated a set of ideal worlds. A statement O(A) to the effect that A
is obligatory is then taken to be true if A is true in all ideal worlds and a statement P(A) to
the effect that A is permissible is taken to be true if A is true in some ideal world.

I believe the possible worlds approach to be fundamentally misguided. The main prob-
lem is that obligation and permission relate most directly to action. At the end of the day,
what we want to know is what it is obligatory or permissible to do. But the intensional
treatment of the embedded clause A prevents the deontic statements from providing, in
this way, a guide to action. For A merely represents the possible outcomes of some action
or actions. But as I have argued in Fine (2014), given a set of outcomes, there is, in general,
no satisfactory way to determine the actions from which they arose.

The present approach, by contrast, follows the lead of those such as Segerberg (1990)
and Barker (2010) in being action- rather than outcome-oriented. The deontic operators are
taken to apply directly to expressions that indicate a range of possible actions rather than a
range of possible outcomes or worlds. Indeed, under the semantics for imperatives in part
I, an imperative will indicate a range of actions, those in compliance with the imperative;
and so we may take the deontic operators to have direct application to imperatives. To say
when a deontic sentence is true we must therefore distinguish, not a preferred set of worlds
but a preferred set of actions, something I call a ‘code of conduct’; and the conditions
under which a deontic sentence is true relative to a code of conduct will then be somewhat
different from the conditions under which such a sentence is true relative to a sphere of
worlds.

The plan of the article is as follows. I begin by making some distinctions and stipulations
which will be useful in the rest of the article (§1); I introduce and explain the key notion of
a code of conduct, relative to which deontic formulas are to be interpreted (§2); I give the
clauses for when a deontic formula is true or false relative to a code of conduct (§3) and
spell out some of the consequences of these clauses, especially in regard to the contrast with
the standard possible worlds semantics for deontic logic (§4); I consider various ways of
reformulating the criterion of validity for deontic formulas and point, in particular, to a very
close connection between this criterion and the criterion of validity for imperative inference
proposed in part I (§5); I consider some of the characteristic inferences that are or fail to
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COMPLIANCE AND COMMAND II, IMPERATIVES AND DEONTICS 635

be valid (§6) and outline a system of deontic logic within the truthmaker approach (§7);
I show how one might deal with the problem of deontic updating within the truthmaker
framework (§8); and I conclude with a brief formal appendix. Of perhaps special note is
the account of free choice permission and obligation (§6), the treatment of moral dilemmas
(also in §6), the semantically marked distinction between implicit and explicit permission
(§4), the intimate connection forged between deontic logic and the logic of imperatives
(§5), and the development of a logic for explicit and free choice permission (§7).

I assume the reader is familiar with the basic material from part I, including the truth-
maker semantics for imperatives and the definition of validity for imperative inference; and
it would also be helpful to have some knowledge of the standard possible worlds semantics
for deontic logic.

§1. Preliminaries. I begin with some remarks on syntax. The reader will recall from
part I that imperative formulas are constructed from imperative atoms α1, α2, . . . using
the usual array of connectives—∨, ∧ and ¬—and also the verum constant �. We will now
take the deontic operators O and P, for obligation and permission, to have application to
imperatives. Thus when X is an imperative, O(X) and P(X) will be deontic sentences. Thus
if X is the imperative ‘stop’, then O(X) might be taken to be the sentence ‘It is obligatory
to stop’ and P(X) to be the sentence ‘it is permitted to stop’.

This account of the logical grammar of the deontic formulas O(X) and P(X) is not
meant to have any implications for the correct grammatical analysis of the corresponding
sentences of natural language. One might, of course, see the sentences ‘it is obligatory to
go’ (or ‘you ought to go’) and ‘it is permitted to go’ (or ‘you may go’) as containing the
imperative ‘go’. But there is no need to regard them in this way and many other grammat-
ical analyses of these sentences are possible. The present account of the logical grammar
merely allows us to relate imperative to deontic sentences in an especially convenient way;
and it would be straightforward to modify the account to accommodate other views on how
they are related.

However, one aspect of our account is more significant. For the deontic operators cannot
sensibly be taken to apply to arbitrary indicative sentences, as in standard deontic logic,
or even to clauses that are not indicative of actions. Only actions, on the present view,
can properly be said to obligatory or permitted; and if one wants to apply the deontic
operators to clauses that are not directly indicative of actions, then it must be by way
of some transformation of those clauses into ones that are. Thus to make sense of such
sentences as ‘You may own a dog’ or ‘You should know who packed your luggage’ (which
relate to states rather than to actions), we should take them to mean something like ‘You
may get a dog if you do not already own one’ or ‘You should find out who packed your
luggage if you do not already know’ (or, more generally, you may (should) put oneself in
the state if you are not already in that state).1

This has the consequence that, in contrast to standard systems of deontic logic, iterative
statements of obligation and permission, such as O(O(X)) or P(O(X)) or P(P(X)), will not
be well-formed, since the operators O and P can only properly be taken to have application
to imperative sentences. However, we may still form truth-function compounds of deontic
sentences, as in O(X) ∨ O(Y) or O(X) ⊃ P(X), just as we may form truth-functional
compounds of imperative sentences.

1 Thanks to one of the referees for raising this issue.
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There are a number of (more or less familiar) ways to interpret deontic sentences, the
distinction between which will be important in what follows.

There is, in the first place, the distinction between the performative and descriptive
interpretation of these locutions. Under the performative interpretation, ‘you ought to go’
is used to place one under an obligation and ‘you may go’ is used to grant a permission
whereas, under the descriptive interpretation, ‘you ought to go’ is merely used to state that
one is under an obligation and ‘you may go’ is used merely to state that one is so permitted
(the descriptive use goes more naturally with the past tense, as in ‘you were permitted
(obliged) to go’). For the most part, I shall be concerned with the descriptive use of these
sentences but, in the section on updates, I shall also be interested in their performative use,
in which they are more akin to imperatives. I shall also assume, pace the emotivists and
some expressivists, that there is a straightforward sense in which the deontic sentences,
under their descriptive use, are capable of being true or false.

There is, in the second place, a familiar distinction between a strict and weak sense of
permission (as in von Wright (1963), p. 90). Roughly speaking, an action is permitted in
the weak sense if it is not forbidden, whereas something more is required for an action to
be permitted in the strict sense. It must have been singled out as being permitted—by being
expressly permitted or perhaps in some other, less direct, way. The semantics I provide is
most naturally taken to be for the strict sense of permission, although it can also be applied
or extended to the weak sense of permission.

I shall assume that if a compound action, such as turning on the gas and lighting the
stove, is permitted then so are the component actions, of turning on the gas and of lighting
the stove. There is perhaps a sense in which one is not permitted to turn on the gas, since
one is not permitted to turn on the gas without doing anything else, which is to say that one
is obliged to do something else, viz. light the stove, if one turns on the gas. But we shall
find it convenient to use permission in the less restrictive sense, so that an action can be
permitted even though its performance requires one to do something else.

Finally, there is also a distinction, in a somewhat different sense, between a strict and
weak sense of obligation. Suppose one is obliged to shut the door. Then does it follow that
one is obliged to shut the door or burn the house down? There is a sense of ‘obliged’ in
which it does follow. This is a sense in which it is consistent to say that one is obliged to
shut the door or burn the house down but not permitted to burn the house down. However,
there would also appear to be a sense in which it does not follow. This is a sense in which
one’s being obliged to shut the door or burn the house down entails that one is permitted
to burn the house down. I call the first sense of obligation limited-choice and the second
free-choice. In what follows I shall be interested in giving a semantics for both sense of
obligation.

§2. Codes of conduct. We shall take a deontic statement to be true or false relative to
a code of conduct. For our purposes, we may take a code of conduct to be a prescription,
i.e., a set of actions. But which actions?

There are two relevant conditions. The first is that each action should be permissible
according to the code (in either the weak or in the strict sense, depending upon which
notion of permission is in question). The second is that each action should be adequate,
i.e., the performance of the action should be sufficient to discharge all of one’s obligations
in regard to the code. The first condition (Permissibility) means that the action should
not contain too much, it should not encroach on what is impermissible, and the second
(Adequacy) means that the action should not contain too little, it should not fall short of
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what is obligatory. Thus an action meeting both conditions will conform to what one might
call the ‘Goldilocks’ principle’, it will strike a middle course between containing enough
and not containing too much (although perhaps Aristotle, not Goldilocks, should be given
credit for the principle).

An action meeting both conditions will be said to be ideal. An ideal action is the
analogue of a deontic alternative in the possible worlds semantics for deontic logic; for a
deontic alternative is an ideal world, one in which all obligations are discharged. However,
for us, there is no requirement that an ideal action should be a complete action, let along
a complete state of the world, and there is not even any requirement that it should be
consistent. Moreover, for us, the two conditions (of Permissibility and Adequacy) are
independent whereas, in the standard modal setting, a world will be permissible just in
case it is a world in which all one’s obligations are discharged.

We might say that a code sanctions those actions which are ideal with respect to the code;
and a code of conduct may be identified with the set of the actions that it sanctions. The
actions sanctioned by a code will often be an action-stream, composed of many individual
actions, and, for this reason, we might talk instead of a ‘course of action’. However, the
space of actions is closed under fusion; and so, strictly speaking, a course of action is just
another action.

A code of conduct is the analogue of the ‘sphere’ of deontic alternatives within the stan-
dard possible worlds semantics for deontic logic. Indeed, with each code of conduct may be
associated a deontic sphere, consisting of all those worlds which are compatible with some
course of action sanctioned by the code. If we think of each course of action sanctioned
by the code in terms of its intensional content, i.e., as the set of worlds containing the
action, then the associated deontic sphere will be the union or ‘disjunction’ of all these
contents.

However, the correspondence is far from being one-one. Thus one code might consist
of the action of my eating an apple and another code of the action of my eating an apple
and the compound action of my eating an apple and a pear. These are distinct codes, since
the second sanctions the compound action of my eating an apple and a pear while the first
does not, but the corresponding deontic spheres are the same—all of the worlds in which
I eat an apple are worlds in which I eat or an apple or eat an apple and a pear. Thus codes
of conduct are much more fine-grained than the corresponding deontic spheres and can
be expected—at least, in principle—to deliver different results about what is obligatory or
permissible.

An interesting question is whether we intuitively wish to distinguish between distinct
codes of conduct. Consider the codes {b, r}and {b, r , c}, where b is picking a black card,
r picking a red card, and c picking a card.2 Do we wish to distinguish them? My inclination
is to say that, in this case, b, r , and c cannot all properly belong to the same space of actions,
since doing c is simply a matter of doing b and r and so is not an appropriately determinate
action. But consider now the case in which one code is {�}and the other is {r , r}, for r
the action of not picking a red card. As before, {�}and {r , r}correspond to the same set
of possible worlds. However, in this case we may want to distinguish between permitting
the null action and (explicitly) permitting someone to either take or not take the red card.
Of course, someone who did not wish to make these distinctions could insist that the codes
should be suitably enlarged. Thus a code containing b, r would also have to contain c since
c is necessarily equivalent, as it were, to the disjunction of b and r .

2 I owe this question and this example to one of the referees.
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There are a number of different ‘consistency’ conditions one might wish to impose on
codes of conduct:

Nonemptiness. Each code should sanction at least one action.

If this were not so then there would be no action (even impossible or necessary) sanctioned
by the code. This condition does not mean that the code must have any real substance since
it is met by the ‘minimal’ code {�}, under which it is guaranteed that one will do what is
permissible (via the performance of the null action �) and thereby discharge all of one’s
obligations.

Given that a code of conduct is nonempty, we might also want to restrict its content:

Nonanarchy. The full action is not sanctioned by any code of conduct.

If this condition were violated it would then mean that everything whatever (even the
impossible) was permitted.

Two other consistency conditions, along with some of the other conditions listed be-
low, require that we distinguish between possible and impossible actions (and hence are
working within a ‘modalized’ action space):

Consistency. Each code should sanction at least one possible course of
action.

If this condition were violated then the code of conduct would either be empty or consist
entirely of impossible courses of action. A stronger condition still (in the presence of
Nonemptiness) is

Complete Consistency. Each action sanctioned by a code is possible.

Barcan-Marcus (1980) is well-known for endorsing the first of these consistency con-
straints, though not the second; a moral code should be obeyable in some possible world
though not necessarily in any possible world.

It has sometimes been thought that consistency constraints of this sort are normative
rather than logical in character. This may be so. But their failure will restrict the capability
of a code to serve as a guide to conduct. If a code sanctions no action, then it can provide no
guidance at all; if a code sanctions only impossible actions, then it can only serve as a guide
in so far as one is capable of performing some consistent part of a action that it sanctions;
and if a code sanctions some impossible action, then one is no longer capable of performing
all of the action that it sanctions. It is only when the conditions of Nonemptiness and
Complete Consistency are both satisfied, that the code can straightforwardly serve as a
guide to conduct.

Say that an action b lies between two others, a and c, if a is a part of b and b a part
of c. Then the fact that codes of conduct conform to the Goldilocks’ principle means
that

Convexity. Any action that lies between two courses of action sanctioned
by a code is also sanctioned by the code.

For suppose that both a and c are ideal, i.e., permissible and adequate. Then b is per-
missible since it is a part of a permissible action c; and b is adequate since it contains an
adequate action a.

It might be thought to be implausible that all codes of conduct should conform to Con-
vexity. Suppose, for example, that the code sanctions pressing button A and also pressing
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buttons A, B, and C. Then why should it also sanction pressing button A and B? But we
may appeal here to the considerations from §5 of Part I. If pressing buttons A and B is not
ideal, then that can only be because it is not pressing button A that is ideal, but pressing A
without B, in which case the convexity condition will have no application.

Say that a (course of) action is complete if it is possible and every action is either incom-
patible with it or part of it. Thus a complete course of action is the action-theoretic counter-
part of a possible world. A further closure condition one might then wish to
impose is

Completeness. Every possible action sanctioned by a code is included in
complete course of action sanctioned by the code.

This condition is plausible when weak permission is in question; if the action c is
implicitly permitted then some completion of the action must also be implicitly permitted.
However, it has no plausibility for strict (explicit) permission. Suppose that the null action
� is sanctioned. Then this tells us nothing about whether shutting the door or leaving it
open is strictly permitted.

Let us note, finally, that we might define a natural relation of part-whole among codes.
For we may suppose that one code is a part of another if it is analytically entailed by the
other, i.e., if every action sanctioned by the first is part of an action sanctioned by the
second and every action sanctioned by the second contains an action sanctioned by the
first. It is readily shown, given that codes are convex sets, that the relation of part-whole is
a partial order and that the least upper bound, or fusion, of any codes is also a code. Thus
the space of codes will form a state space and, as we shall see, the codes may themselves
be regarded as truthmakers or falsemakers for deontic statements.

§3. Truthmaker semantics for deontic logic. We provide a truthmaker semantics for
deontic statements. The atomic deontic statements will be of the form O(X) or P(X), for X
an imperative. Recall from part I that the prescriptive content X of X is the set of actions in
compliance with X. For the purpose of providing a semantics, we suppose given a code of
conduct C and then go on to specify when O(X) or P(X) is true in terms of an appropriate
relation between the content X and the code C . Recall the notions of subsumption and
subservience from part I. Given prescriptive contents X and Y , X will subsume Y if every
action in compliance with X contains an action in compliance with Y and Y will subserve
X if every action in compliance with Y is contained in an action in compliance with X .
I would now like to suggest the following account for when statements of obligation or
permission are true:

(i) O(X) is true iff C subsumes X ;
(ii) P(X) is true iff X subserves C .

Or to state the clauses explicitly:

(i)′ O(X) is true iff every ideal course of action contains an action in
compliance with X;
(ii)′ P(X) is true if every course of action in compliance with X is con-
tained in an ideal action.

These clauses may be extended to truth-functional compounds of atomic deontic state-
ments in the standard (classical) way; and we might then say that the deontic statements
S1, S2, . . . (classically) entail the deontic statement T if T is true whenever (i.e., in any
model in which) S1, S2, . . . are true.
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We may informally justify each of these clauses as follows:
First, in regard to the right-to-left direction of (i), suppose that C subsumes X , i.e., that

each ideal action c1, c2, . . . contains an action a1, a2, . . . in compliance with X. Now surely
one is obliged to discharge one’s obligations in a permissible manner, i.e., one is obliged
to perform some one of c1, c2, . . . . But then surely one is obliged to perform some one of
their parts a1, a2, . . . .

Second, for the other direction, suppose that X is obligatory. Consider any ideal action c.
Thus one may discharge one’s obligations by performing c. Suppose now that no action in
compliance with X is a part of c. How then can X be obligatory, given that the performance
of an action in compliance with X will go no way towards discharging this particular way
of discharging one’s obligations?

Third, in regard to the right-to-left direction of (ii), suppose X subserves C , i.e., that
every action a in compliance with X is part of an ideal action c. Then since c is permissible,
so is a (under the loose understanding of permission which we have adopted).

Finally, for the other direction, suppose X is permissible. Then it is plausible (at least
for those of us who have Ross-type intuitions!) that every action in compliance with X is
permissible. Assuming:

(*) Every permissible action is part of an ideal action

we can infer that every action in compliance with X is part of an ideal action.
The above justifications are not entirely unproblematic. But there is one major line of

questioning which I believe may be resisted. For one might question assumption (*) on
the grounds that, when the obligations within a code of conduct conflict, there will be
no ideal action and so, a fortiori, an action (such as the null action) may be permissible
without being contained in an ideal action. However, the only reason to deny that there is
any ideal action in this case is that one accepts the Complete Consistency condition above,
that any action sanctioned by the code should be consistent. But it seems to me that in
the case of conflicting obligations, we might simply allow a code of conduct to contain
inconsistent courses of action. It will not then follow, within our framework as it does
within the standard possible worlds framework, that everything whatever is obligatory,
since an inconsistent action will not, in general, contain every other action.3

Another advantage of the present approach is that it can provide us with a unified account
of what is obligatory and what is permitted by reference to a single code of conduct.
However, once we give up assumptions, such as (*) above, it may be necessary to ‘fracture’
a code of conduct into two components which separately specify what is relevant to the
permissibility or obligatoriness of a given content (this is the approach of Anglberger,
Korbmacher & Faroldi (2016)). This provides a more general approach; and one is then
able to deal with certain anomalous cases, though at an expense in elegance and simplicity.

§4. Some remarks on the semantics. We make some remarks on the form of the
clauses, how they might be extended to other deontic operators, and how they compare
with the standard possible worlds clauses.

4.1. The quantificational form of the clauses. From a formal point of view, the clauses
for the operators O and for P are both ∀∃ (for-all/for-some) in form.4 This is in marked

3 The logical issues raised by the existence of moral dilemmas are further discussed in 6, under §4
of ‘O-Inference’.

4 Aloni (2007, 76) provides a similar (albeit modal form) of the ∀∃ clause for permission but adopts
the quantificational dual ∃∀-form for obligation.
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contrast to the clauses for the operators in the standard possible worlds semantics, accord-
ing to which:

O(S) is true iff S true in all deontic alternative worlds
P(S) is true iff S is true in some deontic alternative world,

which are, respectively, universal and existential in form. Indeed, the quantifier relevant
to the embedded clause X in (i)′& (ii)′ is existential in the case of obligation and universal
in the case of permission; and so one might claim, with some justice, that the standard
treatment gets the correspondence with the quantifiers completely backwards!

We also lose the duality in the clauses (i)′& (ii)′ that parallels the duality in the two
quantifiers. But oddly enough, the clauses are dual in another respect, since there is a
reversal of mereological role and order in going from the one clause to the other.

4.2. Free-choice obligation. Clauses (i) and (ii) above are appropriate for limited-
choice obligation and for strict permission. The clause for free-choice obligation may be
obtained by combining the two clauses:

(iii)+ OP (X) is true if C subsumes X and if X subserves C ;

or, more explicitly:

(iii)+ OP (X) is true if every ideal course of action contains an action in
compliance with X and every action in compliance with X is contained
in an ideal course of action.

Thus OP (X) will have the same truth-conditions as the conjunction O(X) ∧ P(X) and
a free-choice statement of obligation will serve a dual purpose, both stating what one is
obliged to do and also specifying the permissible actions by which the obligation might be
discharged.5 There is an interesting question as to whether ordinary language ‘ought’ and
its cognates are to be understood in a limited or free-choice sense. Certainly, ‘you should
post the letter or destroy it’ in some sense implies ‘it is permissible to destroy it’. But I
am inclined to think of this as some kind of pragmatic implication. There seems to be no
contradiction involved in saying ‘you should post the letter or destroy it and, since you
should not destroy it, you should post it.’ If this is right, then OP captures a pragmatically
strengthened meaning of ought-statements rather than their strict literal meaning. However,
in contrast to a number of linguists (e.g., Kratzer & Shimoyama (2002), Alonso-Ovalle
(2005), and Fox (2007)), I am do not hold a corresponding view of performative statements
of permission. For me, the inference from ‘you may have an apple or an orange’ to ‘you
may have an apple’ is semantic.

We should also note that the two conditions, that C subsumes X and that X subserves
C , are the two conditions required for the content X to be part of the content C . Thus,
under the proposed semantics, a free-choice statement of obligation will play the role
of specifying part of the content of the code of conduct. Given our previous semantics
for imperatives, we may also see the truth-conditions for free-choice obligation as
relating directly to imperative inference since, for an obligation statement OP (X) to
be true is for the embedded imperative X to follow from the implicit code of
conduct.

5 Aloni (2007, 86) introduces an imperative analogue of OP , for which she adopts a somewhat
similar clause.
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4.3. Weak permission. Recall from Part I that two actions are compatible (within a
modalized action space) if their fusion is a possible action. The clause for weak permission
(for which we use the symbol P+) may then be obtained by replacing talk of part-whole
with talk of compatibility:

(ii)′′ P+(X) is true if every action in compliance with X is compatible
with a course of action sanctioned by the code.

Thus strict permission requires that the condoned actions should be ruled in by the code
of conduct whereas weak permission only requires that they not be ruled out.

Clause (ii)′′ would appear to be a variant rather than a special case of clause (ii). But,
as I have already suggested, there is a way of seeing it as a special case. For suppose we
replace a code of conduct C by the set C* of complete courses of action compatible with
some member of C .6 Then for an action to be compatible with a conduct sanctioned by
C is simply for it to be a part of a course of action sanctioned by C*. Thus we can also
see the semantics for weak permission as arising from a conception of codes in which only
complete courses of action are sanctioned.

Under the present approach, strict permission would appear to be the more straightfor-
ward notion; weak permission must be obtained by replacing mereological with modal
relationships or by imposing special conditions on codes of conduct. This is in contrast
to the standard possible worlds approach, in which permission can only be understood as
weak permission and under which it is difficult even to see how strict permission might be
defined.

4.4. Weak obligation. Just as we might give a modal clause for weak permission, so
we might also for ‘weak’ obligation:

(i)′′ O+(X) is true if C necessitates X , i.e., if it is impossible for a course
of action in C to be performed without an action in X being performed.

Thus under the weak modal criterion, if one is obliged to square the circle then one is
obliged to do anything whatever, whereas this will not follow under the strong mereological
criterion.

As before, we may see the modal criterion as a special case of the mereological cri-
terion, obtained by replacing the code of conduct C with the corresponding set C* of
completions. For C will necessitate X just in case every member of C* contains a member
of X .

Clause (i)′′ corresponds, of course, to the standard possible worlds clause, with C* the
deontic sphere of alternatives. Thus the operator O+, so understood, will be intensional;
O+(X) and O+(X′) will have the same truth value whenever X and X′ are necessarily
co-enacted.

The same is not true of clause (ii)′ for weak permission, since it embodies a free-choice
effect; the permissibility of X requires, not simply that X be compatible with C , but that
every member of X be compatible with C . We could get a counterpart to the standard
clause by replacing (ii)′′ with:

(ii)′′′ P+(X) is true if some action in compliance with X is compatible
with a course of action sanctioned by the code

and the resulting notion of permission would then also be intensional.
6 This presupposes that we are working within a W-space, as defined in the formal

appendix.
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In either case, we can state the clauses for permission and obligation by reference simply
to the permissible courses of action since, as already noted, any complete permissible
action will automatically be ideal.7

4.5. The reduction to alethic logic. There is a familiar reduction of deontic to alethic
modal logic, deriving from Anderson (1966) and Kanger (1957). Although they have stan-
dard versions of modal logic in mind, their general method of reduction may be applied,
perhaps somewhat surprisingly, to our own semantical approach.

Let us begin with permission. Each code of conduct C may be closed under part to give
what one might call the code of permission C↓. Thus an action is sanctioned by C↓ just in
case it is part of a course of action sanctioned by C . Intuitively, C↓ consists of the actions
permitted by the code; and the only aspect of C required to state the clause for permission
is given by C↓.

Let us now introduce a constant ‘OK’ for the imperative ‘do something alright (permit-
ted)’. The actions in compliance with OK will be the members of C↓. Let us also introduce
an implicational connective ⇒ for exact entailment between imperatives; X ⇒ Y is to be
true if every action in compliance with X is in compliance with Y. It is then evident that
P(X) will be true just in case X ⇒ OK is true. To say that X is permitted is to say that
each action in compliance with X is permitted, which is to say that X exactly entails the
imperative ‘do something permitted’.

Alternatively, we might introduce a constant ‘A-OK’ for the imperative ‘do something
completely alright (ideal)’. The actions in compliance with A-OK will then be the members
of C . Say that the action a is in sub-compliance with the imperative X if it is part of an
action in compliance with X and define an analogue of exact entailment by saying that X
sub-entails the imperative Y if any action in sub-compliance with X is in sub-compliance
with Y. The statement P(X) of permission will then be true just in case X sub-entails A-OK
or, using ⇒∗ for sub-entailment, P(X) will be true just in case X ⇒∗ A-OK is true.

It should be noted that both ⇒∗ and ⇒ have the property that X ∨ Y ⇒(∗) Z implies
X ⇒(∗) Y and Y ⇒(∗) Z even though neither has the property that X ⇒(∗) Z implies X ∧
Y ⇒(∗) Z. Thus the reduction will give us the desirable result that P(X ∨ Y) implies P(X)
and P(Y) without giving us the undesirable result that P(X) implies P(X ∧ Y).

Let us turn to obligation. In the case of free-choice obligation, OP (X) will, of course
be true just in case A-OK analytically entails X . For the case of limited-choice obligation,
we might say that the action a is in super-compliance with the imperative X if it contains
an action in compliance with X and that X super-entails the imperative Y if any action
in super-compliance with X is in super-compliance with Y, which is to say that any ac-
tion in compliance with X is in super-compliance with Y (this is what in other works I
have called inexact entailment). The statement O(X) will then be true just in case A-OK
super-entails X.

We see that by suitably interpreting the ‘sanction’ constant and the conditional we may
obtain Anderson/Kanger type reductions for both obligation and permission, although the
interpretation of either the constant or of the conditional must be different in each case.8

7 It is perhaps worth noting that although Aloni and Ciardelli (2013) have option sets, which
correspond to our actions and are identified with sets of worlds, their counterpart to our code
of conduct is a set of worlds and so they do not avail themselves of the more general notion of a
code of conduct.

8 Some rather different attempts at reduction using a nonstandard conditional are to be found in
Asher & Bonevac (2005) and Barker (2010).
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We can, of course, provide a reduction for obligation under the standard possible worlds
account by interpreting O(X) as C → X, where C stands for the set of deontic alternatives
and → for strict implication. But it is hard to see how a corresponding reduction for
statements of permission might go. Hence Nute’s claim, “We cannot reduce any interesting
notion of permission to conditionals no matter how we interpret conditionals” (Nute, 1985,
179). However, this claim is somewhat of an over-statement in the present context.

4.6. Truthmakers for deontic statements. We have so far given conditions for when a
deontic statement of the form O(X) or P(X) is true but we have not specified when a state
verifies or falsifies such a statement. This would be required if we wished, for example, to
say when one deontic statement analytically entailed another.

There are a number of different ways in which this might be done. The most straight-
forward is as follows. Each code of conduct C is understood to be the state that consists in
its members c1, c2, . . . being all and only the ideal courses of action. We might say, in this
case, that the code C prevails; and so the code is, in effect, being identified with the state
that it prevails.

No code, as so conceived, will be a part of any other code, and so the space of codes will
have the following ‘flat’ structure:

with the full state on top, the null state at the bottom, and all of the codes of conduct in
between. Given that the codes C1,C2, . . . are all possible, the only impossible state will be
the full state and any two codes will be incompatible. In effect, each code is a mini-world,
completely settling which deontic statements do and do not hold.

We may then adopt the following clauses for when an atomic deontic statement is
verified or falsified by a code C :

(i)+ C verifies O(X) iff C subsumes X ;
(i)− C falsifies O(X) iff C does not subsume X ;
(ii)+ C verifies P(X) iff X subserves C ;
(ii)− C falsifies P(X) iff X does not subserve C .

These clauses may then be extended to truthfunctional compounds of atomic deontic
statements in the usual way.

However, we might wish to provide a less demanding account of what verifies or falsifies
a deontic statement, making clearer what it is about the code that is responsible for the
statement’s being true or false. To this end, we might associate two states with each code
C : the state C∗ of C upwardly prevailing in the sense that the prevailing code contains C
as a part (the prevailing code is at least C); and the state C∗ of C’s downwardly prevailing
in the sense that the prevailing code is a part of C (the prevailing code is at most C). The
state C∗ will be part of the state D∗ just in case C is a part of D; the state C∗ will be a
part of D∗ just in case D is a part of C ; and if we identify a code C with the state of its
prevailing, then C = C∗ 
 C∗.

We might now adopt the following clauses for the atomic deontic statements:

(i)+ s verifies O(X) if s is of the form C∗ and C subsumes X ;
(i)− s falsifies O(X) if s is of the form C∗ and C does not subsume X ;

https://doi.org/10.1017/S1755020318000059 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020318000059


COMPLIANCE AND COMMAND II, IMPERATIVES AND DEONTICS 645

(ii)+ s verifies P(X) if s is of the form C∗ and X subserves C ;
(ii)− s falsifies P(X) if s is of the form C∗ and X does not subserve C .

Thus it is an upwardly prevailing state (the code is at least this) that will verify a
statement of permission or obligation and a downwardly prevailing state (the code is at
most this) that will falsify a statement of permission or obligation.

Once we combine obligation and permission statements, we will need to combine states
of the form C∗ and C∗. We may do this by taking each state to be of the form (C∗, D∗),
where what was previously C∗ is now (C∗, �) and what was previously C∗ is now (�,
C∗). Part-whole is defined “point-wise”. Thus (C∗, D∗) is a part of (E∗, F∗) if C∗ is a
part of E∗ and D∗ is a part of F∗. And the state (C∗, D∗) will be possible if some code E
lies between C and D. Thus when previously we took C to verify a deontic statement, we
now take this to be the special, and highly demanding, case in which (C∗, C∗) verifies the
statement.

§5. Imperatival validity revisited. I would like to consider various different ways of
formulating the criterion of validity for imperative inference in the light of the previous
semantics for deontic logic. The reformulations are technically trivial and more of philo-
sophical than technical interest.

Recall that the imperative inference X/Y was taken to be valid if two conditions were
met: X subsumes Y ; and Y subserves X . This definition does not take the usual form, in
which the validity of an inference is a matter of some value or values being preserved in
the transition from premiss to conclusion; and it is natural to wonder whether a definition
of this sort can be given.

There is a way in which the answer to this question is trivial. For let us suppose that
entailment (the relation that holds between X and Y when the inference X/Y is valid) is
both reflexive and transitive. Then X will entail Y just in case for every Z, Z entails Y
whenever Z entails X. For the left-to-right direction will follow from transitivity; and the
right-to-left direction will follow from reflexivity upon setting Z = X. Taking the values
in question to be properties of the form ‘entailed by Z’ will then give us an account of
entailment in terms of the preservation of these values.

Let us now apply this ‘cheap trick’ to the validity of imperative inference. Say that the
imperative X accords with the code of conduct C if X subserves and is subsumed by C .
Then the cheap trick will give us that X entails Y just in case Y accords with any code of
conduct with which X accords.9

But this gives us a new way to understand the force of imperative inference. For we may
suppose that prior to the stipulation of the premisses, there is a prevailing code of conduct
(as given by the moral code, a body of law, some previous imperatives, or the like). We can
then understand the imperative inference as telling us that the conclusion will accord with
the prevailing code as long as the premisses do.

This is in line with thinking of there being an underlying warrant for the imperative in
terms of a reason or norm and of the validity of an imperative inference as then consisting in
the preservation of such a warrant (as in Vranas (2011), for example). For we may take the

9 Strictly speaking, a code of conduct is a convex set. But it is readily shown that this is a harmless
addition, since X will subserve (or be subsumed by) a set of actions C if and only if it is subserves
(or is subsumed by) the convex closure of C . For the purposes of the application, I have also
switched from imperatives to their contents.
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reason or norm to be a code of conduct and we can then take the warrant of the imperative
to consist in its according with the reason or norm. But of course, from our own point of
view, this way of thinking does not give us an actual criterion of validity since the relevant
notion of validity is already presupposed in what it is to have a warrant.

The present criterion of imperative validity also makes evident the connection between
imperative and deontic reasoning:

The Imperative-Deontic Link. The imperative inference X/Y is analyti-

cally valid iff the deontic inference OP (X)/OP (Y) is classically valid.

For the classical validity of the deontic inference simply amounts to Y according with
any code of conduct with which X accords. In effect, one reasons, in imperative inference,
from the obligation implicit in the premisses to the obligation implicit in the conclusion.
Thus there is a sense in which imperative inference is classical after all but under a suitable
modal understanding of the premisses and conclusion; and if someone (such as Kaufman
(2012)) felt tempted to construe imperatives as themselves statement of obligation then
imperative inference would be straightforwardly classical although not, of course, under
the usual possible worlds account of obligation!

The criterion also provides us with yet another understanding of imperative validity in
terms of ‘updating’. For we might think of an imperative, not as something that accords
with a prevailing code of conduct, but as a means of updating the code. Thus if the
prevailing code is C and the imperative premiss is X, then the result C[X] of updating C
with X will be C∧ X . We simply combine the actions sanctioned by C with the actions in
compliance with X. The inference X/Y will then be valid if and only if Y accords with the
updated code C[X]. This is something like the definition of validity in the update semantics
of Veltman (1996) though, as previously noted (in §5 of Part I), we cannot assume, in the
usual way, that Y’s according with C[X] is a matter of C[X] being identical with C[X][Y].

This particular connection is relevant, I believe, to the inferential interface between
deontic and imperative statements. For it is natural to suppose that from an imperative
X (such as ‘Shut the door’), we can infer the corresponding free-choice statement of
obligation OP (X) (‘so you ought to shut the door and you may shut the door’). We do
not yet have a notion of validity for which this is so since the inference involves a mix of
imperative and indicative statements. Such mixed inferences will be discussed at greater
length in Part III, but let us note that the present conception of updating provides us with
a handle for dealing with this particular case. For we may take the inference from an
imperative X to a deontic statement S to be valid if, for any code of conduct C , S is true
in C[X ]; and the inference from X to OP (X) will then be valid. Thus each imperative has
the effect of updating the code of conduct and, since one’s obligations are understood by
reference to the code of conduct, the inference from X to OP (X) will automatically be
secured.10

§6. Some special inferences. I should like to discuss some cases of valid or invalid
deontic inference of special interest, dealing first with inferences involving obligation and
permission separately and then with inferences involving both together. In each case, I
have paid particular attention to the comparison with standard deontic logic and have given
somewhat informal proofs of the various claims of validity and invalidity.

10 Cf. Portner (2007), which attempts to justify such inferential connections on the basis of general
pragmatic principles.
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6.1. P-inference. 1. We should note right away that the rule of Simplification will
hold, i.e., P(X ∨ Y) will entail P(X) and P(Y), in contrast to the standard semantics for
deontic logic. For if every action in compliance with X ∨ Y is contained in an ideal action
(one sanctioned by the code of conduct) then a fortiori every action in compliance with X
or in compliance with Y will be contained in an ideal action.

However, P(α) will not entail P(α ∧ β), for even if every action in compliance with α
is contained in an ideal action that is no reason to assume that any action (let alone every
action) in compliance with α ∧β is contained in an ideal action. Thus the most immediate
logical problem posed by the existence of free choice permission is solved.

This solution is in line with the solution provided by others (such as Aloni & Ciardelli
(2013)) within the ‘alternatives’ tradition, even though the underlying framework is some-
what different.

2. P(X ∧ Y) will entail P(X), in conformity with the standard semantics. For suppose
that every action in compliance with X ∧ Y is contained in an ideal action. Take now any
action a in compliance with X. Under the semantics, there will be an action in compliance
with any imperative and hence an action b in compliance with Y. But then a 
 b, and hence
a, will be contained in an ideal action.

However, P(X) will not entail P(X ∧ X) in marked contrast to the standard semantics.
This is because actions a and b in compliance with X may be part of an ideal action even
though the action a 
 b in compliance with X ∧ X is not part of an ideal action.

Let us say that the imperative X is definite (with respect to a model) if there is exactly
one action in compliance with X and is otherwise indefinite. Then for definite X, P(X)
will entail P(X ∧ X). This is but one of many cases in which a principle not valid for all
imperatives is valid for definite imperatives.

3. The deontic formula P(�), according to which the null action is permissible, will
be valid if we assume Nonemptiness, i.e., that the code of conduct contains at least one
action, since the single action, �, in compliance with � will be contained in that action.
But dropping that assumption, i.e., allowing for the empty code of conduct, will render
P(�) invalid, since then no action sanctioned by the code will contain �. Thus P(�) tells
us, in effect, that some action is sanctioned by the code of conduct.

However, the deontic formula P(X) is not valid for an arbitrary tautology X, in contrast
to standard deontic logic. For example, P(α∨ ¬α) is not valid since otherwise, by Simplifi-
cation, both P(α) and P(¬α) would be valid. Indeed, it can be shown that P(X) will not be
valid for any formula X that contains an imperative atom (and even under a restricted class
of codes of conduct, as long as at least one of them does not contain �).

The deontic formula ¬P(⊥) is also not valid, since it will be false when the sole action
sanctioned by the code of conduct is �. However, assuming Nonemptiness and Complete
Consistency (that every action sanctioned by the code of conduct is consistent), then ¬P(X)
will be valid for any classically inconsistent formula X, since only inconsistent actions will
then be in compliance with X.

If ¬P(X) is taken to be valid for a classically inconsistent formula X, then, given Simpli-
fication, it will render ¬P(X) valid for many formulas X which are not classically inconsis-
tent, in marked contrast to the standard case. For example, ¬P(¬X ∧ (X ∨ Y)) will be valid,
since P(¬X ∧ (X ∨ Y)) will entail P((¬X ∧ X) ∨ (¬X ∧ Y)), which, by Simplification, will
entail P(¬X ∧ X).

Even if ¬P(X) is not taken to be valid for classically inconsistent X, we should note
that P(⊥) will still entail P(Y)—if the completely impossible is permitted then everything
whatever is permitted. For if P(⊥) is true then � will be an ideal action, and P(X) will then
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be true since every action is contained in �. However, we will not in general have that P(X)
entails P(Y) for X a classical contradiction, since a code of conduct may sanction an action
in compliance with X (even though it is intuitively inconsistent) without sanctioning � and
so, in particular, P(X) will not in general entail P(⊥).

6.2. O-inference. 1. O(X) will entail O(X ∨ Y), in line with standard deontic logic.
For if every ideal action contains an action in compliance with X then, a fortiori, it will
contain an action in compliance with X ∨ Y. Similarly, O(X ∧ Y) will entail O(X). For if
every ideal action contains an action in compliance with X ∧ Y (of the form a 
 b for a
an action in compliance with X and b an action in compliance with Y) then it will thereby
contain an action (viz. a) in compliance with X.

On the other hand, OP (X) will not entail OP (X ∨ Y). For suppose a is the sole action in
compliance with X and b the sole action in compliance with Y; and suppose a is the sole
action sanctioned by the code of conduct. Then OP (X) will be true. But there is no reason
why OP (X ∨ Y) should be true. For its truth would require the truth of P(X ∨ Y), which,
in its turn, would require the truth of P(Y). It is no doubt the free-choice interpretation of
obligation that stands in the way of accepting the inference from ‘you ought to post the
letter’ to ‘you ought to post the letter or burn the house down’, since the latter seems to
grant permission to burn the house down.

2. We have the standard principles that O(X) ∧ O(Y) entails O(X ∧ Y) and that O(X ∧
Y) entails O(X) ∧ O(Y). For if every ideal action contains an action a in compliance with
X and an action b in compliance with Y then it will contain an action a 
 b in compliance
with X ∧ Y, and conversely.

We also have the principle that OP (X ∧ Y) entails OP (X) ∧ OP (Y) for free-choice
obligation, since O(X ∧ Y) entails O(X) ∧ O(Y) and P(X ∧ Y) entails P(X) ∧ P(Y).
However, we do not have the principle that OP (X) ∧ OP (Y) entails OP (X ∧ Y) for free-
choice obligation. Indeed, we do not even have that OP (X) entails OP (X ∧ X) for, when
X is an indefinite imperative, OP (X) may be true while P(X ∧ X) is false.

3. The deontic formula O(�) is valid since any ideal action will contain the single action
� in compliance with �; and the formula P(�), and hence the formula OP(�), will be
valid if we assume Nonemptiness, since � will be a part of some ideal action. But dropping
the assumption will render P(�), and hence OP(�), invalid, since then no ideal action will
contain �.

The deontic formula O(X) is not valid for an arbitrary tautology X, in contrast to
standard deontic logic. For example, O(α∨ ¬α) is not valid, since there is no reason, in
general, to think that a code of conduct will contain an action in compliance with or in
contravention to α. Indeed, it can be shown that O(X) will not be valid for any formula X
that contains an imperative atom. Of course, matters will be different if we suppose that
the courses of action sanctioned by the code of conduct are all complete.

The formula ¬O(⊥) is also not valid, since it will be false when the sole action sanc-
tioned by the code of conduct is �. However, assuming Consistency, that some ideal action
is consistent, ¬O(X) will be valid for any classically inconsistent formula X, since only
inconsistent actions will then be in compliance with X.

O(⊥) entails O(Y)—if the completely impossible is obligatory then everything what-
ever is obligatory. For if O(⊥) is true then every ideal action will contain � and hence
be identical to �, in which case every ideal action will contain an action in compliance
with Y.

However, as before, we will not in general have that O(X) entails O(Y) for X a classical
contradiction, since a code of conduct may sanction a contradiction without sanctioning �.
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4. In the case of a moral—or, more generally, a normative—dilemma, we will have
both O(X) and O(¬X) true or both O(X) and O(Y) true, with X incompatible with Y.
This possibility is, of course, of great relevance to accommodating the existence of moral
dilemmas within the framework of deontic logic.

The usual attitude to cases of this sort (granted that they arise) is to question the inference
from O(X) and O(¬X) to O(X ∧ ¬X) or, more generally, the inference from O(X) and O(Y)
to O(X ∧ Y) when X is incompatible with Y. Our attitude, on the other hand, is to allow
the inference but to deny that ‘explosion’ thereby results, with everything whatever being
obligatory, as would be the case in more standard versions of deontic logic. Suppose, for
example, that the code of conduct consists of a single action which is the fusion of Leave (to
fight the Resistance) and Stay (to look after one’s ailing mother). Then it will be obligatory
to leave (O(Leave)), obligatory to stay (O(Stay)) and even obligatory to leave and to stay
(O(Leave ∧ Stay)); and each of these actions will also be permissible. However, it is worth
noting that we could also follow the standard route by allowing there to be several codes
of conduct, perhaps not all compatible with one another, and then taking O(X) to be true
under this class of codes if it true under one of the codes (much as in van Fraassen (1973)).

6.3. O/P inference.
1. Under the present semantics, O(α) does not entail P(α). For suppose a and b are in

compliance with α but that a is the only action sanctioned by the code of conduct. O(α)
will then be true but there is no reason, in general, why b should be part of a. To take an
ordinary example, it may be obligatory to post the letter and hence obligatory to post the
letter or burn the house down and yet not permissible to post the letter or burn the house
down.

We do, of course, have the principle that OP (X) entails P(X) for free-choice obliga-
tion. And we also have it for limited-choice obligation and definite imperatives X, given
Nonemptiness. For if O(X) is true then every ideal action contains the single action a0
in compliance with X and so, given that some action is ideal, every action in compliance
with X, viz. a0, will be contained in an ideal action. So this is another case in which a
generally accepted principle holds for definite but not indefinite imperatives. There is no
doubt that any obligatory action is permitted; and within the usual possible worlds approach
to deontic logic, no sensible distinction can be drawn between this truism for actions and
the corresponding logical principle O(A) ⊃ P(A) for propositions. However, within an
approach like our own, in which P but not O receives a free-choice interpretation, the
inference to the corresponding logical principle O(X) ⊃ P(X) will no longer be warranted.

2. We also do not have the standard principle that O(X) and P(Y) entails P(X ∧ Y).
Indeed, if we were to set Y = �, then this principle would yield, as a special case, that
O(X) and P(�) entails P(X ∧ �), which, in its turn, given Nonemptiness, would yield O(X)
entails P(X).

However, as it to be expected, the principle that O(X) and P(Y) entails P(X ∧ Y) will
hold when X and Y are definite or, indeed, when X alone is definite. For suppose that O(X)
is true, so that every ideal action contains the single action a0 in compliance with X, and
that P(Y) is true, so that every action b in compliance with Y is contained in an ideal action.
Take now any action, of the form a0 
 b, in compliance with X ∧ Y. Then b is contained in
an ideal action c, which must contain a0; and so c must contain a0 
 b.

3. In standard deontic logic, the deontic operators are dual in the sense that O(X) is
equivalent to ¬P(¬X) and P(X) to ¬O(¬X). These duality principles fail in the present
context because of two separate reasons—one arising from the strict sense of permission
and the other from indefiniteness in the imperative X.
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O(X) will entail ¬P(¬X) as long as the code of conduct is completely consistent. For
suppose, for reductio, that O(X) and P(¬X) are both true. Then some action c sanctioned
by the code of conduct will contain an action a in compliance with ¬X and c in its turn
will contain an action in compliance with X; and so c will be inconsistent.11

However, ¬P(α) will not entail O(¬α). For suppose that the sole action sanctioned by
the code of conduct is the null action �, that a is a non-null action in compliance with α,
and that the null action is in contravention to α. Then ¬P(α) is true since no ideal action
contains a and O(¬α) is false since the ideal action � contains no action in compliance
with ¬α. As is clear, the entailment may fail to go through even when there is a single
action in compliance with and a single action in contravention to α. The reason intuitively
speaking, is that P expresses strict permission. Thus under the null code of conduct, no
action (beyond �) will be permitted and no X which does not allow null compliance will
be obligatory.

Suppose, however, that we take the courses of action sanctioned by the code of con-
duct to be complete (as under a modal interpretation of the deontic operators). Then the
entailment may still fail to go through since what is not permitted may be indefinite. Thus
consider the entailment from ¬P(α ∨ β) to O¬(α ∨ β), equivalent to the entailment from
¬P(α) ∨ ¬P(β) to O(¬α ∧ ¬β). If this latter entailment were to hold then it would require
that ¬P(α) entail O(¬α ∧ ¬β), which clearly is not so.

However, the entailment will go through if we insist both that the courses of action
sanctioned by the code of conduct be complete and that the imperative α be definite. For
suppose P(α) is false. Then the sole action a0 in compliance with α will not be contained
in an ideal (and complete) action sanctioned by the code. But this then means that every
action sanctioned by the code must contain an action in contravention to α; and so O(¬α)
will be true.12 Indeed, in this case, there is, in effect, no quantification over the actions in
compliance with α and so our clauses will reduce to the familiar clauses from the possible
worlds semantics.

4. Although we cannot, in general, define P(X) as ¬O(¬X), there is a definition of P in
terms of OP (X), though not, I suspect, of OP in terms of P. For in line with the permissive
sense of the imperative, we may define P(X) as OP (X ∨ �), as long as the code of conduct
is nonempty. For then every ideal action will contain an action in compliance with X ∨ �,
viz. �, while P(X ∨ �) will be equivalent to P(X) ∧ P(�), which will be equivalent to
P(X) given Nonemptiness.

It is not altogether clear to me that we have much use for O as opposed to OP . Certainly,
the most informative and useful way to state an obligation is by indicating the ways of
realizing the obligation that are permissible. And if this is so, then we may formulate the
language of deontic logic in the present setting by using a single deontic operator, just as
in the standard formulations, but with the difference that the operator must be the operator
for obligation rather than for permission.

§7. An axiom system. I briefly outline a system of deontic logic appropriate for the
deontic formulas which are valid within the truthmaker approach.

We take a deontic formula to be a truth-functional compound of formulas of the form
O(X) and P(X) for X an imperative formula. Such a formula is then taken to be valid if it

11 We here presuppose that the models are classical in the sense of the appendix to Part I.
12 We again presuppose that the models are classical.
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is true in all models whose code of conduct is nonempty. We have found it convenient, in
formulating a natural system of axioms, to suppose that the interpretation of the imperative
atoms should be doubly definite—for each imperative atom α, there should be a single
action in compliance with α and a single action in contravention to α.

Now take the logic IL(>) of §6 of part and add the axiom λ >λλ for any literal (i.e.,
atom or its negation). Call the resulting system IL+(>). We say two imperatives X and Y
are analytically equivalent (in IL+(>)) if both X >Y and Y>X are provable in IL+(>). We
shall use the system IL+(>) as a basis for formulating our deontic logic.13

An imperative formula X is said to be (syntactically) definite if it is a conjunction of
literals. Clearly, each syntactically definite formula X will be semantically definite, there
will be a single action in compliance with X (though not necessarily in contravention to
X).

We lay down the following axioms:

Implication.
O(X) ⊃ O(X′)
P(X) ⊃ P(X′)

whenever X is analytically equivalent to X′.

Distribution.
O(X ∧ Y) ≡ O(X) ∧ O(Y)
P(X ∨ Y) ≡ P(X) ∧ P(Y)

Weakening.
O(X) ⊃ O(X ∨ Y)
P(X ∧ Y) ⊃ P(X)

Triviality.
O(�) , ¬O(⊥)
P(�), ¬P(⊥)

Mixture.
O(X ∨ Y) ∧ ¬P(X) ⊃ O(Y), for definite X
O(X1 ∨ X2 ∨ . . . ∨ Xn)∧ P(Y) ⊃ P(X1 ∧ Y) ∨ P(X2 ∧ Y) ∨ . . . ∨ P(Xn ∧ Y),
for definite X1, X2, . . . , Xn and Y.

Let us call the resulting system DL (for ‘deontic logic’). Its theorems are all the truth-
functional consequences of these various axioms. We may also define two subsystems
DL(P) and DL(O). In DL(P) the formulas are restricted to the P-formulas and the only
axioms are Equivalence, Distribution, Weakening and Triviality for P. Similarly, in DL(O)
the formulas are restricted to the O-formulas and the only axioms are Equivalence, Dis-
tribution, Weakening and Triviality for O. Part of the interest of the full system is that it
provides for a characteristic interaction between the obligation and permission operators
even though neither is definable in terms of the other.

13 This logic is close to, but not the same as, the logic of analytic equivalence in Fine (2016). From a
semantical point of view, we remove closure under fusion and add the requirement that the atoms
should be doubly definite. Thus we will have the equivalence of X ∧ X to X for literals, though
not for arbitrary formulas, and we will not have the equivalence of X ∨ Y to X ∨ Y ∨ (X ∧ Y).
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Proofs of soundness and completeness for these various systems are sketched in the
formal appendix. The proofs of completeness use normal forms and show, in the case of
the full system DL, how one might provide a complete description of a code of conduct
using P- and O-formulas. Each such description essentially consists of a single P-formula
P(X), a single O-formula O(Y), and a bunch of other formulas to the effect that P(X) is
a maximal description of what is permitted and O(Y) is a maximal description of what is
obligatory.

The resulting logic are not, of course, closed under substitution. Thus even though
P(α) ⊃ P(α ∧ α) is a theorem, P(α ∨ β) ⊃ P((α ∨ β) ∧ (α ∨ β)) is not. The restrictions
on Mixture point to the utility of distinguishing between definite and indefinite statements
in reasoning that combines consideration of what is obligatory and what is permissible.
However, it would be of interest to determine which system we would obtain when the
interpretation of the atoms was unrestricted or when we admitted two kinds of atoms, either
with or without a restricted interpretation. One might also consider the various extensions
of these systems which result from imposing further conditions on the codes of conduct.
One could, for example, get something closer to standard deontic logic if one insisted upon
Complete Consistency. The standard principles, ¬O(X ∧ ¬X) and O(X) ∧ O(¬X ∨ Y) ⊃
O(Y) would then both be valid.

§8. Updating. I should like to make a few remarks concerning the problem of deontic
updating. The topic calls for much more extensive discussion, especially in regard to its
connection with belief revision and reasoning from inconsistent premisses. But, at the
very least, the present discussion will indicate how very different the problem looks from
the present perspective as opposed to the usual possible worlds perspective and how my
approach differs from other approaches that trade in a “sphere of permissibility” for a “to-
do list”.

In a given context, we may suppose, certain deontic statements directed to a given agent
are true and the others false. Suppose now someone in authority, perhaps myself, tells
the agent what he ought to do or what he may do, where this is not something that was
previously true. The problem of deontic updating is then the problem of explaining which
deontic statements will then be true.

Of course, if I tell the person that he ought to do something (or may do something), it
will then be true in the new context that he ought to do it (or may do it), even though this
was not true before. We may also assume that the change in context is determinate—which
is to say that it must still hold, in the new context, that each deontic statement is either true
or false. But this means, on pain of inconsistency, that some other deontic statements must
change from true to false or from false to true; and so the problem is to say which they are
(and why).

If we approach the problem from a possible worlds perspective,14 then the set of true
and false deontic statements will, in effect, be given by a ‘sphere’ of ideal worlds. On
being told that A is obligatory or permissible, the agent must change the deontic sphere
so that A is obligatory or permissible. This means, in the case of obligation, that every
world in the new deontic sphere should be an A-world and, in the case of permission,
that some A-world must belong to the new deontic sphere (even though neither was so
before). We presumably want the change to be minimal—we want in some sense that is

14 As is done in the article of Lewis (1979), which introduces the problem.
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not altogether clear to minimize the change in the truth-value of the deontic statements;
and this presumably translates into the change in the deontic sphere being minimal—we
want, again in a sense that is not altogether clear, to minimize the change in which worlds
belong to the deontic sphere.

It might be thought that the solution to this problem is straightforward in the case of
obligation. For the new sphere can simply be the intersection of the old sphere with the
set of A-worlds. In other words, we may restrict the former ideal worlds to the A-worlds.
However, there is one special case in which this strategy does not work. For the intersection
may be empty, there may be no A-worlds that were previously ideal (even though there are
A-worlds); and in this case—if we insist that the deontic sphere be nonempty, i.e., that
something be permissible—then it is not at all clear what the change in the deontic sphere
should be.

In the case of permission, the problem seems generally hopeless unless one brings
some further information to bear upon what the change should be. For let us suppose that
A was not originally permissible, i.e., that none of the A-worlds belong to the original
deontic sphere. Then, in the absence of any further information, there is no reason to
prefer the addition of one of the A-worlds to the sphere as opposed to any other (and
at least one must be added if A is to become permissible). One could, of course, add
all the A-worlds to the sphere, since this does not discriminate between them, but this
would then result, as a rule, in all sorts of monstrous worlds being rendered permis-
sible. The solution to the problem, in the case of permission, therefore requires some
further basis for distinguishing between the worlds that might be added to the original
sphere.

Let us now consider the same problem from the truthmaker perspective.15 In this case,
the deontic base will not be a deontic sphere, the set of ideal worlds, but a code of conduct,
the set of ideal actions. The problem then takes the form of how to modify the code of
conduct so as to make the given prescription X obligatory or permitted. This means, in the
case of obligation, that every action sanctioned by the new code of conduct should contain
an X-action and, in the case of permission, that every X-action should be contained in an
action sanctioned by the new code of conduct and, in the case of free-choice obligation,
that both requirements should be met.

It is perhaps rather odd to update with a limited-choice statement of obligation. If I
tell the agent that he is obliged to wear a jacket or a tie, then it would normally be
supposed that he was being permitted to do either. So let us first consider the case of
free-choice obligation and only then turn to the cases of limited-choice obligation and
of permission.

There is a way in which the update problem in this case may be trivial. For it may not be
my intention to override the original code of conduct. Suppose the original code of conduct
contains the action a of fighting in the Resistance and suppose that the agent is told ‘you
ought to stay at home and look after your mother’, where this is a matter of performing
an action b incompatible with a. Then the result of the update may simply be a code of
conduct consisting of that action a 
 b of fighting in the Resistance and staying at home.
On this way of looking at the matter, the result C :OP (X) of updating a code of conduct
C with the prescription OP (X) will simply be the conjunction C ∧ X of C and X , i.e.,

15 Yablo (2011) also proposes a solution to the problem from the truthmaker perspective, but he still
conceives of the problem in terms of a change to the sphere of permissible worlds and, given this
and other differences of framework, it is not altogether clear how his solution relates to mine.
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the code of conduct that consists of all the actions of the form c 
 a with c in C and a
in X .16

In this case, of course, some of the actions in the new code of conduct may be incon-
sistent. So let us suppose, as is plausible, that the original code of conduct is completely
consistent and that the intent behind the updating is that the new code of conduct should
also be completely consistent. How then should the code of conduct be updated? An
obvious solution is to apply a consistency filter. The new code of conduct should consist of
all those actions in C ∧ X which are consistent.

But if a given action a in compliance with X is not compatible with any action sanctioned
by the original code of conduct, the resulting code of conduct will sanction no action
containing a and so X will not be permitted. So what should we do when no action
sanctioned by the original code of conduct is compatible with a? When presented with a
similar problem, under the possible worlds approach, of what to do when the new deontic
sphere was empty (no ideal A-worlds), there seemed nothing sensible to say—the update
simply failed. But in the present case, we have further resources with which to deal with
the problem.

If a is already inconsistent, the requirement of complete consistency cannot be preserved
and so the update fails, as before. But suppose a is consistent. In such a case, what we
would like to do is to keep a in its entirety and as much of c as is compatible with a.

To see how this might work, let us suppose that there exists a greatest part c′ of c
compatible with a, i.e., c′ is compatible with a and contains any part of c compatible
with a. In this case, we may let c:a, the result of updating the action c with a, be a 
 c′ and
then add c:a rather than a 
 c to C . But even when the greatest part c′ does not exist, there
may still exist maximal parts c′ of c compatible with a, i.e., parts of c compatible with a
which are not proper parts of any other part of c compatible with a; and in this case, we
can add a 
 c′ for each of the maximal parts c′ to C . It is not altogether clear to me how
far in this direction we may proceed. But it seems clear that there may be cases in which
a 
 c is inconsistent and yet there is no reason, on the basis of the given information, for
preferring one consistent fusion a 
 c′, for c′ a non-null part of c, over any other. In such
a case, we should add a 
 c′ to C for each non-null part c′ of c compatible with a (or, if
there is no such c′, we should simply add a).

In any case, let us suppose, if only for the sake of simplicity, that an update of the form
c:a always exists. Instead of taking the update C :OP (X) to be C ∧ X = {c 
 a: c ∈ C and
a ∈ X}, we can take it to be {c:a: c ∈ C and a ∈ X}.

There is also something to be said for taking this to be the general definition of the
update and not just for the case in which no member of X is compatible with each member
of C . It makes for uniformity in the definition (which is of help in establishing general
principles). And it is not unintuitive. For suppose the code of conduct is given by the fact
that you should either have eggs and bacon or porridge for breakfast (C = {e 
 b, p}). If
you are then told not to have bacon (X = ¬b), you might think that would still leave one
with the option of having eggs without bacon (C :OP (X) = {e 
 �b, p 
 �b}) rather than
being obliged to have porridge (C :OP (X) = {p 
 �b}).

16 If codes of conduct are subject to certain closure conditions, such as convexity, it will then also
be necessary to subject the resulting code C :OP (X) to these conditions.
The present operation C : S of updating is somewhat different from the previous operation C[X]
from Section 5, since it is not meant to provide a semantic explanation of S. The content or
semantic value of S is already presupposed.
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We may apply a similar strategy to defining updates with limited-choice statements of
obligation or with permission statements. For a limited-choice statement of obligation, it
is not necessary that each action in compliance with X be permissible and so we might
simply take C :O(X) to be the set {c 
 a: c ∈ C , a ∈ X and c 
 a is consistent}. However,
the resulting code may be empty; and so if we wish to insist that the code be nonempty, we
should take C :O(X) to be {c 
 a: c ∈ C , a ∈ X and c 
 a is consistent} when this set is
nonempty, as before, and otherwise take it to be {c:a: c ∈ C and a ∈ X}, since in this case
there is no reason to prefer any particular c ∈ C to any other.

Updating with a statement of permission can be regarded as a special case of updating
with a free-choice statement of obligation, given the equivalence of P(X) to OP(� ∨ X).
Thus we will have C :P(X) = C :OP(� ∨ X) = C ∪ C :OP (X). In this case, we will wish to
retain each member of the original code of conduct C , since we are not required by P(X)
to perform any of the actions in compliance with X. But we will also wish each action a
in compliance with X to be contained in an action sanctioned by the new code of conduct
and this will then be guaranteed by the presence of C :OP (X).

We have considered a number of different options for defining the update. But perhaps
the simplest and most natural is one in which we suppose that, for any actions c and a
from the action space, there is a largest action contained in a compatible with c. Taking
this action to be c:a, we may then define C :OP (X) to be {c:a: c ∈ C and a ∈ X}and define
C :P(X) to be C ∪ {c:a: c ∈ C and a ∈ X}. This gives rise to a nice set of principles
(somewhat analogous to the standard principles governing belief revision) and seems to be
very much in conformity with our intuitive judgements.

The present account of updating has two significant advantages over the possible worlds
approach. One is that the updating is ultimately done at the level of the actions themselves,
which is then projected upwards to the level of propositions; and it is much easier, given
the mereological structure of actions, to see how an action should be modified rather than
a set of worlds. Another, less obvious, advantage, arises from the fact that we are working
with a strict notion of permission. When something is not strictly permitted it is relatively
easy to see how, through updating, it might become strictly permitted. Under the possible
worlds approach, on the other hand, we work with a weak notion of permission; and it is
much harder to see how what is not weakly permitted might, through updating, become
weakly permitted. From this point of view, the possible worlds approach fails to take
full advantage of the performative character of permission statements. For in permitting
something it thereby becomes strictly permitted; and by only taking account of the weak
content of the performative utterance, the possible world approach can take no advantage
of this relatively straightforward form of updating. Our own approach, by contrast, updates
on what is strictly permitted. It can still achieve a change in what is weakly permitted, but
only indirectly, as a consequence of a change in the code of conduct.

It might also be helpful to compare my approach to some other approaches in the
literature that work off a ‘to-do’ list. My own conception of a to-do list is somewhat
different from the usual one: in place of a set of actions I have a single action, which is
their fusion. My general reasons for preferring this conception have already been given in
§8 of part I; and the mereological structure of the fusion, which might not be fully apparent
from a list, also plays an important role in defining the update.

A number of authors (such as van Rooij (2000), Portner (2012), Torre & Tan (1998)) use
something like a to-do list as a basis for defining a preference relation and then appeal to the
preference relation in explaining how one should update. Our approach is very different.
We do not appeal, either implicitly or explicitly, to a preference relation and simply define
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the update on the basis of the mereological structure of the actions on which the update
is being performed. My own view is that appeal to a preference relation is either idle or
philosophically suspect. It is idle, if preferring doing a to not doing a is simply a way to
represent that a is to be done (whether as the result of an command or the statement of
an obligation); and it is philosophically suspect if what is to be done is to be understood
in terms of what is best, since there are any number of respectable philosophical positions
which reject this point of view.

My approach is therefore more in the tradition of those who, like Kamp (1973), Kratzer
(1977), Mastop (2005) and Yablo (2011), think of an update as operating directly on the
to-do list without any detour through a preference relation. What my approach brings
to the table, as opposed to some of these alternative accounts, are two things. First, a
sensitivity to hyperintensional considerations. Thus updating with X is in general different
from updating with X ∨ (X ∧ Y), even though they are truth-functionally equivalent, since
the former only permits the actions in compliance with X while the latter also permits the
actions in compliance with X ∧ Y. Second, the mereological framework provided by an
action space. This enables us to conceive the problem of updating in its full generality
without tying the solution down to any particular conception or representation of what the
actions on the to-do list might be and it provides the means by which a natural definition
of updating in mereological terms might be given.

§9. Formal appendix.

9.1. Syntax and semantics. Recall from part I that imperative formulas (or what we
might also call action or A-formulas) are constructed from imperative atoms α1, α2, . . . by
means of negation (¬), conjunction (∧), disjunction (∨) and the verum constant �. We now
take O(X) and P(X) to be the deontic atoms, for X any A-formula; deontic formulas are
constructed in the usual way from the deontic atoms by means of the usual truth-functional
connectives, O-formulas from the O-atoms O(X), and P-formulas from the P-atoms. We
use α, β, γ and the like for arbitrary imperative atoms, X, Y, Z and the like for arbitrary
imperative formulas, and S, T, U and the like for arbitrary deontic formulas.

Recall the definitions of a state space and of a modalized state space from Part I. A state
s of a modalized space M = (S, S�, �) is said to be a world-state if it is consistent and
if any consistent state is either a part of s or incompatible with s; and the space M itself is
said to be a W-space if every consistent state of M is part of a world-state. An action space
is just a state space under another name.

A normative action space A is a structure of the form (A, C , �), where (A, �) is an
action space and C (code of conduct) is a nonempty convex subset of A which does not
contain �. A normative action model M is a structure (A, C , �, |•|), where (A, C , �) is a
normative action space and |•| is a bilateral valuation of the usual sort (and similarly when
modalized models are in play). We assume that |α|+ and |α|− are both nonempty for any
atom α but place no other restrictions on models. From this it follows that |X|+ and |X|−
are both nonempty for any imperative formula X.

Relative to a normative action model (A, C , �, |•|), we stipulate the following truth-
theoretic clauses for the various deontic operators:

(i) |=O(X) if C subsumes X ;
(ii) |=P(X) if X subserves C ;
(iii) |=OP (X) if C subsumes X and X subserves C .
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For the modal construal of these operators, we must suppose we are working within a
modalized space (A, C , �, A�). Relative to such a space, we say that every subset Y of
A modally subserves the subset X if every b ∈ Y is compatible with an a ∈ X and that X
modally subsumes (necessitates) Y if any consistent extension a+ � a of an action a ∈ X
is compatible with an action b ∈ Y . The corresponding clauses, relative to a modalized
model (A, C , �, A�, |•|) are then:

(i) |=O(X) if C modally subsumes X (the standard definition)
(ii) |=P(X) if X modally subserves C
(iii) |=OP (X) if C modally subsumes X and X modally subserves C .

Soundness and completeness. We shall find it helpful to work up to the completeness
proof for the full system DL by considering the subsystems DL(P) and DL(O).

A-Normal Forms. In the definitions below, we shall suppose that the formulas under
consideration occur in a fixed order, that a conjunction F1∧ F2 ∧ · · · ∧ Fn of formulas, for
n ≥ 0, is � when n = 0, is F1 when n = 1, and is ((. . . ((F1∧ F2)∧ F3) ∧ · · · ∧ Fn−1)∧
Fn), with association from left to right, when n > 0, and that, likewise, a disjunction F1∨
F2 ∨ · · · ∨ Fn of formulas, for n ≥ 0, is ⊥ when n = 0, is F1 when n = 1, and is ((. . . ((F1∨
F2) ∨ F3)∨· · · ∨ Fn−1)∧ Fn), with association from left-to-right, when n > 0. We shall also
suppose that the conjuncts or disjuncts of such a conjunction or disjunction occur in the
fixed order, with F1 preceding F2, F2 preceding F3, and so on. In this way the conjunction
or disjunction of a finite set of formulas is always unique.

An action or A-literal from the imperative atom α is α or its negation; and an A-literal
is a literal from some atom. An A-description in the distinct atoms α1, α2, . . . , αn , for n
≥ 0, is a conjunction λ1 ∧ λ2 ∧ · · · ∧ λm of literals from α1, α2, . . . , αn , with 0 ≤ m ≤ n.

Suppose that λ1 ∧ λ2 ∧ · · · ∧ λm is an A-description and take a selection μ1, μ2, . . . ,
μk of the literals λ1, λ2, . . . , λn . Then μ1 ∧ μ2 ∧ · · · ∧ μk (suitably ordered) is also an
A-description and an A-description obtained in this way is said to be a sub-description of
the original A-description λ1 ∧ λ2 ∧ · · · ∧ λm .

A (disjunctive) normal A-form in the atoms α1, α2, . . . , αn is a disjunction X1∨X2∨· · · ∨
Xm of A-descriptions X1, X2, . . . , Xm in α1, α2, . . . , αn , with m ≥ 0. A normal A-form
X1 ∨ X2 ∨ · · · ∨ Xm , is said to be a standard A-form if it contains the A-description Y
whenever Xi is a sub-description of Y and Y a sub-description of X j for some disjuncts Xi

and X j of X1 ∨ X2 ∨· · · ∨ Xm (this condition is the syntactic analogue of convexity). Thus
α1 ∨ (α1 ∧ α2 ∧ α3) is not standard while α1 ∨ (α2 ∧ α2) ∨ (α1 ∧ α3)∨ (α2 ∧ α2 ∧ α3)
is. The normal A-form Y1 ∨ Y2 ∨ · · · ∨ Yk is said to be the full expansion of the normal
A-form X1∨ X2 ∨ · · · ∨ Xm in the atoms α1, α2, . . . , αn if the disjuncts of Y1∨ Y2 ∨ · · · ∨
Ym are all and only those A-descriptions in α1, α2, . . . , αn of which some disjunct of X1
∨ X2 ∨ · · · ∨ Xm is a sub-description. Thus α1 ∨ (α2 ∧ α3) ∨ (α1 ∧ α2) ∨ (α1 ∧ α3) ∨
(α1 ∧ α2 ∧ α3) is the full expansion of α1 ∨ (α2 ∧ α3) (relative to the atoms α1, α2, α3).

A conjunctive normal A-form is a conjunction of disjunctions of A-literals. As before,
we allow null conjunctions and disjunctions and insist that the conjuncts and disjuncts
conform to the fixed order.

Lemma 1. Any A-formula X in the atoms α1, α2, . . . , αn is analytically equivalent in
IL+(>) to a standard A-form in the atoms α1, α2, . . . , αn .

Proof. A straightforward modification of the proof of Lemma 17 of Fine (2016).

P-Normal Forms. A P-atom in the atoms α1, α2, . . . , αn , n ≥ 0, is a formula of the form
P(X), where X is an A-description in α1, α2, . . . , αn ; and a P-literal in α1, α2, . . . , αn is
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either a P-atom in α1, α2, . . . , αn or its negation. A P-description in α1, α2, . . . , αn is then
a conjunction S1 ∧ S2 ∧ · · · ∧ Sm , m ≥ 0, of P-literals in α1, α2, . . . , αn .

The P-description S1 ∧ S2 ∧ · · · ∧ Sm in α1, α2, . . . , αn is said to be classical if, for
each A-description X in α1, α2, . . . , αn , either P(X) or else ¬P(X) is a conjunct of S1 ∧
S2 ∧ · · · ∧ Sm ; and the P-description S1 ∧ S2 ∧ · · · ∧ Sm is said to be standard if (i) it
is classical, (ii) contains at least one conjunct P(X), and (iii) contains the conjunct P(Y)
whenever it contains the conjunct P(X) and Y is a sub-description of X. Thus a classical
P-description is consistent and complete with respect to the formulas P(X) for X an A-
description in α1, α2, . . . , αn . Note that any standard P-description will contain P(�), since
� is a sub-description of any A-description X. Finally, a normal P-form in α1, α2, . . . , αn is
a disjunction S1 ∨ S2 ∨· · · ∨ Sm of P-descriptions in α1, α2, . . . , αn and a standard P-form
is a normal P-form all of whose disjuncts are standard.

Lemma 2. Each P-formula S in some atoms is provably equivalent in DL(P) to a standard
P-form in those atoms.

Proof. By Lemma 1, each A-formula X in α1, α2, . . . , αn is analytically equivalent to a
standard A-form X1 ∨ X2 ∨ · · · ∨ Xm in α1, α2, . . . , αn . In case m = 0, P(X) is provably
equivalent in DL(P) to P(⊥), which, by P-Triviality, is provably equivalent to the standard
P-form ⊥. In case m > 0, it follows by P-distribution that P(X) is equivalent to P(X1) ∧
P(X2) ∧ · · · ∧ P(Xm). Hence, by classical logic, S is equivalent to some normal P-form
X1 ∨ X2 ∨ · · · ∨ Xm . Each disjunct Xi will contain P(�) as a conjunct, since otherwise it
will contain ¬P(�) as a conjunct, contrary to P-Triviality. Also, if a disjunct contains P(X)
without containing P(Y) for Y a sub-description of X, then it will contain ¬P(Y) and hence,
by P-Weakening, the whole disjunct will be contradictory. Applying these simplifications,
we may convert X1 ∨ X2 ∨ · · · ∨ Xm into a standard P-form.

There is a way of providing a more compact formulation of a standard P-description S1 ∧
S2 ∧ · · · ∧ Sm . For let P(X1), P(X2), . . . , P(Xk) be all of the P-atoms P(X) which occur as
a conjunct in S1 ∧ S2 ∧ · · · ∧ Sm . Then, given P-Distribution, the conjuncts P(X1), P(X2),
. . . , P(Xk) may be replaced by the single conjunct P(X1 ∨ X2 ∨ · · · ∨ Xk). Moreover, by
P-Weakening, ¬P(X) may be dropped as a conjunct from S1 ∧ S2 ∧ · · · ∧ Sm if ¬P(X′) is
a conjunct for some sub-description X′ of X. Accordingly, given A-descriptions X1, X2,
. . . , Xk in α1, α2, . . . , αn , let us use PM (X1 ∨ X2 ∨ · · · ∨ Xk) (‘M’ for maximal) as an
abbreviation for the conjunction of P(X1 ∨ X2 ∨ · · · ∨ Xk) and all of the P-literals ¬P(Y),
where Y is the conjunction of a set of P-literals {λ1, λ2, . . . , λk} in α1, α2, . . . , αn which
are such that, for each i = 1, 2, . . . , k, λi is not a conjunct of Xi (the λ1, λ2, . . . , λk need
not be distinct). Say that S is a simplified P-form in α1, α2, . . . , αn if it is a disjunction
of maximal formulas PM (X1 ∨ X2 ∨ · · · ∨ Xk) in α1, α2, . . . , αn . Thus what we have
shown is

Lemma 3. Each P-formula S in the atoms α1, α2, . . . , αn is provably equivalent in DL(P)
to a simplified P-form in α1, α2, . . . , αn .

The System DL(P).

Theorem 4. The system DL(P) is sound and complete.

Proof. The proof of soundness is straightforward, though it is perhaps worth comment-
ing on P-Equivalence and P-Weakening. We wish to show P(X) ≡ P(X′) is valid for X
analytically equivalent to X′. Suppose P(X) is true in a model. Then X subserves C . But
given the equivalence of X and X′, it follows that X ′ subserves X . Hence X ′ subserves
C and P(X′) is true in the model. We also wish to show that P(X ∧ Y) ⊃ P(X) is valid.
Suppose P(X ∧ Y) is true in a model and take an action a ∈ X . Y is nonempty (by the
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corresponding restriction on models) and hence contains an action b. So a 
 b ∈ X ∧ Y is
a part of an action in C and hence a is also a part of an action in C .

For completeness, we use normal forms. Suppose the P-formula S is consistent. By
Lemma 2, it is provably equivalent to a simplified P-form S1 ∨ S2 ∨ · · · ∨ Sm , for m > 0,
in the atoms α1, α2, . . . , αn of S (we might also have used standard P-forms). We can now
read a normative action model M = (A, C , �, |•|) for S off from S1, which is of the form
PM (X1 ∨ X2 ∨ · · · ∨ Xk), k > 0:

A = {L: L is a set of literals from α1, α2, . . . , αn} ∪ {�}, for some new
element �;
C = {L ∈ A: L is the set of literals in some conjunction Xi };
� = {(L, K) ∈ A2: L ⊆ K} ∪ {(L, �): L ∈ A};
|α| = ({α}, {¬α}).

It is readily established that M is indeed a normative action model; and it can be shown
that S1 and hence S is true in M. The critical point is that if ¬P(Y) is a conjunct of S1then,
for each i . . . , k, Y will contain a literal as a conjunct which is not a conjunct of Xi and
hence ¬P(Y) will be true in M.

O-Normal Forms. In the logic IL+(>): X ∧ X is not in general equivalent to X; nor is
X ∨ (Y ∧ Z) in general equivalent to (X ∨ Y) ∧ (X ∨ Z), with the consequence that A-
formulas cannot always be put into conjunctive normal form. However, results of this sort
do hold within the context of the O-operator:

Lemma 5. (i) O(X ∧ X) is provably equivalent in DL(O) to O(X);
(ii) O(X) is provably equivalent to O(X′) for some full expansion X′ of X;
(iii) O(X) is provably equivalent to O(X′) for some conjunctive normal form X′;
(iv) O(X) provably implies O(X′) in DL(O) whenever X analytically implies X′ in the

logic IL+(>).

Proof. (i) O(X ∧ X) is equivalent to O(X) ∧ O(X), by Distribution, which is equivalent
to O(X).

(ii) By Lemma 2, we may suppose X is in (disjunctive) normal A-form X1 ∨ X2 ∨ · · · ∨
Xm . O(X) is provably equivalent to O(X ∧ X ∧ · · · ∧ X) (for at least m occurrences of
X). Applying Distribution, X ∧ X ∧ · · · ∧ X is analytically equivalent to X1 ∨ X2 ∨ · · · ∨
Xm∨ (X1 ∧ X2 ∧ · · · ∧ Xm) ∨ Y1∨ Y2 ∨ · · · ∨ Yk (where the Y j are conjunctions of
some of X1, X2, . . . , Xm), which is analytically equivalent to the full expansion Z of X1 ∨
X2 ∨ · · · ∨ Xm . By part (i), O(X) is equivalent in DL(O) to O(X ∧ X ∧ · · · ∧ X), which,
by Equivalence, is equivalent to O(Z).

(iii) We may suppose X is in (disjunctive) normal A-form. Form the conjunctive normal
A-form X′ from X in the usual way and then the disjunctive normal A-form X′′ of X′. It
can be shown that the full expansions of X and X′′ are the same and so, by part (ii), O(X)
is provably equivalent to O(X′).

(iv) Suppose X analytically implies X′. Then X ∧ X is analytically equivalent to X ∧ X′.
So O(X ∧ X) is provably equivalent in DL(O) to O(X ∧ X′). But O(X) provably implies
O(X ∧ X) and O(X ∧ X′) provably implies O(X′).

We turn to the normal forms in O. An O-atom in the atoms α1, α2, . . . , αn , n ≥ 0,
is a formula of the form O(X), where X is a standard A-form in α1, α2, . . . , αn distinct
from ⊥; and an O-literal in α1, α2, . . . , αn is either an O-atom in α1, α2, . . . , αn or its
negation. Note that X here is not an A-description but a normal A-form, i.e., a disjunction
of A-descriptions; and note also that we do not allow O(⊥).
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An O-description in α1, α2, . . . , αn is now a conjunction S1 ∧ S2 ∧ · · · ∧ Sm , m ≥ 0, of
O-literals in α1, α2, . . . , αn . The O-description S1 ∧ S2 ∧ · · · ∧ Sm is said to be classical
if, for each O-description X in α1, α2, . . . , αn , either O(X) or else ¬O(X) is a conjunct
of S1 ∧ S2 ∧ · · · ∧ Sm . Say that the normal A-form Y1 ∨ Y2 ∨ · · · ∨ Yk falls under the
normal A-form X1∨ X2 ∨ · · · ∨ Xm if each disjunct Xi of X1∨ X2 ∨ · · · ∨ Xm has some
disjunct Y j of Y1∨ Y2 ∨ · · · ∨ Yk as a sub-description (some disjuncts Y j may not be sub-
descriptions of any Xi ). We then say that an O-description S1 ∧ S2 ∧ · · · ∧ Sm is standard
if it (i) is classical and (ii) contains a “maximal” conjunct O(X), which is such that, for any
standard A-form Y in α1, α2, . . . , αn , O(Y) is a conjunct of S1 ∧ S2 ∧ · · · ∧ Sm if and only
if Y falls under X. Note that any standard O-description will contain O(�), since � is a
sub-description of any A-description X. Also note that the maximal conjunct O(X) need
not be unique. Thus if O(X ∨ Y) is maximal then so is O(X ∨ Y ∨ (X ∧ Y)) (allowing
for reorder). Finally, a normal O-form in α1, α2, . . . , αn is a disjunction S1 ∨ S2 ∨ · · · ∨
Sm of O-descriptions and a standard O-form is a normal P-form all of whose disjuncts are
standard.

Lemma 6. Each O-formula S in some atoms is provably equivalent in DL(O) to a stan-
dard O-form in those atoms.

Proof. By Lemma 1, each A-formula X is analytically equivalent to a standard A-form
X1 ∨ X2 ∨ · · · ∨ Xm (in the given atoms α1, α2, . . . , αn). In case m = 0, O(X) is provably
equivalent in DL(O) to O(⊥), which, by O-Triviality, is provably equivalent to the standard
O-form ⊥. So we may suppose m > 0. By classical logic, S is equivalent to a normal O-
form S1∨ S2 ∨ · · · ∨ Sm . Each disjunct Si will contain O(�) as a conjunct, since otherwise
it will contain ¬O(�) as a conjunct, contrary to O-Triviality. Let Y1, Y2, . . . , Yk be all
the A-descriptions Y for which O(Y) is a conjunct of Si . By O-Distribution, O(Y1) ∧
O(Y2)∧· · · ∧ O(Yk) implies O(Y1 ∧ Y2∧· · · ∧ Yk) in DL(O). It follows that O(Z) must be
a conjunct of Si for some standard A-form Z analytically equivalent to Y1∧ Y2 ∧· · · ∧ Yk .
Z is obtained by Distribution (of ∧ over ∨) from Y1 ∧ Y2 ∧ · · · ∧ Yk and it is readily shown
that each Yk falls under Z. Moreover, it follows from O-Weakening and Lemma 5(iv) that,
whenever a standard A-form Y in α1, α2, . . . , αn falls under Z, O(Z) will provably imply
O(Y) and hence O(Y) will be a conjunct of Xi .

There is a way of providing a more compact formulation of a standard O-description
S1 ∧ S2 ∧ · · · ∧ Sm . For pick O(Z) as in the proof of Lemma 6, Z = Z1 ∨ Z2 ∨ · · · ∨ Zk .
Then each O(Y) that occurs as a conjunct in S1 ∧ S2 ∧ · · · ∧ Sm is provably implied by
O(Z) and may therefore be dropped. Suppose ¬O(Y) is a conjunct of S1 ∧ S2 ∧ · · · ∧ Sm ,
for Y = Y1 ∨ Y2 ∨ · · · ∨ Yl . Then Y does not fall under Z and so, for some Z j , no Yi is
a sub-description of Z j . For each Yi , pick a literal conjunct λi of Yi that is not a conjunct
of Z j . Then λ1 ∨ λ2 ∨ · · · ∨ λl does not fall under Z and so ¬O( λ1 ∨ λ2 ∨ · · · ∨ λl) is a
conjunct of S1 ∧ S2 ∧· · · ∧ Sm . Moreover, ¬O(λ1 ∨λ2 ∨ · · ·∨λl) provably implies ¬O(Y1
∨ Y2 ∨ · · · ∨ Yl) and so ¬O(Y1 ∨ Y2 ∨ · · · ∨ Yl) may be dropped from S1 ∧ S2 ∧ · · · ∧
Sm . Accordingly, given a standard A-descriptions X1, X2, . . . , Xk in α1, α2, . . . , αn , let us
use OM (X1 ∨ X2 ∨ · · · ∨ Xk) as an abbreviation for the conjunction of O(X1 ∨ X2 ∨ · · · ∨
Xk) and all the O-literals of the form ¬O(Y), where Y is the disjunction of a set of literals
{λ1, λ2, . . . , λl} in α1, α2, . . . , αn which are such that, for some X j , λ1, λ2, . . . , λl are all
the literals from α1, α2, . . . , αn which do not occur as a conjunct in X j . Say that S is a
simplified O-form in α1, α2, . . . , αn if it is a disjunction of maximal O-formulas OM (X1 ∨
X2 ∨ · · · ∨ Xk) in α1, α2, . . . , αn . Thus what we have shown is:
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Lemma 7. Each O-formula S in some atoms is provably equivalent in DL(O) to a sim-
plified O-form in those atoms.

The System DL(O).

Theorem 8. The system DL(O) is sound and complete.

Proof. The proof of soundness is straightforward, though it is perhaps worth commenting
on O-Equivalence. We wish to show O(X) ≡ O(X′) is valid for X analytically equivalent
to X′. Suppose O(X) is true in a model then C subsumes X . But given the equivalence of
X and X′, it follows that X subsumes X ′. Hence C subsumes X ′ and O(X′) is true in the
model.

We turn to completeness. Suppose the O-formula S is consistent. By Lemma 7, it is
provably equivalent to a simplified O-form S1 ∨ S2 ∨ · · · ∨ Sm , for m > 0, in the atoms α1,
α2, . . . , αn of S. We can now read a normative action model M = (A, C , �, |•|) for S off
from S1, which is of the form OM (X1 ∨ X2 ∨ · · · ∨ Xk), k > 0. We set

A = {L: L is a set of literals from α1, α2, . . . , αn} ∪ {�}, for some new
element �;
C = {L ∈ A: L is the set of literals in some conjunction Xi };
� = {(L, K) ∈ A2: L ⊆ K} ∪ {(L, �): L ∈ A};
|α| = ({α}, {¬α}).

It is readily established that M is indeed a normative action model; and it can be shown
that S1 and hence S is true in M. The critical point in the proof is that if ¬O(Y) is a conjunct
of S1for Y = λ1 ∨ λ2 ∨ · · · ∨ λl then, for some Xi , no λ j will be a conjunct of Xi and
hence ¬O(Y) will be true in M.

D-Normal Forms. We take a D-description in the atoms α1, α2, . . . , αn , n ≥ 0, to be a
conjunction of the form PM (X1 ∨ X2 ∨ · · · ∨ Xm) ∧ OM (Y1 ∨ Y2 ∨ · · · ∨ Yl)) and we
take a D-normal form to be a disjunction of D-descriptions. By combining the proofs of
Lemmas 3 and 7, we obtain

Lemma 9. Each D-formula is provably equivalent in DL to a normal D-form.

The P- and O-formulas in a D-description will interact. Suppose we are given a D-
description of the form PM (X1 ∨ X2 ∨ · · · ∨ Xk) ∧ OM (Y1 ∨ Y2 ∨ · · · ∨ Yl). By the
second Mixture Axiom, P(Xi ) ∧ O(Y1 ∨ Y2 ∨ · · · ∨ Yl) will imply P(Xi ∧ Y1) ∨ P(Xi ∧
Y2) ∨ · · · ∨ P(Xi ∧ Yl). But each P(Xi ∧ Y j ) implies P(Xi ); so

∧
i [P(Xi ∧ Y1) ∨ P(Xi ∧

Y2)∨ · · · ∨ P(Xi ∧ Yl)] implies PM (X1 ∨ X2 ∨ · · · ∨ Xk); and so PM (X1 ∨ X2 ∨ · · · ∨ Xk)
may be dropped in favor of

∧
i [P(Xi ∧ Y1) ∨ P(Xi ∧ Y2)∨· · · ∨ P(Xi ∧ Yl)]. Distributing

through, we see that we can require that, in the original D-description PM (X1 ∨ X2 ∨ · · · ∨
Xk) ∧ OM (Y1∨ Y2 ∨ · · · ∨ Yl), each Xi has some Y j as a sub-description. Suppose now
that some Y j is not a sub-description of any Xi . Then ¬P(Y j ) is a conjunct of PM (X1 ∨
X2 ∨ · · · ∨ Xk). By the first Mixture Axiom, O(Y1 ∨ Y2 ∨ · · · ∨ Yl) ∧ ¬P(Y j ) implies
O(Y1 ∨ Y2 ∨ · · · ∨ Y j−1 ∨ Y j+1 ∨ · · · ∨ Yl) and, by Weakening, O(Y1 ∨ Y2 ∨ · · · ∨
Y j−1∨ Y j+1∨· · · ∨ Yl) implies O(Y1∨ Y2∨· · · ∨ Yl). Thus in this case, O(Y1 ∨ Y2∨· · · ∨
Yl) may be replaced by O(Y1 ∨ Y2 ∨ · · · ∨ Y j−1∨ Y j+1 ∨ · · · ∨ Yl). We may therefore
assume that, in the original D-description PM (X1∨ X2 ∨ · · · ∨ Xk) ∧ OM (Y1 ∨ Y2 ∨ · · · ∨
Yl), each Y j is a sub-description of some Xi . Accordingly, let us say that a D-description
PM (X1 ∨ X2 ∨ · · · ∨ Xk) ∧ OM (Y1∨ Y2 ∨ · · · ∨ Yl) is a simplified D-description if (i)
each Xi has some Y j as a sub-description and (ii) each Y j is a sub-description of some Xi

(this is the syntactic analogue of the requirement that the content of the obligation should
be part of the content of the permission).
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We have therefore proved:

Lemma 10. Each D-formula in some atoms is provably equivalent in DL to a simplified
D-form in those atoms.

Theorem 11. The system DL is sound and complete.

Proof. We comment on the validity of the Mixture Axioms. First consider O(X ∨ Y) ∧
¬P(X) ⊃ O(Y) for definite X, and suppose O(X ∨ Y) and ¬P(X) are true in a given model.
Take any action c ∈ C . Then c � a for some a ∈ X ∪ Y . But a /∈ Y since, given that X
is definite, a would otherwise be the sole member of X and so P(X) would then be true.
So a ∈ X and consequently O(X) is true. Now consider O(X1 ∨ X2 ∨ · · · ∨ Xn) ∧ P(Y) ⊃
P(X1 ∧ Y) ∨ P(X2 ∧ Y) ∨ · · · ∨ P(Xn ∧ Y), for definite X1, X2, . . . , Xn and Y, and suppose
O(X1∨ X2 ∨ · · · ∨ Xn) and P(Y) are both true. Then where b is the sole member of Y ,
b � c for some c ∈ C . But c ∈ a for some a ∈ X1 ∪ X2 ∪ · · · ∪ Xn . Given that X1, X2, . . . ,
Xn are definite, a is the sole member of some Xi and a 
 b is the sole member of Xi ∧ Y ;
and so P(Xi ∧ Y) is true.

We turn to completeness. Suppose the D-formula S is consistent. By Lemma 2, it is
provably equivalent to a simplified D-form S1 ∨ S2 ∨ · · · ∨ Sm , for m > 0, in the atoms α1,
α2, . . . , αn of S. We can now read a normative action model M = (A, C , �, |•|) for S off
from S1, which is of the form PM (X1 ∨ X2 ∨ · · · ∨ Xk) ∧ OM (Y1 ∨ Y2 ∨ · · · ∨ Yl), k, l >
0. We set:

A = {L: L is a set of literals from α1, α2, . . . , αn} ∪ {�}, for some new
element �;
C = {L ∈ A: L is the set of literals in some conjunction Xi or in some
conjunction Y j };
� = {(L, K) ∈ A2: L ⊆ K} ∪ {(L, �): L ∈ A};
|α| = ({α}, {¬α}).

It is readily established that M is indeed a normative action model; and it can be shown
that S1 and hence S is true in M. In establishing the truth of O(Y1∨ Y2 ∨ · · · ∨ Yl), it is
critical that each Xi has some Y j as a sub-description; and in establishing the truth of a
conjunct ¬P(Z), it is critical that each Y j be a sub-description of some Xi .
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