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Measurement bias and lack of terrain features often cause false peaks during underwater
terrain matching positioning, that is, there is more than one peak near the real position.
Previous methods to address this problem have increased the number of measurement
beams, but this also increases the data processing time and energy consumption. At the
same time, the ratio of measured information that is used does not increase. In other
words, we should increase the ratio of measured information that is used, not simply increase
the amount of information that is measured. Conventional matching algorithms only use the
height of nodes without considering surface information, which is composed of height and
the position of multiple nodes in three-dimensional space. Multi-beam sonar can obtain the
three-dimensional distribution of terrain nodes. This node information is not just a height
sequence, as it is used in previous methods. If we consider the nodes as a three-dimensional
distribution of points with height and position information, this increases the matching pos-
ition information and more of the terrain features can be extracted from the same measured
data. Hence, in this paper, a terrain positioning method called the Node Multi-information
Fusion (NMIF) is presented. This method focuses on improving the stability and accuracy
degraded by bias in the Digital Elevation Map (DEM), terrain repeatability, and other
factors. First, the concept of a Single Node Data Packet (SNDP) is introduced. The SNDP
includes elevation and surface information surrounding the node, such as roughness, gradient,
and slope. This additional topographic feature information improves the robustness and ac-
curacy of the system. A computer simulation using actual ocean bottom topography verifies
the advantages of the proposed NMIF algorithm.

KEYWORDS

1. Autonomous Underwater Vehicle (AUV). 2. Terrain reference navigation.
3. Node data packet. 4. Multi-information fusion.

Submitted: 4 May 2015. Accepted: 26 May 2016. First published online: 8 July 2016.

1. INTRODUCTION. An Autonomous Underwater Vehicle (AUV) is an indis-
pensable piece of engineering equipment in ocean exploration. Because of the com-
plexity of the underwater environment, the research and development of AUVs has
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encountered many difficulties, and precise navigation is one of them. At present,
underwater navigation is mainly based on the Inertial Navigation System (INS), but
the cumulative error of INS is an unsolvable problem. Regularly breaking the
surface to “zero out” the position error greatly increases energy consumption, and
for long-endurance AUVs, this is particularly undesirable. Terrain positioning is
therefore an important problem. To solve this problem, researchers have proposed
terrain-aided navigation methods that were first used in the field of aviation. Initial
studies focused on improvements based on land terrain matching navigation
systems. There are already a number of countries and institutes that have developed
their own underwater terrain matching navigation system.
For instance, the Norwegian Defense Research Establishment developed the

TerrLab simulation system (Hagen, 2006) and have conducted several sea trials
based on the HUGIN AUV. In 2010, they conducted a sea trial for five hours in
Oslo, and the navigation error was only 5 m (Anonsen and Hagen, 2010; Hagen
et al., 2010). Stanford University and the Monterey Bay Aquarium Research
Institute developed a low-cost terrain navigation method that is suitable for long-
range AUVs. They took an MBARI Dorado AUV out into Monterey Bay in 2008
to verify the feasibility of using low-precision measuring equipment for terrain-aided
navigation and used low-accuracy stern projections and a terrain navigation filter,
achieving an accuracy of 4–10 m (Meduna et al., 2008; 2010). The Swedish Royal
Institute of Technology (Nygren, 2008), University of Southampton (Carreno et al.,
2010), and University of Tokyo with the Japan Institute of Marine Engineering
(Nakatani et al., 2009) have also developed their own underwater terrain matching
navigation systems. In addition, Peking University (Zhang et al., 2003), Wuhan
University (Zhang et al., 2011; 2014), and Harbin Engineering University (Chen,
2013; Tian, 2007) have also studied underwater terrain matching navigation systems.
However, most studies are based on improving the aviation terrain matching algorithm
or single beam terrain matching system. Related studies include the improved
TERCOM algorithm (Liu, 2003) and Image Matching Technology (Zhang et al.,
2011).
In contrast to land-based environments, the underwater environment makes it diffi-

cult for current bathymetric technology to obtain a terrain map that is as precise as a
land-based map. In addition, the underwater terrain is flatter and AUVs move slowly,
which decrease the signal-to-noise ratio and reduce positioning accuracy, reliability,
and stability. This problem is particularly prominent in flat regions (Chen, 2013;
Xie, 2005). In this paper, the Node Multi-Information Fusion (NMIF) algorithm is
proposed, which effectively improves the accuracy of flat terrain positioning and mea-
surement stability. This method was verified using a real underwater terrain map.

2. CONSTRUCTION OF NODE DATA PACKETS. In terrain matching, posi-
tioning methods are based on the Digital Elevation Map (DEM), which stores the
height of each grid node sampled from the ocean floor. In the Measured Terrain
Map (MTM), all heights form a sequence of height values. Matching algorithms deter-
mine the position of a point in the DEM by matching an MTM height sequence with
the height sequence from the DEM. This point is called a positioning point, but it is
never the actual position of the AUV. In a flat region, false position peaks caused by
low numbers of measured terrain nodes and limited feature information are inevitable
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(Chen, 2013; Xie, 2005; Nygren, 2005), so the focus of this study is to extract more in-
formation from limited topographic terrain features. In fact, multi-beam methods in-
crease the number of nodes measured per measurement period, and this increases the
amount of position information, which does improve the accuracy and efficiency of
terrain matching. However, there is no improvement in the utilisation of node informa-
tion. There is a difference between a terrain profile formed from a single beam and a
topographic profile formed from multiple beams. The surface includes significantly
more topographic features than a terrain profile does, and it does not significantly
improve accuracy and efficiency to only use height information. A single node includes
only height information, but if it is observed using a multi-beamMTM, it is possible to
add surrounding surface information into a node data packet, causing it to become
more distinct. The construction of such a data packet, the Single Node Data Packet
(SNDP), is shown in Figure 1.
In order to make full use of the node information, this paper proposes a new terrain

matching method based on the SNDPs. Suppose aij denotes the data packet of node
(i, j) in the DEM, expressed as an ξ-dimensional vector, aij= [σ1, σ2 · · · σξ].
In Figure 2 an SNDP contains the information surrounding one node and consists of

four information units. How much information is included in these units is decided by
many factors, but the reliability of the packet information must be ensured. In contrast
to a single node, which only contains height information, more information is included
in the SNDP. Hence, one can think of the SNDP as an expansion of the node informa-
tion, or a fusion of multiple types of information regarding a certain single node.

3. TERRAINMATCHINGBASEDON PACKETS. Similarity is the key to posi-
tioning, and a packet contains a variety of information with which to calculate it. We
assume that every item of information is independent of each other. A sub-element
matching area is a part of the search area, and its location and size is provided by in-
ertial or reckoning navigation and the corresponding navigation error. The search area,
sub-element matching area, node, and surrounding node information are shown in
Figure 3.

Figure 1. Information contained in single and multiple nodes.

Figure 2. Construction of an SNDP.
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3.1. Matching SNDPs. The MTM contains SNDPs to be matched with the
corresponding nodes in the DEM, and the matching algorithm decides which
SNDP in the DEM is most similar to the SNDP from the MTM. For example, as
shown in Figure 4, suppose sij is a node in the DEM and there are k × l corresponding
nodes from the MTM that must be compared with it. Further suppose that the match-
ing algorithm considers node aij from sub-element areas A11 and Aij to be similar to sij.
In this case, A11 and Aij have SDNP sij added to them. Figure 4 shows the process that
determines the SNDPs to be matched in the DEM and MTM and the corresponding
comparison of the SNDPs. If an SNDP in the DEM qualifies as similar, as defined in
the algorithm, then the node in the DEM has that SNDP added to it. The centre of the
matched sub-element search area in the DEM records the number of added SNDPs,
and a higher number indicates greater similarity. Of course, if a node in a certain

Figure 3. Search area, search centre, and sub-element matching search area in the DEM.

Figure 4. Obtaining and comparing the SNDPs from the DEM and MTM.
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sub-element in the matched area meets the similarity condition, it can always add node
sij. In Figure 4, s11 is similar to SNDP α11 in sub-element areas A11, A12, and Aij, so
A11, A12, and Aij will have one SNDP added each. As shown in Figure 4, A11 adds
one SNDP, A12 adds one SNDP, Aij adds three SNDPs, and Akl adds no SNDPs. In
this case, sub-element area A11 is the most similar to the MTM, and the searching
point represented by Aij is marked by a red dot.

3.2. Algorithm implementation. The number of SNDPs added at a certain sub-
element area in the DEM is a measure of the level of similarity between the MTM
and the sub-element search area. In Figure 5, it can be seen that only the similarity
between the SNDPs from the sub-element search area and the SNDPs from the
MTM exceed the threshold defined in the algorithm. The node in the sub-element
search area adds the packet, and the value ofAij is incremented. At this point,Aij repre-
sents both the added data packets and the centre of the sub-element search area.
Details of the procedure are as follows.

3.2.1. Node similarity measurement -Algorithm. (1) For example, if there is an
m× n node DEM (m and n represent the number of nodes in the x and y directions,
respectively), the feature vector of each node must be calculated, so the algorithm
must calculate m× n feature vectors (σ1, σ2… σξ), where ξ represents the number of
features of each node. The algorithm marks the centre of the sub-element search
area with Aij (i = 1, 2, …m, j = 1, 2, …n). Assuming that every sub-element search
area contains k× l nodes and each feature vector has ξ dimensions, the algorithm marks
the sub-element search area with aij i= 1, 2, …k, j= 1, 2…l, and aij= (σ1, σ2, …σξ).

Figure 5. Flowchart of the NMIF algorithm.
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Different nodes will have different values for σ1 σ2 σ3…σξ. The relation betweenAij, aij,
and (σ1, σ2…σξ) is shown below.

A11 A12 . . . A1n

A21 A22 . . . A2n

..

. ..
.

Aij
..
.

Am1 Am2 . . . Amn

2
6664

3
7775

a11 a12 . . . a1l
a21 a22 . . . a2n
..
. ..

.
aij ..

.

ak1 ak2 . . . akl

2
6664

3
7775

σ1
σ2
σ3

..

.

σξ

0
BBBBB@

1
CCCCCA

ð1Þ

The MTM is processed in the same way to obtain its feature vector. It is marked
with (σ1, σ2, σ3 · · · σξ) because a MTM has only one unit S. Hence, the relation
between (σ1, σ2, σ3 · · · σξ) and S is as shown below.

S ¼

s11 s12 . . . s1l
s21 s22 . . . s2l
..
. ..

.
sij ..

.

sk1 sk2 . . . skl

2
6664

3
7775

σ1
σ2
σ3

..

.

σξ

0
BBBBB@

1
CCCCCA

ð2Þ

(2) Using a similarity decision function, the algorithm calculates the similarity between
two feature vectors. For example, given a node s(i, j) fromMTM S and node a(i, j) from
sub-element search area Aij i = 1, 2,…m, j = 1, 2,…n, which is the node corresponding
to s(i, j), the algorithm sets λij i = 1, 2, …m, j = 1, 2, …n, to be the similarity measure-
ment between a(i, j) and s(i, j), where λthreshold represents the similarity threshold. That
is, if the similarity λij > λthreshold, s(i, j) and a(i, j) are considered to represent the same
node. At the same time, sub-element search area Aij adds an SNDP and its value is
incremented by one.
(3) Step 2 is repeated until all nodes have been compared with the corresponding node.
Finally, the algorithm calculates the sum of all the SNDPs added to sub-element
search area Aij as follows.

Aij ¼
Xm
i¼1

Xn
j¼1

δij ð3Þ

The value of δij is defined by the following formula:

δij ¼ 1 λij � λthreshold
0 λij < λthreshold

�
ð4Þ

The algorithm next determines the maximum Amax from all Aij (i = 1, 2, …m, j= 1,
2, …n). Here, Aij represents the centre of the sub-element search area and simultan-
eously the sum of the SNDPs that sub-element search area Aij has added. Hence, Aij

contains two elements, one is a coordinate that represents the centre of Aij and
another is a number that represents the sum of the SNDPs that Aij has added. As men-
tioned, higher values of Aij indicate a higher similarity between Aij and S. Hence, Amax

represents the sub-element search area that is the most similar to the real-time DEM S,
and the coordinate of Amax is the final position.

3.2.2. Similarity measurement function. The similarity function is a measurement
function that represents similarity (Zhang et al., 2009; Shi, 2003). We define a function
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that transforms the deviation between two vectors into a measurement scale λ. We use
the Gaussian function to measure similarity. Suppose Θ is an n-dimensional vector, Θi

i = 1, 2,…m is a sample space that contains m samples, and Θi also has n dimensions.

We formulate Θ as follows: Θ ¼

σ1
σ2

..

.

σn

0
BBB@

1
CCCA, Θi ¼

σ i1
σ i2

..

.

σ in

0
BBB@

1
CCCA, n = 1, 2,… . Suppose Δi is the

deviation between Θ and Θi. Using the Euclidean distance to measure the deviation
between Θ and Θi, Δi can be represented by the following equation.

Δi ¼ ðσ i � σ i1Þ2 þ ðσ i � σ i2Þ2 þ ðσ i � σ i3Þ2 � � �
h i1=2

ð5Þ

Our goal is now to determine the Θi that are similar to Θ using the value Δi. The
problem is how to represent the level of similarity and decide whether Θi is similar.
The solution is to use a function f(Δi) to transform Δi into a value λi, where λi= f(Δi)
is the data range [0, 1], then define a threshold λthreshold. If λij > λthreshold, then Θi is con-
sidered similar to Θ. From this analysis, λ should have the following properties:

1. If Δi = 0 (i= 1, 2, 3…), i.e., the deviation between Θ and Θi is zero, Θ and Θi are
exactly similar, then λi = 1. If Δi→∞, Θ and Θi are exactly dissimilar, at this point
λi = 0.

2. As the similarity value increases, λi increases monotonically.
3. The value of λi is within the range [0, 1].

Given the above analysis, we constructed a similarity measurement function based
on the Gaussian function (Zhang and Yang, 2004). The properties of a Gaussian
function mean that it can transform deviation value Δi into a number between [0, 1],
achieving our goals. The normal form of a Gaussian function is:

f ðxÞ ¼ ae�ðx�bÞ2=c2 ð6Þ
Suppose x is parameter Δi. At point b = 0, λ= 1 must be true, so a= 1. After reformu-
lating the new Gaussian function by replacing f(Δi) with λ, we have:

λ ¼ e�Δ2=c2 ð7Þ
Parameter c is an important element that controls the shape of function λ. Hence it

clearly influences the value of λ. For various c, the shape of function λ becomes
slimmer as the value increases. Hence, λ is high in a small area surrounding “0”.
The situation will be the reverse if parameter c is small and we decrease its value.
Figure 6 shows the shape of function λ for different c, indicating the value of λ at
point Δ= 1.
This result shows that when c is small, the ability to measure the similarity between

two vectors is significantly weakened. Hence, in practice, we should choose larger
values. We discuss how to choose value c below. First, we establish the principle of
similarity measurement, as shown in Figure 7.
Suppose X and Yare two measurement results at the same point. The measurement

noise of the two measurements is denoted by ωx and ωy, respectively. Because measure-
ments X and Y come from the same point, given our definition of similarity, we
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examine the value of λ, which must exceed threshold λthreshold. Suppose λthreshold = 0.9.
The similarity can be calculated as follows:

e�ðX�Y Þ2=c2 > 0:9 ð8Þ
If X and Y come from the same node without measurement error, X−Y = 0, and

clearly λ= 1. However, we must take the error into account (Chen, 2013). The similar-
ity function is reformulated as follows:

e�ðωx�ωyÞ2=c2 > 0:9 ð9Þ

Next; we calculate c : �ðωx � ωyÞ2
c2

> ln 0:9 ð10Þ

Then : c>
jωx � ωyjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� ln 0:9
p ð11Þ

The range of values for c is : c> 3:081jωx � ωyj ð12Þ
Usually, we assume that the measurement noise is zero-mean Gaussian white noise.

As it is preferable to use a larger value, |ωx− ωy| should result in a larger value, that is,
σx+ σy. Here, σx + σy represents the sum of the standard deviations of the measure-
ment noise for both measurements. We further suppose that each measurement

Figure 6. Value of λ when c has three different values at point Δ = 1.

Figure 7. Similarity measurement axis.
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noise is independent. If X and Y are vectors with n dimensions, then σx+ σy will be a
diagonal matrix with n dimensions (Xie, 2005). The above explanation describes the
value of parameter c when λthreshold = 0.9. If the threshold is changed, the procedure
is unchanged. In order to improve stability and efficiency, choosing a higher threshold
is better. Hence, we always use λthreshold≥ 0.9.

4. EXPERIMENTAL ANALYSIS. Using theoretical analysis, we obtained the
structure and necessary parameters of the algorithm. We next examine the stability
and robustness of the algorithm by conducting a series of experiments using an
actual ocean floor DEM located in the South China Sea (Figure 8). The data was
obtained using a GS+ bathymetric system and bilinear interpolation to create a
DEM with a grid size of 4 × 4 m.

4.1. Best feature selection. The DEM has an area of 800 × 700 m, with a grid size
of 4 × 4 m. The grid size in the MTM is 2 × 2 m; hence, we used a linear interpolation
algorithm to transform the DEM into a 2 × 2 m grid. A simulation MTM was
obtained from the DEM and covers an area of 200 × 200 m. The centre was located
at (500, 500) in the local coordinate system, the same as below. The position of
nodes in the global coordinate system can be determined by the following formula:

x ¼ id þ x0
y ¼ jd þ y0

�
ð13Þ

where x0, y0 represent the coordinates of the origin of the local coordinates in the
global coordinate system, d is the length of a grid side, and i, j represents the index
of the nodes.
At the same time, we take the measurement of the circular error probability and

height error into consideration. We set the circular error probability to be σr = 0.5m
and the height error probability to σ = 1 m. They are both modelled as zero mean

Figure 8. Electronic sea chart including the DEM area.
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Gaussian white noise. Considering the deviation in MNS, we chose an area of
200 × 200 m centred at point (500, 500). The search area and MTM are shown in
Figures 9 and 10.

4.1.1. Node packets containing height only. The similarity measurement function
is expressed as follows:

λij ¼ exp � 1
c2

ðσ1ðsÞ � σ1ðaÞÞ2
� �

ð14Þ

Figure 9. DEM (search area).

Figure 10. MTM.
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In this equation, σ1(s) represents the height of a node in the DEM, and σ1(a) repre-
sents the height of a node in the MTM. We set the threshold to λthreshold = 0.9 and
interpolated the DEM with grids respectively equal to 2, 3, 4, 5, and 6 m into a 2 m
grid. The final simulation results are shown in Figure 11 for the 2, 4, and 6 m grids.
Figures 11(a)–(c) show the distribution of the sum of the SNDPs in the search area
using height only. Figure 12 shows the number of SNDPs at the positioning point in
the three tests. From the results, it can be seen that as the grid length increases, the
number of added SNDPs surrounding the located point increases rapidly. The false
peaks appear when the grid length is set to 6 m.

4.1.2. Node packets containing surface features only. Consider the case where
there is more than one node in the DEM that is similar to the node in the MTM. In
such a case, we must judge whether this node comes from the positioning area. The
algorithm cannot decide by height alone because it is too similar to other positions;
hence, the surface information becomes useful for distinguishing many matching
nodes in a series of similar nodes. The surface information can be represented in
many ways, such as by entropy information, slope, gradient, and so on. Briefly, we
must choose a method that can express the features of the terrain surface effectively
and accurately. In this paper, we use the sum of the height of a node and its height
standard deviation in the local area that is centred on that node. The area should be
extensive enough so that it can distinguish the node from all other nodes at a

Figure 11. Distribution of the sum of SNDPs in the search area using height at various grid
resolutions (a) 2 m grid (b) 4 m grid (c) 6 m grid.
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similar height. The feature equation is as follows:

σ2 ¼ σ0 þ σ1 ð15Þ

where σ2 represents the feature parameter of a node that contains height and surface
information, and σ0 represents the standard deviation of height in the local area
that is centred on the matching node. In this paper, the area of the local region is
10 × 10 m2. Furthermore, σ1 represents the height of the matching node. The similarity
is measured as follows:

λij ¼ exp � 1
c2

ðσ2ðsÞ � σ2ðaÞÞ2
� �

ð16Þ

In Equation (16), σ2(s) represents the blended surface feature of the node in the
MTM and σ2(a) represents the blended surface feature surrounding the node in
the DEM. We set the threshold to λthreshold = 0.9. We also chose the DEM with grids
respectively equal to 2, 3, 4, 5, and 6 m interpolated into a 2 m grid. The final simu-
lation results are shown in Figures 13(a)–(c). These figures show the distribution of
the sum of SNDPs in the sub-element search area centre for the 2, 4, and 6 m grids
using the surface feature only. Figure 14 shows the number of SNDPs at this position
point in the three tests.
The test results show that the surface feature in the local area can identify similar

nodes more easily, as the final point had more SNDPs added. On the other hand,
the ability to inhibit false peaks was weakened.

4.2. Node Multi-Information Fusion (NMIF). From these results, it can be seen
that both height and surface information have their own advantages. Both types of in-
formation converge near matches, and using surface features makes it easier to identify

Figure 12. Sum of the SNDPs at the position point for three tests using height value as positioning
information.
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Figure 13. Distribution of the sum of SNDPs in the search area using surface features with various
grid resolutions. (a) 2 m grid. (b) 4 m grid. (c) 6 m grid.

Figure 14. Sum of the SNDPs at the position point for three tests using surface features as
positioning information.
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similar nodes but does not inhibit false point matches. Hence, we next fuse the two
types of position information in two ways and compare them.

4.2.1. Fusion based on logic. For logical “and” fusion, the result is true only if all of
the parameters meet the criteria. In this method, both the height and the surface height
characteristicsmust exceed the threshold before the node in theMTMreceives the SNDP.

Aij ¼
Pm
i¼1

Pn
j¼1

δij

δij ¼ 1 λσ1ij � λthreshold and λσ2ij � λthreshold
0 ealse

�
8>>><
>>>:

ð17Þ

In this equation, λσ1ij and λσ2ij are at a similar scale for the height and surface features.
We next test the algorithm on the DEM 6 m grid, comparing it with the results using

height only. The results are shown in Figure 15.
Figure 15(a) shows the distribution of the sum of SNDPs using logic fusion,

Figure 15(b) is the result using height value only, and Figure 15(c) is the result using
surface features only. This comparison shows that for the same grid precision and
measurement noise, the results based on the fusion of logic “and” inhibits false

Figure 15. Distribution of the sum of SNDPs in the search area using NMIF, height value and
surface features as matching information. (a) NMIF (logic fusion). (b) Height only. (c) Surface
features only.
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peaks around the located point and the number of added packets is more focused. The
advantage of NMIF is clear.

4.2.2. Fusion based on vector similarity. Vector similarity fusion, that is, thinking
of the SNDP as a vector, compares two node similarities as two vectors (Sun, 2002;
Zhang et al., 2009). Measuring the similarity of two vectors is usually equal to compar-
ing their angle or length. First, we transform the two characteristic parameters of the
node σ1 and σ2 into a two dimensional vector Γ = (σ1, σ2). We use the Euclidean dis-
tance as the similarity measurement of two vectors, expressed as follows.

Δ ¼ Γs � Γað ÞTc�1 Γs � Γað Þ
� �1=2

ð18Þ

where Γs and Γa are two-dimensional vectors composed of the node characteristic
parameters, and c is a two-dimensional diagonal matrix representing the measurement
noise of σ1 and σ2, the two elements of Γs and Γa. Therefore, the similarity is measured
as follows:

λij ¼ exp �Δ2

c2

� �
ð19Þ

Figure 16. Distribution of the sum of SNDPs in the search area using NMIF, height value only, and
surface features only as matching information. (a) NMIF (vector similarity fusion). (b) Height value
only. (c) Surface features only.
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Aij ¼
Pm
i¼1

Pn
j¼1

δij

δij ¼ 1 λΔij � λthreshold
0 ealse

�
8>>><
>>>:

ð20Þ

The experimental results for the DEM on a 6 m grid are shown in Figure 16.
Figure 16(a) shows the distribution of the sum of SNDPs using vector similarity
fusion, Figure 16(b) is the result using height value only, and Figure 16(c) is the result
using surface features only.
From the results, we can see that for the same grid precision and measurement noise,

the vector similarity method inhibited the false peaks around the located point better
than the result using height value or surface feature information alone. The sum of the
added SNDPs at the position point is more focused.

5. ACCURACY ANALYSIS. As can be seen from the above results, NMIF can
make full use of the information of a single node and its surrounding surface. The
nearby pseudo-peaks surrounding the positioning node have been inhibited effectively.

Figure 17. Positioning result distribution using three methods over 10 trials. (a) Height value only.
(b) NMIF (vector similarity fusion). (c) NMIF (logic fusion).
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These results show that for the same terrain, NMIF obtains a more concentrated dis-
tribution of the number of packets, which is advantageous for positioning point iden-
tification, and inhibits pseudo-peaks. We now focus on analysing the precision and
stability before and after using data fusion for positioning. In order to compare the pre-
cision and stability of the proposed method and the three comparison methods (no
fusion, fusion based on vector similarity, and fusion based on logic) in a DEM with
low precision and high measurement noise, we chose a DEM with a grid of 6 m and
interpolated it into a 2 m grid. In addition, we added Gaussian measurement noise
with zero mean, standard variance σ= 1, and circular error probability σr= 0.5. We

Figure 18. Mean value and standard deviation of the position deviation of the three methods.

Figure 19. Position deviation of the three methods over 10 trials.
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computed the deviation for every experiment using Δd ¼ 2 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δi2 þ Δj2

p
. The results

of the simulation output are as follows.
Figures 17(a)–(c) are the results for “height value,” “logic fusion,” and “vector simi-

larity” for a grid of 6 m interpolated into a 2 m grid. Figure 18 compares the position-
ing error of the three positioning methods, and Figure 19 shows the mean and standard
deviation of the positioning error for the three positioning method tests.
From the simulation positioning results, we can see that the positioning point distri-

bution based on the NMIF method, both for vector similarity fusion and logic fusion,
are more concentrated around the true location, and the mean and standard deviation
of the positioning deviation are far smaller than the positioning result using height
value only. It is clear that the NMIF method has better accuracy and stability than
the height-based matching position method. NMIF extracts more than one terrain
feature and the additional positioning information from the terrain surface increases
the accuracy of the matching position stability.

5. CONCLUSIONS. The essence of terrain matching positioning is a process that
positions terrain features in the DEM. Previous methods consider the measured data
as a discrete point sequence and hence cannot take full advantage of the measured in-
formation. As a result, they obtain a poor position result because of the lower amount
of measured data or terrain features. NMIF is a good way to extract the terrain fea-
tures, and the test results have shown the great advantages of NMIF at terrain match-
ing positioning. We hence obtain the following conclusions. First, theMTM and DEM
are not only point-wise discrete sequences, but form three-dimensional surfaces that
include a large amount of terrain feature information. There is a determinate position
relationship between the nodes, so we can extract more positioning information.
Second, the experiments show that NMIF can extract diverse characteristics of the
topography, increasing the utilisation ratio of the measured terrain to improve the ac-
curacy and stability of the terrain matching position. Finally, as the measurement noise
and topography grid side lengths increase, the position deviation will increase, but
NMIF performs better than the position result using height or surface features
alone. That is to say, the NMIF is more robust to measurement error.
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