
Robotica (2004) volume 22, pp. 351–357. © 2004 Cambridge University Press
DOI: 10.1017/S0263574704000189 Printed in the United Kingdom

Global robust output feedback tracking control of robot
manipulators*
W. E. Dixon†, E. Zergeroglu‡ and D. M. Dawson§
(Received in Final Form: November 29, 2003)

SUMMARY
This paper addresses the problem of global output feedback,
link position tracking control of robot manipulators.
Specifically, a robust, Lyapunov-based controller is designed
to ensure that the link position tracking error is globally
uniformly ultimately bounded despite the fact that only
link position measurements are available in the presence of
incomplete model information (i.e., parametric uncertainty
and additive bounded disturbances).
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1. INTRODUCTION
The development of controllers that only require position
measurements (i.e., output feedback (OFB)) has received
considerable interest in robotics literature due to the desire
to eliminate the need to incorporate a velocity sensor in
the robot design. As an outcome of the research directed at
this topic, several global solutions to the OFB link position
setpoint control problem have been developed. For example,
model-based OFB controllers, composed of a linear feedback
loop plus feedforward gravity compensation, were proposed
in references [1]–[3] to globally asymptotically regulate the
manipulator dynamics. In reference [4], Arimoto et al. also
presented a model-based, global regulating OFB controller;
however, the gravity compensation term was dependent on
the desired link position setpoint as opposed to the actual
link position. With the intent of overcoming the requirement
of exact model knowledge, Ortega et al.5 designed a OFB
controller that achieved semi-global asymptotic regulation
while compensating for uncertain gravity effects. In reference
[6], Colbaugh et al. proposed a global regulating OFB
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controller that compensates for uncertain gravity effects
where the control strategy requires the use of two different
control laws (i.e., one control law is used to drive the setpoint
error to a small value, then another control law is used to drive
the setpoint error to zero).

Unfortunately, most of the OFB controllers that have
targeted the more general tracking control problem have
been limited to semi-global stability results. For example,
in references [1, 7], a model-based observer was used to
construct a semi-global exponential link position tracking
controller. In references [8]–[10], variable structure OFB
controllers were designed to compensate for parametric
uncertainty and the lack of link velocity measurements.
Filter-based schemes were designed in references [11]–[13]
to accommodate for the lack of velocity information in the
development of robust controllers that produce semiglobal,
uniformly ultimately bounded (UUB) link position tracking
in the presence of parametric uncertainty. Finally, adaptive
OFB controllers were presented in references [14]–[17] that
yield semi-global asymptotic link position tracking in the
presence of parametric uncertainty.

A factor that limited previous controllers to semi-
global link position tracking can be related to quadratic
nonlinearities in the unmeasurable velocity states due to
the centripetal-Coriolis effects. From a review of literature,
only a few controllers address this issue to yield global
OFB link position tracking. Specifically, in reference
[18], Loria developed a model-based controller that yields
global uniform asymptotic tracking. To achieve the result,
Loria introduced a unique non-quadratic Lyapunov function
candidate that enabled the closed-loop error system to
compensate for the quadratic nature of the centrifugal-
Coriolis effects. Unfortunately, as stated in reference [18],
the technique is only valid for a one degree-of-freedom
(DOF) system and could not be extended to the general n-
DOF case. To address this issue, Zhang et al.19 proposed the
first global OFB adaptive tracking controller for an n-DOF
robot manipulator by using a similar non-quadratic Lyapunov
function candidate as in reference [18]. In particular, while
the structure of the controller of reference [19] resembles
that of reference [18] in certain aspects, differences such
as the use of a desired compensation adaptation law20,
a different filter structure, and a different error system
development/analysis allowed the extension of the controller
of reference [18] to the more general, multivariable case
with parametric uncertainty. In essence, the closed-loop error
system developed in reference [19] allowed the quadratic
nonlinearities of the centripetal-Coriolis effects to be upper
bounded by a linear function due to the use of hyperbolic

https://doi.org/10.1017/S0263574704000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000189


352 Tracking control

trigonometric terms. The result in reference [19] was further
refined with a more elegant stability analysis method in
reference [21]. An extension to rigid-link flexible-joint robots
was also presented in reference [22]. In reference [23],
Loria and Melham proposed a new dynamic-kinematic model
for Euler-Lagrange systems so that the unmeasurable state
appears linearly. Based on this new model formulation
and the use of an integral Lyapunov stability criterion,
global uniform exponential OFB tracking is proven provided
exact knowledge of the system is available. More recently,
Besancon et al.24 cast the tracking problem as a stabilization
problem for a linear time-varying error system to achieve a
global stability result. Specifically, Besancon et al. developed
an exact model knowledge controller that is based on a
separation technique that exploits state feedback and output
to state stability properties25 related to an unboundedness
observability scheme26.

In light of the previous results, the controller developed in
this paper achieves global UUB OFB tracking in the sense
of references [21] and [24] for a n-DOF robot manipulator
with incomplete model information. That is, the robust OFB
controller in this paper is designed for a more general model
that contains parametric uncertainty and additive bounded
disturbances. To develop the controller, a nonlinear feedback
term coupled to a nonlinear, dynamic filter is used to
indemnify for the loss of link velocity measurements. The
paper is organized as follows. Section 2 presents the robot
model along with its properties. The control design, error
system development, and stability analysis are presented in
Section 3. Concluding remarks are provided in Section 4.

2. ROBOT MODEL
The dynamic model for an n-DOF, revolute-joint robot
manipulator is assumed to have the following form27

M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇ + Td = τ. (1)

In (1), q(t), q̇(t), q̈(t) ∈ R
n denote the link position, velocity,

and acceleration, respectively, M(q) ∈ R
n×n represents the

positive-definite, symmetric inertia matrix, Vm(q, q̇) ∈ R
n×n

represents the centripetal-Coriolis matrix, G(q) ∈ R
n is

the gravitational vector, Fd ∈ R
n×n denotes the constant,

diagonal, positive-definite, viscous friction matrix, Td ∈
R

n is a bounded disturbance vector that represents other
unmodeled dynamics (e.g., static friction), and τ (t) ∈ R

n

represents the torque input control vector. The left-hand
side of (1) is assumed to be first-order differentiable.
Moreover, the dynamic system given by (1) exhibits the
following properties that are utilized in the subsequent
control development and stability analysis.

Property 1: The inertia matrix can be upper and lower
bounded by the following inequalities27

m1‖ξ‖2 ≤ ξT M(q)ξ ≤ m2‖ξ‖2 ∀ ξ ∈ R
n (2)

where m1 and m2 are positive constants, and ‖·‖ denotes the
Euclidean norm.

Property 2: The inertia and the centripetal-Coriolis matrices
satisfy the following relationship27

ξT

(
1

2
Ṁ(q) − Vm(q, q̇)

)
ξ = 0 ∀ ξ ∈ R

n (3)

where Ṁ(q) represents the time derivative of the inertia
matrix.

Property 3: The centripetal-Coriolis matrix satisfies the
following relationship27

Vm(q, ν)ξ = Vm(q, ξ )ν ∀ ξ, ν ∈ R
n. (4)

Property 4: The robot dynamics given in (1) can be linearly
parameterized as follows27

Y (q, q̇, q̈)θ = M(q)q̈ + Vm(q, q̇)q̇ + G(q) + Fdq̇ (5)

where θ ∈ R
p contains the constant system parameters, and

Y (q, q̇, q̈) ∈ R
n×p denotes the regression matrix that is a

function of q(t), q̇(t), and q̈(t). The formulation of (5) can
also be written in terms of the desired trajectory in the
following manner

Yd (qd, q̇d , q̈d)θ =M(qd )q̈d + Vm(qd, q̇d )q̇d +G(qd ) +Fdq̇d

(6)

where the desired regression matrix Yd (qd, q̇d , q̈d ) ∈ R
n×p

is a function of the desired link position, velocity, and
acceleration vectors denoted by qd (t), q̇d(t), q̈d (t) ∈ R

n,
respectively, where it is assumed that the desired trajectory
is selected so that qd (t), q̇d (t), q̈d(t), ˙q̈d (t) exist and are
bounded.

Property 5: The norm of the centripetal-Coriolis and
friction matrices and the gravity, disturbance, and unknown
parameter vectors can be upper bounded as follows27

‖Vm(q, q̇)‖ ≤ ζc1‖q̇‖, ‖Fd‖ ≤ ζf ,
(7)

‖G(q)‖ ≤ ζg, ‖Td‖ ≤ ζtd , ‖θ‖ ≤ ζθ1

where ζc1, ζf , ζg, ζtd , ζθ1 ∈ R denote positive constants.
To foster the subsequent control design and analysis,

the vector function Tanh(·) ∈ R
n and the matrix function

Cosh(·) ∈ R
n×n are defined as follows

Tanh(ξ )
�= [tanh(ξ1), . . . , tanh(ξn)]T (8)

and

Cosh(ξ )
�= diag{cosh(ξ1), . . . , cosh(ξn)} (9)

where ξ = [ξ1, . . . , ξn]T ∈ R
n, and diag{·} denotes a

diagonal matrix. Based on the definition of (8), it can easily
be shown that the following inequalities hold19

1

2
tanh2(‖ξ‖) ≤ ln(cosh(‖ξ‖)) ≤

n∑
i=1

ln(cosh(ξi)) ≤ ‖ξ‖2,

(10)
tanh2(‖ξ‖) ≤ ‖Tanh(ξ )‖2 = TanhT (ξ )Tanh(ξ ).
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3. CONTROL DESIGN AND ANALYSIS
The objective in this paper is to design a global UUB
link position tracking controller for the robot manipulator
model given by (1) under the constraints that only the link
position variable q(t) is available for measurement and that
the parameter vector θ defined in (5) is an unknown constant
vector. To quantify this objective, a link position tracking
error, denoted by e(t) ∈ R

n, is defined as follows

e
�= qd − q (11)

where qd (t) and its first three time derivatives are assumed
to be bounded functions of time. In addition, the difference
between the actual and estimated parameters are defined as
follows

θ̃
�= θ − θ̂ (12)

where θ̃ ∈ R
p represents the parameter estimation error, and

θ̂ ∈ R
p represents the constant best-guess estimates of θ

defined in (5). In the subsequent analysis, the following fact
will be utilized

‖θ̃‖ ≤ ζθ2 (13)

where ζθ2 ∈ R denotes a known positive bounding constant.

3.1. Robust output feedback tracking control law
Based on the subsequent error system development and
stability analysis, the following torque input is designed

τ
�= Ydθ̂ − k�−1y + Tanh(e). (14)

In (14), k(t) ∈ R is a subsequently designed positive,
differentiable time-varying control gain, �(y) ∈ R

n×n is
defined as the following diagonal matrix

�
�= diag

{(
1 − y2

1

)2
,
(
1 − y2

2

)2
, . . . ,

(
1 − y2

n

)2}
, (15)

and y(t) ∈ R
n denotes a surrogate signal for the link velocity

tracking error that is designed as follows

yi
�= pi − kei. (16)

In (16), pi(t) ∈ R is defined as the solution to the following
differential equation

ṗi
�= −(

1 − (
pi − kei

)2)2
(pi − kei − tanh(ei))

− k(tanh(ei) + pi − kei) + k̇ei (17)

where the initial conditions for pi(0) are selected as follows

− 1√
n

+ k(0)ei(0) < pi(0) <
1√
n

+ k(0)ei(0). (18)

Provided the initial condition pi(0) is selected according to
(18), then (16) can be used to conclude that

|yi(0)| <
1√
n

independently of the magnitude of ei(0). Based on the
subsequent development, the time-varying control gain k(t)
of (14) and (16)–(18) is designed as follows

k
�= 1

m1

(
1 + kn1np

n∑
i=1

p∑
j=1

Y 2
dij ζ

2
θ1 + kn2np

n∑
i=1

p∑
j=1

Y 2
dij ζ

2
θ2

+ kn3ζ
2
k + kn4ζ

2
1 + 16ζ 2

2 + 8ζ 2
3 + 4ζ 2

4 + 16ζ 2
5 + ζ6

)
.

(19)

In (19), ζk(t) ∈ R denotes a known positive function defined
as follows

ζk
�= m2‖q̈d‖ + ζc1‖q̇d‖2 + ζf ‖q̇d‖ + ζg + ζtd (20)

where m1 and m2 were defined in (2), kn1, kn2, kn3, kn4 ∈ R

denote positive constant control gains, ζθ1 was defined in (7),
ζθ2 was defined in (13), and ζi, i = 1, . . . , 6 denote some
positive constants used to bound the mechanical parameters
of the system dynamics and the desired trajectory. To
facilitate the subsequent stability analysis, the control gains
kn1, kn2, kn3, and kn4 are selected to satisfy the following
sufficient conditions

ε <
1

2
kn4 >

1

4
(

1
2 − ε

) (21)

where ε ∈ R is a positive constant defined as follows

ε = 1

4kn1
+ 1

4kn2
+ 1

4kn3
. (22)

3.2. Error system development
After taking the time derivative of (16), the open-loop error
system for the link velocity tracking error surrogate can be
determined as follows

ẏi = −(
1 − y2

i

)2
(yi − tanh(ei)) − kηi (23)

where (17) and (18) were utilized, and η(t) ∈ R
n denotes the

following auxiliary filtered tracking error signal

η
�= ė + Tanh(e) + y. (24)

To obtain the open-loop error system for η(t), we differentiate
(24) and pre-multiply both sides of the resulting equation by
M(q) to yield the following expression

M(q)η̇ = M(q)q̈d + Vm(q, q̇)q̇ + G(q) + Fdq̇ + Td − τ

+M(q)Cosh−2(e)ė + M(q)ẏ (25)
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where (1) was utilized. After adding and subtracting Ydθ of
(6) to (25), we can utilize (4), (11), (23), and (24) to rewrite
the open-loop dynamics for η(t) as follows

M(q)η̇ = −Vm(q, q̇)η + Ydθ − τ − kM(q)η + χ (26)

where the disturbance term χ(e, y, η, t) ∈ R
n is defined as

χ
�= M(q)Cosh−2(e)(η − Tanh(e) − y)

−M(q)�(y − Tanh(e)) + Vm(q, q̇d + Tanh(e) + y)

× (Tanh(e) + y) + Vm(q, q̇d )(Tanh(e) + y)

−Vm(q, η)(q̇d + Tanh(e) + y) + M(q)q̈d

+Vm(q, q̇d )q̇d + Fdq̇ + G(q) + Td − Ydθ. (27)

As illustrated in Appendix A, we can exploit the boundedness
properties of the desired trajectory, (2), (7), and the properties
of hyperbolic functions to show that χ(·) of (27) can be upper
bounded as follows

‖χ‖ ≤ ζ1‖x‖ + ζ2‖y‖2 + ζ3‖y‖3 + ζ4‖y‖4 + ζ5‖y‖5

+ ζ6‖η‖‖y‖ + ζk +
(√√√√np

n∑
i=1

p∑
j=1

Y 2
dij

)
ζθ1 (28)

where the composite state vector x(t) ∈ R
3n is defined as

x
�= [TanhT (e) ηT yT ]T . (29)

The closed-loop error system for η(t) can now be obtained
by substituting (14) into (26) as follows

M(q)η̇ = −Vm(q, q̇)η + Ydθ̃ + k�−1y − Tanh(e)

− kM(q)η + χ (30)

where (12) was used.

3.3. Stability analysis

Theorem 1
Given the robot dynamics of (1), the robust controller of (14)–
(19) with the control gains selected as described in (19) and
(21) ensures that the link position tracking error is UUB in
the sense that

‖e(t)‖ ≤ ‖z(t)‖ < d̄ ∀t ≥ T (d̄, ‖z(0)‖) (31)

in the following global region for the link position tracking
error {

(e, η, y) ∈ R
n × R

n ×
(

− 1√
n
,

1√
n

)n}
(32)

where the composite state vector z(t) ∈ R
3n is defined as

follows

z
�= [eT ηT yT ]T . (33)

In (31), d̄ ∈ R is a positive constant that defines the radius
of the ball containing the link position tracking errors as
follows

d̄ >
(
γ −1

1 ◦ γ2
)(

γ −1
3 (ε)

)
, (34)

and T (d̄, ‖z(0)‖) ∈ R denotes the following positive constant
that denotes the ultimate time to reach the ball

T (d̄, ‖z(0)‖)

=



0 if ‖z(0)‖ ≤ (
γ −1

2 ◦ γ1
)

(d̄)
γ2(‖z(0)‖) − γ1((γ −1

2 ◦ γ1)(d̄))
γ3((γ −1

2 ◦ γ1)(d̄))− ε
if ‖z(0)‖ >

(
γ −1

2 ◦ γ1
)
(d̄)

(35)

where ε is introduced in (22), and ◦ denotes the composition
operator. In (34) and (35), the strictly increasing nonnegative
functions γ1(‖z‖), γ2(‖z‖), γ3(‖z‖) ∈ R are defined as
follows

γ1(‖z‖)
�= λ1 ln cosh(‖z‖)

γ2(‖z‖)
�= λ2‖e η‖2 + 1

2

n∑
i=1

y2
i

1 − y2
i

(36)

γ3(‖z‖)
�=

(
1

2
− 1

4kn4

)
tanh2(‖z‖)

where the positive constants λ1, λ2 ∈ R are defined as follows

λ1
�= min

{
1

2
,
m1

2

}
λ2

�= max
{

1,
m2

2

}
. (37)

Proof. To prove Theorem 1, a nonnegative function
V (z, t) ∈ R is defined as follows

V
�=

n∑
i=1

ln(cosh(ei)) + 1

2
ηT M(q)η + 1

2

n∑
i=1

y2
i

1 − y2
i

. (38)

With regard to the structure of (38), the first and second
terms are positive-definite and radially unbounded, and the
last term is positive-definite and radially unbounded on the
interval [−1, 1]; hence, V (z, t) of (38) is a positive-definite,
radially unbounded function in the set

S
�= {(e, η, y) ∈ R

n × R
n × [−1, 1]n}. (39)

Based on the inequalities given in (10), the following upper
and lower bounds for (38) can be determined

γ1(‖z‖) ≤ V (z, t) ≤ γ2(‖z‖) (40)

where z(t) was defined in (33), and γ1(‖z‖) and γ2(‖z‖) were
introduced in (36).
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After taking the time derivative of (38) and utilizing (23),
(24), and (30) the following expression can be obtained

V̇ = −
m∑

i=1

tanh2(ei) + ηT (−kM(q)η + χ +Ydθ̃ ) −
n∑

i=1

y2
i

(41)

where (3) was utilized. After utilizing (2), (19), and (28), the
expression in (41) can be upper bounded as follows

V̇ ≤ −‖η‖2 − ‖y‖2 − ‖Tanh(e)‖2

+

ζθ1

√√√√np

n∑
i=1

p∑
j=1

Y 2
dij‖η‖ − kn1(ζθ1)2


np

n∑
i=1

p∑
j=1

Y 2
dij


‖η‖2




+

ζθ2

√√√√np

n∑
i=1

p∑
j=1

Y 2
dij‖η‖ − kn2(ζθ2)2


np

n∑
i=1

p∑
j=1

Y 2
dij


‖η‖2




+ [ζk‖η‖ − kn3(ζk)2‖η‖2] + [
ζ1‖x‖‖η‖ − kn4ζ

2
1 ‖η‖2]

+ [
ζ2‖y‖2‖η‖ − 16ζ 2

2 ‖η‖2] + [
ζ3‖y‖3‖η‖ − 8ζ 2

3 ‖η‖2]
+ [

ζ4‖y‖4‖η‖ − 4ζ 2
4 ‖η‖2

] + [
ζ5‖y‖5‖η‖ − 16ζ 2

5 ‖η‖2
]

+ ζ6(‖y‖ − 1)‖η‖2. (42)

After completing the squares on the bracketed terms of (42),
the following inequality can be obtained

V̇ ≤ −‖η‖2

2
− ‖y‖2 − ‖Tanh(e)‖2

2

+ 1

4kn1
+ 1

4kn2
+ 1

4kn3
+ 1

4kn4
‖x‖2

+ 1

2
‖y‖2

[
1

8
‖y‖2 + 1

4
‖y‖4 + 1

2
‖y‖6 + 1

8
‖y‖8

]

+ ζ6[‖y‖ − 1]‖η‖2. (43)

The expression in (43) can be further upper bounded by
utilizing (29) as follows

V̇ ≤ −1

2
‖x‖2 + 1

4kn1
+ 1

4kn2
+ 1

4kn3
+ 1

4kn4
‖x‖2

+ 1

2
‖y‖2

[
−1 + 1

8
‖y‖2 + 1

4
‖y‖4 + 1

2
‖y‖6 + 1

8
‖y‖8

]

+ ζ6[‖y‖ − 1]‖η‖2.

Provided the control gains are selected according to (21),
then the following expression can be obtained

V̇ ≤ −
(

1

2
− 1

4kn4

)
‖x‖2 + ε if ‖y(t)‖ < 1 ∀t ≥ 0

where ε was defined in (22). Utilizing the inequalities given
in (10), the following new upper bound can be determined

V̇ ≤ −γ3(‖z‖) + ε if ‖y(t)‖ < 1 ∀t ≥ 0 (44)

where γ3(·) is introduced in (36), and z(t) was defined in
(33). After noting that ‖y‖2 ≤ nmaxi |yi |2, the set S1 can be
defined as follows

S1
�=

{
(e, η, y) ∈ R

n × R
n ×

(
− 1√

n
,

1√
n

)n }
. (45)

It now follows from (44) and (45) that

V̇ ≤ −γ3(‖z‖) + ε if (e, η, y) ∈ S1. (46)

From (21) and (36), it is clear that the following conditions
hold

γi(0) = 0 i = 1, 2, 3 lim
z→∞ γi(z) = ∞ i = 1, 2 (47)

lim
z→∞ γ3(z) =

(
1

2
− 1

4kn4

)
ε <

(
1

2
− 1

4kn4

)
. (48)

Hence, for initial conditions inside S1, Lemma 1 given in
Appendix B can applied to (40) and (46) to obtain the result
given by (31) where the ultimate bound is given in (34). �

Remark 1
Based on (34) and (36), it can be determined that the size
of the ultimate bound d̄ can be made arbitrarily small
by selecting the control gains kni∀i = 1, 2, . . . 4 arbitrarily
large.

Remark 2
Despite the fact that the initial conditions for the auxiliary
signal y(t) are constrained (i.e., see (17) and (23)), the
stability result is still global for the link position tracking
error signal e(t), since no restrictions are placed on the size
of ‖e(0)‖. Moreover, no restrictions are placed on the size of
‖η(0)‖, and ‖ė(0)‖.

4. CONCLUSION
In this paper, a novel global output feedback tracking
controller for rigid-link robot manipulators is presented.
Through the new design, the proposed robust controller
overcomes some potential drawbacks associated with the
stability analysis used in reference [19]. That is, the closed-
loop error system development and Lyapunov stability
analysis originate from a velocity-independent version of
the control strategy. As in references [19, 24], the proposed
control scheme guarantees asymptotic link position tracking
with no restrictions on the size of the initial position/velocity
tracking error.
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APPENDIX A
In this appendix, the upper bound given in (28) is developed.
To this end, the expression given in (27) can be upper bounded
as follows by utilizing (2) and (7)

‖χ‖ ≤ m2(‖η‖ + ‖Tanh(e)‖ + ‖y‖)

+ m2‖T ‖(‖y‖ + ‖Tanh(e)‖)

+ ζc1(‖q̇d‖ + ‖Tanh(e)‖ + ‖y‖)(‖y‖ + ‖Tanh(e)‖)

+ ζc1‖q̇d‖(‖y‖ + ‖Tanh(e)‖)

+ ζc1‖η‖(‖q̇d‖ + ‖Tanh(e)‖ + ‖y‖)

+ m2‖q̈d‖ + ζc1‖q̇d‖2 + ζf ‖q̇‖ + ζg + ζtd

+
(√√√√np

n∑
i=1

p∑
j=1

Y 2
dij

)
ζθ1. (49)

From the definition of �(y) given in (15), the following
inequality can be developed

‖�‖ ≤ (1 + ‖y‖2)2. (50)

After substituting (50) into (49), using the fact that
|tanh(x)| ≤ 1, ∀x ∈ R, and making use of (29), the result
given in (28) can be easily obtained.

APPENDIX B
Lemma 1: [28] Given the system

ẋ = f (x(t), t) (51)

where f (·) ∈ R
n×1 satisfies f (0, t) = 0, if there exists a non-

negative function V (·) such that for all x and t

γ1(‖x‖) ≤ V (x, t) ≤ γ2(‖x‖)
(52)

V̇ (x, t) ≤ −γ3(‖x‖) + ε

where γi(·) are scalar, strictly increasing functions, ε is a
positive scalar constant, and the following conditions hold

γi(0) = 0 i = 1, 2, 3 (53)

lim
p→∞ γi(p) = ∞ i = 1, 2 lim

p→∞ γ3(p)
�= l < ∞ ε < l

(54)

https://doi.org/10.1017/S0263574704000189 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574704000189


Tracking control 357

where l is a positive scalar constant, then x(t) is globally
uniformly ultimately bounded in the following sense

‖x(t)‖ < d̄ ∀t ≥ T (d̄, ‖x(0)‖) (55)

where d̄ is a positive constant that defines the radius of the
ball and is selected according to

d̄ >
(
γ −1

1 ◦ γ2
)(

γ −1
3 (ε)

)
,

and T (d̄, ‖x(0)‖) is a positive constant that denotes the
ultimate time and is given by

T (d̄, ‖x(0)‖)

=



0 if ‖x(0)‖ ≤ (
γ −1

2 ◦ γ1
)

(d̄)
γ2(‖x(0)‖) − γ1((γ −1

2 ◦ γ1)(d̄))
γ3((γ −1

2 ◦ γ1)(d̄))− ε
if ‖x(0)‖ >

(
γ −1

2 ◦ γ1
)
(d̄).

(56)
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