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Diffusiophoresis describes the motion of colloids in an electrolyte or non-electrolyte
solution where there is a concentration gradient. While most of the studies of
diffusiophoresis focus on the motion of solid particles, soft objects such as drops
and bubbles are also known to experience diffusiophoresis. Here, we investigate the
diffusiophoresis of charged drops in an electrolyte solution both analytically and
experimentally. The drop is assumed to remain spherical. An analytical solution of
the diffusiophoretic velocity of drops is obtained by perturbation methods. We find
that the flow inside the drop is driven by the tangential electric stress at the interface
and it directly influences the diffusiophoretic speed of the drop. Using charged oil
droplets, we measure the drop speed under solute concentration gradients and find
good agreement with the analytical solution. Our findings have potential applications
for oil recovery and drug delivery.
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1. Introduction
Colloids immersed in electrolyte solutions usually carry net charges on their surface,

which is further surrounded by a cloud of counterions. This cloud, as sketched in
figure 1(a), is called the ‘electric double layer’ (EDL) and charged with more
counterions than coions. Its typical thickness, also referred as the Debye length, is
denoted by κ−1, which is most commonly on the scale of 1–10 nm in water or fluids
with high dielectric constants.

If the electrolyte solution has a uniform concentration gradient ∇c∞, the ion
diffusion fluxes j

+,D = −D+∇c∞ and j
−,D = −D−∇c∞ will be different due to

differences between the diffusion coefficients of cations (D+) and anions (D−). Thus,
an electric field E∞, which accelerates the slowly diffusing ions and decelerates
the fast diffusing ions, will build up to maintain the electroneutrality in solution
(Prieve et al. 1984), as shown in figure 1(b). The electric field causes motion of the
suspended charged colloids by exerting a force on the fluid inside the EDL, which
is the response known as electrophoresis. The solute gradient within the EDL also
produces a pressure-driven osmotic flow, which is known as chemiphoresis. The
direction of the electro-osmotic flow (EOF) depends on the electric field E∞ and the
charge on the particle/drop surface, while the direction of the chemi-osmotic flow
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FIGURE 1. (Colour online) (a) Electric double layer (EDL): the ratio of the number
of water molecules to that of the ions is exaggerated. The former is usually several
orders of magnitude higher than the latter in a dilute solution. (b) Mechanism of
diffusiophoresis when there is an external concentration gradient ∇c∞. The dotted line
indicates the EDL around the colloid. The solid and dotted arrows indicate the directions
of the chemi-osmotic flow (COF) and the electro-osmotic flow (EOF), respectively. As a
consequence, the velocity of the colloid (−ud) is in the opposite direction in the laboratory
frame.

(COF) is always from regions of high-to-low concentration (Prieve et al. 1984; Khair
& Squires 2009). The interplay of these two forces sets the particle velocity relative
to the fluid, i.e. vp− vf =−ud, where vp, vf and −ud are the particle, local fluid and
diffusiophoretic velocity of the particle, respectively.

This mechanism of particle transport, induced by a concentration gradient
and consisting of both the electrophoresis and chemiphoresis contributions, is
called ‘diffusiophoresis’, first proposed by Derjaguin et al. (1947) and Derjaguin
et al. (1961). Most of the previous studies of diffusiophoresis are limited to the
motion of rigid particles (Prieve et al. 1984; Prieve & Roman 1987; Anderson 1989).
The viscosity ratio µ/µ of a drop with viscosity µ and an outer solution with
viscosity µ is a key factor in the study of diffusiophoresis of drops; a rigid particle
is a special case where µ/µ→ ∞. In the literature, there are only a few papers
studying the diffusiophoresis and electrophoresis of drops but they report different
results concerning the dependence of the diffusiophoretic speed on µ/µ. For example,
Baygents & Saville (1988) calculate the diffusiophoretic speed with different µ/µ,
which disagrees the numerical results reported by Lou & Lee (2008). With respect
to electrophoresis of droplets of radius a, Booth (1951) and Jordan & Taylor (1952)
give different dependence of droplet speed as a function of the imposed uniform
electric field on µ/µ in the limit λ = (κa)−1

→ 0. Additionally, Ohshima & Healy
(1984) predict that the electrophoretic speed of a drop does not depend on µ/µ when
the zeta potential on the drop is very large and λ is small, and they refer to this
phenomenon as ‘solidification’ because the drop’s diffusiophoretic speed is the same
as its equivalent solid particle (same size and zeta potential, but µ/µ→∞). However,
numerical results reported by Baygents & Saville (1991) show that the ‘solidification’
effects are more significant when λ increases. For bubbles, Schnitzer, Frankel & Yariv
(2014) reports an analysis of electrophoresis of bubbles but the theoretical results are
at odds with the experimental observation.

In this paper, we investigate the diffusiophoresis of charged drops both analytically
and experimentally. An analytical solution for the diffusiophoretic velocity of
non-conductive drops, given in (2.66), is obtained using perturbation methods. In
laboratory experiments, we use silicone oil droplets, which are charged by adding
ionic surfactants, and measure their speed under a solute concentration gradient. The
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FIGURE 2. (Colour online) (a) Model for a spherical drop: the particle surface is charged,
either positively or negatively. The dotted line surrounding the particle represents the
boundary layer. A spherical coordinate is fixed at the centre of the drop with the direction
of θ = 0, namely ex, parallel to ∇c∞, ud and E∞. Also, n is the unit normal vector at
the interface. (b) The coordinate used in the boundary-layer solutions.

experiments show that the oil droplets move more slowly when µ/µ decreases.
In particular, when the viscosity ratio (drop to continuous phase) µ/µ > 10,
the diffusiophoretic speed of oil droplets is almost the same as their equivalent
rigid-particle speed. The experimental results are in good agreement with our theory.

The applications of diffusiophoresis have been studied widely (Velegol et al.
2016), but often restricted to solid particles, such as transport of colloids to/from
a dead-end channel (Kar et al. 2015; Shin et al. 2016), particle sorting and sample
preconcentration (Shin et al. 2016), water filtration and purification (Florea et al.
2014; Shin et al. 2017b) and even detecting bone fractures (Yadav et al. 2013). Our
theory can lay the foundation to extend these applications to droplets, such as is
relevant for recovery of oil and drug delivery.

2. Modelling diffusiophoresis of a non-conductive drop
2.1. Model description

A spherical coordinate system (r, θ) is fixed to the centre of a sphere of radius
a, axisymmetry is assumed and the flow velocity at infinity is denoted by ud. The
concentrations of the cations and anions are denoted c±, respectively. For simplicity,
the valences for both ions are assumed to be the same, denoted by z, such as NaCl
(where z = 1), KCl, etc. The direction of the concentration gradient is set to be
aligned with the axis θ = 0, indicated by a unit vector ex, as shown in figure 2.
Therefore, the uniform concentration gradient at r→∞ is ∇c∞ = Gex, where G is
the magnitude. Due to symmetry, the direction of ud should also be along ex.

When the Debye length κ−1 is much smaller than the drop radius a, there is a
boundary layer (i.e. the EDL) adjacent to the surface of the drop. The whole field
is divided into three regions, namely the outer region outside the boundary layer in
the bulk solution, the boundary layer adjacent to the drop surface in the continuous
phase and the drop region inside the non-conductive drop, as labelled in figure 2(a).
The corresponding analytical solutions in these regions are called the outer solution,
boundary-layer solution and drop-region solution, respectively.

2.2. Assumptions
The following assumptions are made in our modelling: (i) there is no solute in the
drop; (ii) α=Ga/c∞(0)� 1, where G is the magnitude of the imposed concentration
gradient and c∞(0) is the solute concentration at r= 0 in the absence of the particle,
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which is assumed to be known; (iii) λ= (aκ)−1
� 1, where κ−1 is the Debye length

(defined precisely later). The first assumption has a wide application to water–oil
systems, because oil is non-polar and most electrolytes dissolve sparingly in it. The
second assumption implies that the concentration difference at the scale of the size of
drop is much smaller than the background concentration. This limit can be achieved
when either the concentration gradient or the size of droplet is sufficiently small. The
third assumption requires the electric double layer thickness to be much smaller than
the radius of droplet. A typical scale for the Debye length is approximately 1–10 nm
in water or fluids with high dielectric constants. A droplet at the scale of 1 µm or
larger would typically satisfy λ� 1 very well. In the following analysis, we first use
a regular perturbation on α, then for each order of α, a singular perturbation on λ is
further applied.

2.3. Governing equations and boundary conditions
The ion flux is

j
±
= c±u−D±

(
∇c± ±

zec±
kBT
∇ψ

)
, (2.1)

where c+(c−) is the concentration of cations (anions), e is the elementary charge, u is
the velocity field, ψ is the electric potential, kB and T are the Boltzmann constant and
the temperature, respectively. Since the flow field u is incompressible, the continuity
of ions using (2.1) can be written as

D±∇ ·
[
∇c± ±

ze
kBT

c±∇ψ
]
= u · ∇c± +

∂c±
∂t
. (2.2)

The governing equation for the electric potential ψ , with electric field E=−∇ψ , is
Gauss’s law

∇
2ψ =−

ρe

ε
, (2.3)

where ε is the permittivity of the fluid and ρe is the local charge density, i.e.

ρe = ez(c+ − c−). (2.4)

Finally, because the Reynolds number Re is assumed small, the incompressible flow
field is governed by the Stokes equations with an electric body force

0=−∇p+µ∇2u− ρe∇ψ, (2.5a)
∇ · u= 0, (2.5b)

where p is the pressure and µ is the viscosity.
The Newtonian stress and Maxwell stress tensors are denoted, respectively, by SN

and SM, namely

SN =−pI +µ(∇u+∇uT), (2.6a)
SM = ε

[
∇ψ∇ψ − 1

2(∇ψ · ∇ψ)I
]
, (2.6b)

where I is the identity tensor. We denote the fields inside the drop with an overbar. At
the interface of the drop (r= a), we have continuity of velocity and a stress balance
(Leal 2007), i.e.

u= u, (2.7a)
n · (SN + SM)− σ(∇s · n)n+∇sσ = n · (SN + SM) (2.7b)

and for a steady shape,
n · u= 0, (2.8)
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Diffusiophoresis of a charged drop 41

where n is the unit normal vector at the interface pointing away from the drop into
the bulk solution, σ is the surface tension and ∇s= (I − nn) · ∇ is the gradient along
the surface. We assume there is no surfactant gradient in the solution and thus no
surface tension gradient, i.e. ∇sσ = 0 in (2.7). Also since there is no solute inside the
droplet, the normal ion flux at the interface (r= a) should vanish, i.e.

n · j
±
= 0. (2.9)

The boundary conditions for the electric potential at r= a are

n · (ε∇ψ − ε∇ψ)= fe, (2.10a)
∇sψ =∇sψ or ψ =ψ, (2.10b)

where fe is the surface charge density and in (2.10b) there is no loss of generality
setting a constant of integration to be zero.

The boundary condition for the concentration field far from the droplet is

∇c+ =∇c−→∇c∞ =Gex as r→∞. (2.11)

To maintain electroneutrality in the outer region, we should have j
+
= j
−

, which gives

c+u−D+

(
∇c+ +

zec+
kBT
∇ψ∞

)
= c−u−D−

(
∇c− −

zec−
kBT
∇ψ∞

)
. (2.12)

Thus, as r→∞, in accordance with (2.11), equation (2.12) leads to

E∞ =−∇ψ∞ =
kBT
ze
β∇ ln c∞, (2.13)

where
β =

D+ −D−
D+ +D−

. (2.14)

Equation (2.13), together with (2.14), is a classical result derived in Prieve et al.
(1984). It serves as the boundary condition for the electric field at r → ∞, and
explicitly shows how the presence of an ion concentration gradient and a difference
of cation and anion diffusivities give rise to a local electric field.

2.4. Scaling
The drop radius a is chosen as the typical length scale, so we define R = r/a and
the dimensionless gradient operator ∇̃= a∇. Equation (2.2) gives ψ =O(kBT/ze). In
(2.5a), we have p = O(ε(kBT/zea)2) using (2.3) to recognize ρe = O(εkBT/zea2)
and also u = O(ε(kBT)2/µa(ze)2). In (2.7), the surface tension is scaled with
σ = O(ε/a(kBT/ze)2) and the dimensionless surface tension is denoted by Σ =
σ/(ε/a)(kBT/ze)2. In particular, it is useful to note that diffusiophoresis is driven
by a concentration gradient, equation (2.11), which in dimensionless terms is O(α).
Recalling that α=Ga/c∞� 1, we now assume a regular perturbation series in α, i.e.

c± = c∞(0)(C0± + αC1± +O(α2)), (2.15a)

ψ =
kBT
ze
(Ψ0 + αΨ1 +O(α2)), (2.15b)
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u=
ε(kBT)2

µa(ze)2
(0+ αU1 +O(α2))=

αε(kBT)2

µa(ze)2
U1 +O(α2), (2.15c)

p= ε
(

kBT
zea

)2

(P0 + αP1 +O(α2)). (2.15d)

The surface charge density fe can be non-dimensionalized by zec∞(0)a, and expanded
as

fe = zec∞(0)a(F0 + αF1 +O(α2)). (2.16)

With this notation, the capital letters are non-dimensionalized with the subscript
indicating the order of α. Note that U0 = 0 in (2.15c) because the flow field is
induced by the concentration gradient. Also, the contribution of the deformation of a
spherical drop to its velocity is O(εE2a/σ) (Mandal, Bandopadhyay & Chakraborty
2016), which is the electric capillary number. With the orders of magnitude indicated
in (2.15), the electric capillary number is αε/aσ(kBT/ze)2 � 1 (for silicone oil
droplets with radius 1 µm in water at room temperature, ε/aσ(kBT/ze)2 = O(10−5)).
Thus, the deformation of the drop can be neglected.

In the following analysis, we use both a regular perturbation on α, as above, and
a singular perturbation on λ = (aκ)−1

� 1 to solve the governing equations. For
example, as shown in (2.33) below, the O(α0) for the electric potential Ψ can be
further expanded as a series of λ, i.e.

Ψ0 =Ψ
(0)

0 + λΨ
(1)

0 +O(λ2), (2.17)

where the superscript ‘n’ indicates the order of expansion in λ (and the subscript is
the order of expansion in α). This expansion in λ can be similarly applied to any field
variable at any order of α. We next construct solutions to the governing equations.

2.5. O(α0) and O(α, λ0) outer solutions of the concentration and electric fields

The O(α0) of both the concentration field and electric potential are constant in the
absence of the particle and the concentration gradient. The constant concentration field
is c∞(0) in dimensional form or 1 in dimensionless form, as shown in (2.15a); the
constant undisturbed electric potential is defined by Ψ∞(0), i.e.

Co,0+ =Co,0− =Co,0 = 1, (2.18a)
Ψo,0 =Ψ∞(0), (2.18b)

where the subscript ‘o’ represents the outer solution and Co,0 is the concentration field
for both cations and anions in the outer region at O(α0).

At O(α), there is no net charge in the outer region, therefore, the Poisson equation
(2.3) becomes

∇̃
2Ψo,1 = 0. (2.19)

The concentration field in the outer region should satisfy

Co,1+ =Co,1− =Co,1, (2.20)

where Co,1 is the concentration field for both cations and anions in the outer region
at O(α). If we neglect the convective term in (2.2), the continuity of ions leads to

∇̃
2Co,1 = 0. (2.21)
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Neglecting the convection can be justified by assuming the Péclet number Pe =
ua/D� 1. Based on the scaling identified in § 2.4, the Péclet number is given by

Pe= α
ε(kBT)2

µD∗(ze)2
, (2.22)

where we assume D+ and D− are of the same order of magnitude, indicated by D∗. An
estimate for Pe/α using D∗=10−9 m2 s−1, T=300 K and z=1 shows that Pe/α'0.5
for water. Thus, the convective term, as characterized by Pe, for ion transport can be
neglected when α� 1.

By matching with (2.11), the boundary conditions for the concentration field in the
outer region at O(α, λ0) are

∇̃C(0)
o,1→ ex as R→∞, (2.23a)

n · ∇̃C(0)
o,1 = 0 at R= 1+, (2.23b)

where R= 1+ indicates the outer boundary of the EDL at the drop surface. We note
that (2.23b) is based on the assumption that there are no solutes inside the droplet and
consequently the normal ion flux at the interface is O(λ) (Anderson & Prieve 1991;
Pawar, Solomentsev & Anderson 1993). Therefore, in the limit λ→ 0, the normal flux
at the outer boundary of the EDL can be neglected. Also, up to O(λ0), R= 1+ can
be replaced by R= 1 in (2.23b). With these assumptions, the solution of (2.21) with
(2.23) is

C(0)
o,1(R, θ)=

(
1+

1
2R3

)
R · ex. (2.24)

This solution is the outer concentration field at O(α, λ0). Similarly the boundary
conditions for the electric field in the outer region at O(α, λ0) are

∇̃Ψ (0)
o → ∇̃Ψ∞ as R→∞, (2.25a)

n · ∇̃Ψ (0)
o = 0 at R= 1+, (2.25b)

where Ψ∞= zeψ∞/kBT is the dimensionless electric potential in the far field. The outer
solution of (2.19) with (2.13) and (2.25) for the electric potential at O(α, λ0) is

Ψ
(0)

o,1 (r, θ)=−β
(

1+
1

2R3

)
R · ex. (2.26)

In the following sections, we proceed to calculate the flow field and the boundary-
layer and drop-region solutions for the concentration field and electric potential using
perturbation expansions. Our calculation follows Prieve et al. (1984) to solve for the
flow field outside the droplet. By applying the boundary conditions at the interface
(2.7), we can calculate the induced flow field inside the drop and so analyse its
effect on the diffusiophoretic speed of a drop. The theory is then compared with
experimental measurements in § 3.

2.6. O(α0) solutions of the concentration and electric fields in the boundary layer
and drop region

At O(α0), there is no ion flux in a steady state inside the boundary layer in the
absence of an imposed concentration gradient in the outer region, and the ion flux also
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vanishes inside the drop because there is no solute. Therefore, in both the boundary
layer and drop region, we have

j0± = 0. (2.27)

The zeroth-order approximations in an expansion in α for (2.1), (2.3), (2.4) and
(2.27) are

∇̃C0± ±C0±∇̃Ψ0 = 0, (2.28a)

∇̃
2Ψ0 =

a2z2e2c0

εkBT
(C0− −C0+)=

1
2λ2

(C0− −C0+). (2.28b)

We note that at this level of approximation there are no flow effects. The expression
for the Debye length can be determined from (2.28b) with λ= (aκ)−1, i.e.

κ−1
=

√
εkBT

2z2e2c0
. (2.29)

Now we determine the boundary-layer solutions using a perturbation approach based
on λ � 1. By rescaling the radial coordinate by Y = λ−1(R − 1), as shown in
figure 2(b), a boundary layer is introduced on the drop surface, which is the EDL.
We denote the boundary-layer solutions with an additional subscript ‘b’, i.e.

C0±(R)=C0±(λY + 1)=Cb,0±(Y), (2.30a)
Ψ0(R)=Ψ0(λY + 1)=Ψb,0(Y). (2.30b)

Equations (2.30) define the function Cb,0± and Ψb,0. By asymptotically matching with
the outer solutions at O(α0) (2.18), the boundary conditions are

Cb,0±→ 1 as Y→∞, (2.31a)
Ψb,0→Ψ∞(0) as Y→∞, (2.31b)

Ψb,0 =
zeζ
kBT
+Ψ∞(0) at Y = 0, (2.31c)

where ζ is the zeta potential of the drop.
The solution of (2.28a) is familiar,

Cb,0± = e∓(Ψb,0−Ψ∞(0)). (2.32)

The boundary-layer solutions for the electric potential based on solving (2.28b) with
(2.31b) and (2.31c) are given in Chew & Sen (1982) as a singular perturbation
expansion in λ� 1. The results are

Ψb,0 =Ψ
(0)

b,0 + λΨ
(1)

b,0 +O(λ2), (2.33a)

where Ψ
(0)

b,0 =Ψ∞(0)+ 4 arctanh(γ e−Y), (2.33b)

and Ψ
(1)

b,0 =
2γ e−Y

1− γ 2e−2Y
[γ 2(1− e−2Y)− 2Y], (2.33c)

with the constant
γ = tanh

zeζ
4kBT

. (2.34)

Recall that the superscript ‘n’ indicates a term O(λn).
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In the drop region, i.e. the domain inside the drop, since there is no solute, the
electric potential Ψ 0 is governed by

∇̃
2Ψ 0 = 0 (2.35)

and the boundary conditions are

Ψ 0 =
zeζ
kBT
+Ψ∞(0) at R= 1, (2.36a)

dΨ 0

dR
bounded at R= 0. (2.36b)

The solution for Ψ 0(R) is a constant, i.e.

Ψ 0(R)=
zeζ
kBT
+Ψ∞(0), at 0 6 R 6 1. (2.37)

2.7. O(α, λ0) solutions of the velocity field in all regions and the concentration and
electric fields in the boundary layer and drop region

We now proceed to the next order to calculate the velocity field from which the
translation speed of the drop is determined. The O(α) term of the ion transport
equation (2.2) is

ω±∇̃ · [∇̃C1± ±C0±∇̃Ψ1 ±C1±∇̃Ψ0] = PebU1 · ∇̃C0±, (2.38)

where ω± = D±/D = 1/1∓ β is the dimensionless diffusion coefficient with
D= 2D+D−/D+ +D−. The constant Peb, which plays the role of a Péclet number, is

Peb =
ε(kBT)2

µD(ze)2
. (2.39)

Also notice that the transient term in (2.2) is neglected since ∂c/∂t≈ (∂c/∂x)(∂x/∂t)=
O(α2). The O(α) term of Gauss’s law (2.3) is

∇̃
2Ψ1 =

a2z2e2c∞
εkBT

(C1− −C1+)=
1

2λ2
(C1− −C1+). (2.40)

Taking the curl of (2.5a), the O(α) equation is

0= ∇̃ ∧ ∇̃2U1 + ∇̃ ∧ (∇̃
2Ψ0∇̃Ψ1 + ∇̃

2Ψ1∇̃Ψ0). (2.41)

By defining U1 = Urer + Uθeθ , where Ur and Uθ are the radial and angular velocity,
respectively, the continuity equation can be written as

1
R2

∂

∂R
(R2Ur)+

1
R sin θ

∂

∂θ
(Uθ sin θ)= 0. (2.42)

The far-field boundary conditions for the concentration and electric fields in the outer
region are found by matching with (2.24) and (2.26) at R→∞, i.e.

C1±→ R cos θ, (2.43a)
Ψ1→−βR cos θ, (2.43b)
Ur→−Ud cos θ, (2.43c)

Uθ→Ud sin θ (2.43d)
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and Ud = ε(kBT)2/µa(ze)2ud · ex is the dimensionless speed in the far field for which
we want to solve. The concentration and electric potential fields vary linearly with
position while the far-field velocity is uniform.

It is easy to check (Baygents & Saville 1988) that the radial and angular velocities
can be decomposed into

Ur(R, θ)= U(R) cos θ, (2.44a)
Uθ(R, θ)= V(R) sin θ (2.44b)

and they will satisfy the continuity equation and boundary conditions. Similarly, we
can also assume

C1±(R, θ)= C±(R) cos θ, (2.45a)
Ψ1(R, θ)=Φ(R) cos θ. (2.45b)

Inside the boundary layer, we use a singular perturbation on λ and let Y =λ−1 (R− 1).
The field variables in the boundary layer are defined by changing variable from R to
Y , i.e.

Ur = U(λY + 1) cos θ = Ub(Y) cos θ, (2.46a)
Uθ = V(λY + 1) sin θ = Vb(Y) sin θ, (2.46b)

C1± = C±(λY + 1) cos θ = Cb,±(Y) cos θ, (2.46c)
Ψ1 =Φ(λY + 1) cos θ =Φb(Y) cos θ. (2.46d)

Next we expand all the functions in terms of λ, i.e.

Ub = U (0)
b + λU

(1)
b +O(λ2), (2.47a)

Vb = V (0)
b + λV

(1)
b +O(λ2). (2.47b)

Similar methods in Prieve et al. (1984) are employed to solve the velocity field inside
the boundary layer. The details are provided in appendix A. The results are

U (0)
b (Y)= 0, (2.48a)

V (0)
b (Y)= 3(1− β)[ln(eY

+ γ )− Y] + 3(1+ β)[ln(eY
− γ )− Y] +CV, (2.48b)

where CV is a constant to be determined.
When solving for the outer solution of the momentum equation, due to electroneutrality,

we only need to solve the homogeneous Stokes’ equations. Thus, the outer solution
has the form

Uo(R)=
a1

R3
+

a2

R
+ a3 + a4R2, (2.49a)

Vo(R)=
a1

2R3
−

a2

2R
− a3 − 2a4R2, (2.49b)

where a1, a2, a3 and a4 are constants, and Uo(R) and Vo(R) are the outer solutions
for U(R) and V(R) in (2.44), respectively. To satisfy boundary conditions (2.43c) and
(2.43d), we have

a3 =−Ud, (2.50a)
a4 = 0. (2.50b)
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It can be shown that the electric force on any closed surface around a sphere in the
outer region is zero up to O(α) (Prieve et al. 1984), and the hydrodynamic force
on the drop (together with the EDL) is proportional to a2 (Happel & Brenner 1973).
Therefore, the force balance gives that a2 = 0 at O(α) and (2.49) becomes

Uo(R)=
a1

R3
−Ud, (2.51a)

Vo(R)=
a1

2R3
+Ud. (2.51b)

By matching with the boundary-layer solutions (2.48) at the interface, we have

a(0)1 −U(0)
d = 0, (2.52a)

a(0)1

2
+U(0)

d =CV . (2.52b)

Thus,

U(0)
d =

2CV

3
. (2.53)

Similarly, the drop-region solutions for the velocity field have the form

U(R)=
a1

R3
+

a2

R
+ a3 + a4R2, (2.54a)

V(R)=
a1

2R3
−

a2

2R
− a3 − 2a4R2, (2.54b)

where a1, a2, a3 and a4 are constants. The boundedness at R= 0 requires that a1 =

a2 = 0. By matching with boundary-layer solutions (2.48), we have

a(0)4 =−a(0)3 =−3(1− β) ln(1+ γ )− 3(1+ β) ln(1− γ )−CV . (2.55)

Therefore,

U (0)
(R)= a(0)4 (R2

− 1), (2.56a)

V (0)
(R)=−a(0)4 (2R2

− 1). (2.56b)

The O(α) contribution to the tangential component of the stress-balance boundary
condition (2.7) including electrical effects is

1
R
∂Ur

∂θ
−

Uθ

R
+
∂Uθ

∂R
+

1
R

dΨ0

dR
∂Ψ1

∂θ
=
µ

µ

(
1
R
∂Ur

∂θ
−

Uθ

R
+
∂Uθ

∂R

)
+
ε

εR
dΨ 0

dR
∂Ψ 1

∂θ
. (2.57)

Applying the boundary conditions for the electric potential (2.10a) at the interface

dΨ0

dR
−
ε

ε

dΨ 0

dR
=

1
2λ2

F0, (2.58a)

Ψ1 =Ψ 1, (2.58b)

as well as
Ur =Ur = 0, (2.59)
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then substituting into (2.57), we have

−Uθ +
∂Uθ

∂R
+ λ−1F0

∂Ψ1

∂θ
=
µ

µ

(
−Uθ +

∂Uθ

∂R

)
, (2.60)

where F0 is the dimensionless surface charge density at O(α0). Together with (2.33)
and (2.37), F0 can be calculated through (2.58a), which is

F0 = F(0)
0 + λF

(1)
0 + λ

2F(2)
0 +O(λ3) (2.61)

with

F(0)
0 = 0, (2.62a)

F(1)
0 =−

8γ
1− γ 2

, (2.62b)

F(2)
0 =−8γ . (2.62c)

Substituting (2.46b), (A 19), (2.48b) and (2.56b) into (2.57), we have

3λ−1

(
−
(1− β)γ

1+ γ
+
(1+ β)γ

1− γ

)
− 3(1− β) ln(1+ γ )− 3(1+ β) ln(1− γ )

−CV −

[
λ−1 4γ

1− γ 2
+ 4γ

]
[Φ(0)(0)+ λΦ(1)(0)] =−3

µ

µ
a4,0. (2.63)

Thus by asymptotically matching orders of λ, we find

Φ(0)(0)=
3(γ + β)

2
, (2.64a)

−3(1− β) ln(1+ γ )− 3(1+ β) ln(1− γ )−CV − 4γΦ(0)(0)−
4γΦ(1)(0)

1− γ 2
=−3

µ

µ
a4,0.

(2.64b)
Then, using (2.53) and (2.55), we obtain

a(0)4 =−
1

1+ 3µ/µ

[
6γ (γ + β)+

4γΦ(1)(0)
1− γ 2

]
(2.65)

and

U(0)
d =

2
3

CV =−2 ln(1− γ 2)+
zeβζ
kBT
−

2
3(1+ 3µ/µ)

[
6γ (γ + β)+

4γΦ(1)(0)
1− γ 2

]
,

(2.66)
which are the main analytical results of this paper. We further define

U(0)
d,s =−2 ln(1− γ 2)+

zeβζ
kBT

, (2.67a)

U(0)
d,l =−

2
3(1+ 3µ/µ)

[
6γ (γ + β)+

4γΦ(1)(0)
1− γ 2

]
(2.67b)

and note that U(0)
d =U(0)

d,s +U(0)
d,l with U(0)

d,s the diffusiophoretic speed of solid particles
(Prieve et al. 1984). Thus the contribution U(0)

d,l is exclusive for drops.
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However, in (2.66), we have not determined Φ(1)(0), which is the perturbed electric
potential of O(α, λ) at the interface. Solving for Φ(1) requires (2.40), (2.48b), (2.64b)
and from appendix A, (A 16), (A 17b) and (A 21b). Since both S(1)b and Q(1)

b from
appendix A contain an integration with U (1)

b , which is also an integration of V (0)
b , see

(A 21b), then (2.40) and (2.64b) are essentially transcendental equations for Φ(1) and
CV . Also, a boundary condition for Φ of O(α, λ) at the outer edge of the boundary
layer is required, which can be partly found in Pawar et al. (1993). But note that the
result in Pawar et al. (1993) is still not precise to O(α, λ) because the counterion
flux within the boundary layer is neglected and the tangential velocity within the
boundary layer V0

b (Y) is approximated by the tangential velocity at the outer edge
of the boundary layer V0

b (∞). Both simplifications lead to deviations of O(α, λ).
Therefore, the exact solution for Φ(1)(0) is not yet determined. It may be easier and
more practical to use it as a fitting parameter, which we do when comparing (2.66)
with experimental measurements in the next section. The solutions for field variables
of different orders and regions are summarized in table 1.

3. Experiments

The diffusiophoresis velocity U(0)
d is the dimensionless velocity of the drop. Since

it is scaled by ∇ ln c, U(0)
d can also be deemed as a dimensionless diffusiophoretic

mobility (or coefficient), which can further be measured from experiments. To
experimentally measure the diffusiophoretic velocity U(0)

d of oil droplets with various
viscosities, we perform controlled microfluidics experiments using a dead-end
geometry where a solute gradient is established along the dead-end channel
and induces approximately rectilinear diffusiophoresis of oil droplets. Detailed
experimental methods can be found in our previous papers (Shin et al. 2016, 2017a).
In brief, the charged droplets in a low NaCl concentration solution are introduced to
a dead-end pore containing higher NaCl concentration, leading to diffusiophoresis into
the dead-end channel. Upon entry, the droplets form a propagating front because the
droplet velocity is proportional to the gradient of the logarithmic solute concentration.
The colloidal focusing is a function of the diffusiophoretic mobility, which allows us
to extract U(0)

d by visualizing the location of the focused region using a fluorescence
microscope (DMI4000B, Leica).

The oil emulsions with various viscosities are synthesized by a sonication method
(Banerjee et al. 2016). In detail, silicone oil (Sigma-Aldrich, 2 cSt 6 µ 6 500 cSt)
was initially dyed with an oil-soluble fluorescent dye (TP-3400, Tracer Products) at
0.5 vol. %. Then, 1 vol. % of dyed silicone oil was dispersed in an aqueous solution
containing 1 mM sodium dodecyl sulfate (SDS) and 1 mM NaCl by vortex stirring
(Analog Vortex Mixer, Fisher Scientific) followed by sonication (Ultrasonic Cleaner,
Cole-Parmer) for a certain amount of time depending on the viscosity of the oil.
The sizes of the oil droplets were measured using a dynamic light scattering device
(Zetasizer Nano-ZS, Malvern), where the average diameter was measured as ≈0.8 µm.
To keep the overall SDS concentration constant during the experiment, so as to neglect
migration driven by a surface tension gradient, the same concentration of surfactant
(1 mM SDS) was added to the initial solution, which has a high concentration of salt
(100 mM NaCl). The zeta potential of the droplets was measured using electrophoretic
light scattering (Zetasizer Nano-ZS, Malvern Instruments) and a recently developed
diffusiophoretic method (Shin et al. 2017a), which was measured as ≈ − 87 mV
regardless of the droplet viscosity.
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FIGURE 3. (Colour online) The comparison of the analytical results and experiments for
the diffusiophoretic velocity as a function of the viscosity ratio µ/µ. The dots and error
bars are experimental data. The dotted and solid lines are (2.66), with Φ(1)

= 0 and Φ(1)
=

−0.4, respectively. The electrolyte solution is NaCl with β =−0.208.

The comparison between the analytical result (2.66) and experimental data is shown
in figure 3. If Φ(1)(0) is neglected in (2.66) (the dotted line in figure 3), we find a
small deviation from the experimental data. If Φ(1)(0) is fitted to be −0.4 (the solid
line in figure 3), then the analytical result and experiments are in good agreement.
The moderate value for Φ(1)(0) also shows that treating it as a fitting parameter is
practical.

4. Discussion

The diffusiophoretic velocity U(0)
d of silicone oil drops in NaCl solutions is plotted

in figure 4. We observe that the diffusiophoretic speed of a droplet converges to
its equivalent solid particle as µ/µ→∞. In both figures 3 and 4, we notice that
there is a small difference between the droplet and solid-particle velocities because
the expression of U(0)

d,l (2.67b) contains a prefactor (1 + 3µ/µ)−1 which decreases
as the viscosity ratio µ/µ increases. The solid-particle result is achieved already by
µ/µ' 10.

The velocity fields up to O(α, λ0) in the boundary layer (2.48) are the same for
drops and solid particles (Prieve et al. 1984) except for an integration constant CV in
(2.48b). For solid particles CV is determined by the no-slip condition on the interface,
while for droplets CV is determined by the stress-balance boundary condition (2.57).

A sketch of the drop-region flow field is shown in figure 5. There is only one
parameter a(0)4 in the expression of the drop-region flow field (2.56). A change of
sign of a(0)4 will result in opposite flow directions inside the droplet as shown in
figure 5(a,b). To analyse whether this drop-region flow field will increase or decrease
the droplet’s diffusiophoretic speed compared with an equivalent solid particle, we
first assume the boundary-layer flow is in the positive θ direction (i.e. U(0)

d,s > 0) for
the solid particle, as shown in figure 5(c). Then, in the laboratory reference frame,
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FIGURE 4. (Colour online) The diffusiophoretic velocity in NaCl solutions. The horizontal
axis is the dimensionless zeta potential and curves with different viscosity ratios µ/µ are
plotted. β =−0.208 for NaCl solutions is used and Φ(1) is neglected.

Solid particle

(a) (b)

(c)

FIGURE 5. (Colour online) The velocity field inside the drop and the migration velocity.
All the flow fields are sketched in the drop or solid-particle reference frame. The first two
figures are the drop-region velocity field (2.56) with (a) a(0)4 = −1 and (b) a(0)4 = 1 and
the uniform flow U(0)

d,s +U(0)
d,l far away from the drop. (c) The far-field flow velocity U(0)

d,s

outside a solid particle. We fix U(0)
d,s > 0 for these three cases (i.e. the uniform flow far

away from the solid particle (c) is in the negative x direction), then the diffusiophoretic
speed of drop (a) is higher than the solid particle (c) because the drop-region flow
field is in the same direction as the outer and boundary-layer flow fields. Similarly, the
diffusiophoretic speed of drop (b) will be lower than that of (c).
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this solid particle will move to the left. For a drop, the diffusiophoretic speed will be
faster (slower) than its equivalent solid particle if the direction of the drop-region flow
field is along the same (opposite) direction of the boundary-layer flow for the solid
particle. For example, if a(0)4 =−1 as in figure 5(a), then the drop-region flow is in the
same direction as the boundary-layer flow for the solid particle in figure 5(c), which
will lead to a higher diffusiophoretic speed for droplets to the left in the laboratory
reference frame, and vice versa.

From (2.62b), (2.62c), (2.64a) and (2.65), we obtain

a(0)4 =
1

2(1+ 3µ/µ)
(F(2)

0 Φ
(0)(0)+ F(1)

0 Φ
(1)(0)), (4.1)

where F(1)
0 and F(2)

0 are the charge density at O(α0, λ) and O(α0, λ2) on the interface
in (2.61) while Φ(0)(0) and Φ(0)(1) are the radial component of the electric potential
at O(α, λ0) and O(α0, λ). The appearance of Φ(0) in (4.1) derives from the tangential
electric field in (2.57), i.e.

Eθ,1 =
1
R
∂Ψ1

∂θ
=−Φ(0) sin θ at R= 1, (4.2)

where Eθ,1 is the tangential electric field at O(α). Also, noticing that the tangential
electric field at O(α0) is zero because Ψ0 is isotropic, we can conclude that a(0)4 is the
coefficient of the tangential electric stress FEθ at O(α, λ2), though with an opposite
sign. This result shows that the drop-region velocity field is driven by the tangential
electric stress at the interface, and when FeEθ > 0, the flow direction at the interface
is in the positive θ direction (a(0)4 < 0) and vice versa, which also agrees with the
features illustrated in figure 5. By comparing (2.65) with (2.67b), we find that

U(0)
d,l =

2
3 a(0)4 , (4.3)

i.e. the term exclusive for drops in the expression of U(0)
d is just a(0)4 with a constant

prefactor. In dimensional terms,

u(0)d,l =−
2ε(kBT)2

3(ze)2(µ+ 3µ)

[
6γ (γ + β)+

4γΦ(1)(0)
1− γ 2

]
∇ ln c, (4.4)

which we note is independent of size in this leading-order analysis.
The density of the lightest oil droplets used in our experiment is 0.91 g cm−3.

According to Stokes’ law, the density difference can generate a sedimentation velocity
of ≈0.05 µm s−1, which is much smaller than the typical diffusiophoretic speed
≈1 µm s−1. In our experiments, gravity is perpendicular to the diffusiophoresis
direction. Therefore, the sedimentation should not affect the measurement of
diffusiophoretic speeds. In the experiments, the Marangoni effect due to surfactants
is singled out by keeping the overall SDS concentration constant. However, the
surfactants may ‘rigidify’ the drop surfaces, e.g. in experiments of settling droplets
(Edwards, Brenner & Wasan 1991; Stebe & Maldarelli 1994). As with other phoretic
problems, the shear rate at the surface is O(u/κ−1), which is much larger than the
ordinary shear rate O(u/a), associated with translational motion ((κa)−1

� 1). Such
large shear rates, and corresponding shear stresses, may be why the interface is not
‘rigidified’ by surfactant effects (we thank a referee for this idea).
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FIGURE 6. (Colour online) Measurement of oil droplet (µ= 1.82 mPa s) speeds along the
dead-end pore at 10 s after entering, compared with theoretical results of diffusiophoresis
and Marangoni effects (calculated using approaches outlined in Shin et al. (2016)). x is
the entrance distance and L= 400 µm is the length of the dead-end pore.

Inside the dead-end pore, the salt gradient can also cause a surface tension gradient
and result in a Marangoni velocity. The diffusiophoretic speed is proportional to
∇ ln c, while the Marangoni velocity is proportional to ∇c, and in experiments
the Marangoni velocity should be in the opposite direction of diffusiophoresis.
As explained in Shin et al. (2016), at short times after the oil droplets enter the
dead-end pore, the concentration profile along the dead-end pore is approximately
an error function. Figure 6 shows the experimental data of velocities for the least
viscous oil droplets (µ = 1.82 mPa s), whose Marangoni effects should be most
significant. Using the approaches in Shin et al. (2016), we plot the theoretical results
of diffusiophoresis (velocity ∝∇ ln c) and Marangoni effects (velocity ∝∇c) and find
that the experimental data match with diffusiophoresis theories very well. Therefore,
the Marangoni speeds should be at least an order of magnitude slower than the
diffusiophoretic speeds. The Marangoni coefficient for silicone oil and water system
by adding NaCl is not available in the literature. Based on our analysis, it is predicted
to be approximately or less than O(10−4) N m−1 M.

5. Concluding remarks
In this paper, we use perturbation analysis to solve the concentration, electric

and velocity fields for the diffusiophoresis of a charged drop by assuming two small
parameters α and λ, the former representing typical concentration changes at the scale
of the drop and the latter the dimensionless double layer thickness. The drop-region
flow of the drop will induce an additional term U(0)

d,l (2.67b) in the expression of the
diffusiophoretic speed of a drop U(0)

d (2.66) compared with that of a solid particle U(0)
d,s

(2.67a). For the diffusiophoresis of a drop, the continuity of velocity at the interface
between the drop and solution requires a drop-region flow field and therefore results
in a variation of the surface charge density to balance the viscous stress. Whether the
diffusiophoretic speed of a drop is faster or slower than its equivalent solid particle
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depends on the direction of the tangential electric stress at the interface at O(α, λ2).
When the stress is in the same direction as the boundary-layer flow outside the
equivalent solid particle (e.g. figure 5), the diffusiophoretic speed of the drop will be
faster than its equivalent solid particle and vice versa.
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Appendix A
Here we give details to complete the boundary-layer calculation from § 2.7. In order

to solve the velocity fields in the boundary layer, we follow Prieve et al. (1984) and
define

S(R)= C+eΨ0−Ψ∞(0) +Φ, (A 1a)
Q(R)= C−e−Ψ0+Ψ∞(0) −Φ. (A 1b)

Substituting (A 1) into (2.38), we have

S′′ +
(

2
R
−Ψ ′0

)
S′ −

2
R2

S= (β − 1)PebUΨ ′0, (A 2a)

Q′′ +
(

2
R
+Ψ ′0

)
Q′ −

2
R2

Q= (β + 1)PebUΨ ′0, (A 2b)

with four boundary conditions

S= (1− β)R as R→∞, (A 3a)
Q= (1+ β)R as R→∞, (A 3b)

S′ = 0 at R= 1, (A 3c)
Q′ = 0 at R= 1. (A 3d)

We note that equations (A 3c) and (A 3d) come from the fact that there is no normal
ion flux at the interface, i.e. equation (2.9).

The outer solution for S is So = AR−2
+ (1− β)R, where A is a constant (note that

in the outer region, Ψ ′0 = 0). We expand A=A(0)+ λA(1)+ λ2A(2)+ · · · and substitute
R= 1+ λY , so that the outer solution becomes

So = (A(0) + A(1)λ+ A(2)λ2
+ · · ·)(1+ λY)−2

+ (1− β)(1+ λY) (A 4a)
= A(0) + 1− β + A(1)λ+ (1− β − 2A(0))λY + A(2)λ2

− 2A(1)λ2Y + · · · . (A 4b)

Also, equation (2.41) can be written as

eφ · ∇̃ ∧ ∇̃2U1 =
λ−2 sin θΨ ′0

2R
(C+ − C− + 2 cosh[Ψ0 −Ψ∞(0)]Φ)

=
λ−2 sin θΨ ′0

2R
(Se−Ψ0+Ψ∞ −QeΨ0−Ψ∞). (A 5)
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Changing the coordinate variable from R to Y , the functions (A 1) within the
boundary layer are defined as

S(R)= S(λY + 1)= Sb(Y), (A 6a)
Q(R)=Q(λY + 1)=Qb(Y). (A 6b)

Equations (A 2) in the boundary layer then become

λ−2S′′b +
(

2
λY + 1

− λ−1Ψ ′b,0

)
λ−1S′b −

2
(λY + 1)2

Sb = (β − 1)PebUbλ
−1Ψ ′b,0, (A 7a)

λ−2Q′′b +
(

2
λY + 1

+ λ−1Ψ ′b,0

)
λ−1Q′b −

2
(λY + 1)2

Qb = (β + 1)PebUbλ
−1Ψ ′b,0. (A 7b)

Also, equation (A 5) becomes

λ−3V ′′′b sin θ −
2V ′b cos θ

λ(λY + 1)2 sin θ
+

3V ′′b sin θ
λ2(λY + 1)

+
2Vb cos θ

(λY + 1)3 sin θ
+

2Ub cos θ
(λY + 1)3

+
U ′′b sin θ
λ2(λY + 1)

=
Ψ ′b,0 sin θ

2λ3(λY + 1)
(Sbe−Ψb,0+Ψ∞(0) −QbeΨb,0−Ψ∞(0)). (A 8)

The expansions (in terms of λ) of (A 7a) are

(S(0)b )
′′
− (Ψ

(0)
b,0 )
′(S(0)b )

′
= 0, (A 9a)

(S(1)b )
′′
+ 2(S(0)b )

′
− (Ψ

(1)
b,0 )
′(S(0)b )

′
− (Ψ

(0)
b,0 )
′(S(1)b )

′
= (β − 1)PebU (0)

b (Ψ
(0)

b,0 )
′, (A 9b)

(S(2)b )
′′
+ 2(S(1)b )

′
− 2Y(S(0)b )

′
− (Ψ

(2)
b,0 )
′(S(0)b )

′
− (Ψ

(1)
b,0 )
′(S(1)b )

′

− (Ψ
(0)

b,0 )
′(S(2)b )

′′
− 2S(0)b = (β − 1)Peb[U (0)

b (Ψ
(1)

b,0 )
′
+ U (1)

b (Ψ
(0)

b,0 )
′
]. (A 9c)

Solving (A 9a) with the boundary condition (A 3c) gives

(S(0)b )
′
= 0. (A 10)

By matching with the outer solution (A 4b), we have

S(0)b = A(0) + 1− β. (A 11)

Using (A 11) and U (0)
b = 0 from (2.48a), we can deduce that S(1)b is also a constant.

By matching O(λ1) and O(λY) in (A 4b), we have

S(1)b = A(1), (A 12a)
1− β − 2A(0) = 0. (A 12b)

Together with (A 11), we have

S(0)b =
3(1− β)

2
. (A 13)

Equation (A 9c) then becomes

(S(2)b )
′′
− (Ψ

(0)
b,0 )
′(S(2)b )

′
= 2S(0)b − [2+ (Ψ

(1)
b,0 )
′
](S(1)b )

′
+ (β − 1)PebU1(Ψ

(0)
b,0 )
′ (A 14)
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and the solution is

(S(2)b )
′
= eΨ

(0)
b,0−Ψ∞(0)

∫ Y

0
e−Ψ

(0)
b,0+Ψ∞(0)[2S(0)b + (β − 1)PebU (1)

b (Ψ
(0)

b,0 )
′
] ds+CseΨ

(0)
b,0−Ψ∞(0),

(A 15)
where Cs is an integration constant. The boundary condition (A 3c) determines Cs= 0.
Next, matching with the O(λ2Y) term in (A 4b), we have

S(1)b = A(1) =−
1− β

2

[
3
∫
∞

0
(e−Ψ

(0)
b,0+Ψ∞(0) − 1) dY − Peb

∫
∞

0
U (1)

b e−Ψ
(0)
b,0+Ψ∞(0)(Ψ

(0)
b,0 )
′ dY
]
.

(A 16)
Similarly, we can solve for the O(λ0) and O(λ1) of Qb, i.e.

Q(0)
b =

3(1+ β)
2

, (A 17a)

Q(1)
b =−

1+ β
2

[
3
∫
∞

0
(eΨ

(0)
b,0−Ψ∞ − 1) dY + Peb

∫
∞

0
U (1)

b eΨ
(0)
b,0−Ψ∞(Ψ

(0)
0 )′ dY

]
. (A 17b)

The O(λ0) terms in equation (A 8) are

(V (0)
b )′′′ =

(Ψ
(0)

b,0 )
′

2
(S(0)b e−Ψ

(0)
b,0+Ψ∞ −Q(0)

b eΨ
(0)
b,0−Ψ∞). (A 18)

Integrating (A 18) leads to

(V (0)
b )′ =−

2S(0)b γ

eY + γ
+

2Q(0)
b γ

eY − γ
, (A 19)

from which we find

V (0)
b = 2S(0)b [ln(e

Y
+ γ )− Y] + 2Q(0)

b [ln(e
Y
− γ )− Y] +CV, (A 20)

where CV is a constant. The continuity equation within the boundary layer yields

(U (0)
b )′ = 0, (A 21a)

(U (1)
b )′ =−2V (0)

b . (A 21b)

Thus U (0)
b (Y) is constant. In order to satisfy Ub(Y = 0)= 0, we have

U (0)
b (Y)= 0. (A 22)
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