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A NONDEGENERATE EXCHANGE MOVE ALWAYS PRODUCES
INFINITELY MANY NONCONJUGATE BRAIDS

TETSUYA ITO

Abstract. We show that if a link L has a closed n-braid representative

admitting a nondegenerate exchange move, an exchange move that does not

obviously preserve the conjugacy class, L has infinitely many nonconjugate

closed n-braid representatives.

Let Bn be the braid group with standard generators σ1, . . . , σn−1. We denote the closure

of a braid β ∈Bn by β̂ ⊂ S3. For an oriented link L⊂ S3, let Brn(L) = {β ∈Bn | β̂ = L} be

the set of n-braids whose closures are L.

The set Brn(L) may contain infinitely many mutually nonconjugate braids. However,

Birman and Menasco proved a remarkable (non)finiteness theorem [BM]: Brn(L) modulo

the exchange move ασ−1n−1βσn−1↔ ασn−1βσ
−1
n−1 (α, β ∈Bn−1; see Figure 1(i)) has only

finitely many conjugacy classes. In particular, when Brn(L) does not contain a braid

admitting an exchange move, Brn(L) contains only finitely many conjugacy classes.

We ask the converse1: Does Brn(L) contain infinitely many mutually nonconjugate braids

if Brn(L) contains a braid admitting an exchange move?

This question was studied in [SS, Sh, St1, St2] where it was shown that under some

additional and technical assumptions, iterations of exchange moves indeed produce infinitely

many nonconjugate braids.

In this note, we give a simpler and shorter proof of infiniteness under the weakest

assumption. We use a formulation of iterations of exchange moves following [SS].

Definition 1. We say that an n-braid β admits an exchange move if one can write

β =AB for A ∈ 〈σ±11 , . . . , σ±1n−2〉 and B ∈ 〈σ±12 , . . . , σ±1n−1〉.
For k ∈ Z and an n-braid β =AB admitting an exchange move, the k-iterated exchange

move of β =AB is the braid exk(β) = τkAτ−kB, where τ = (σ2 · · · σn−2)n−2 ∈Bn. We say

that an (iterated) exchange move is degenerate if Aτ = τA or Bτ = τB. Otherwise, an

(iterated) exchange move is nondegenerate.

A k-iterated exchange move is attained by repeating an exchange move |k| times (see

Figure 1(ii)) so the closures of β and exk(β) represent the same link. A degenerate

exchange move obviously preserves the conjugacy classes. Our main theorem shows that,

except in trivial cases, iterated exchange moves always produce infinitely many mutually

nonconjugate braids.

We identify the braid group Bn with the mapping class group MCG(Dn) of the n-

punctured diskDn. Let ent(β) be the topological entropy of β, the infimum of the topological

entropy of homeomorphisms that represent β.
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1We need to be slightly careful in formulating the problem since some exchange moves are “trivial” in

the sense that they obviously yield conjugate braids.
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Figure 1.

(i) Exchange move for (closed) braids. (ii) Realization of the move β =AB→ ex1(β) = τAτ−1B by

exchange move and conjugation. (The figure illustrates the n= 4 case.) Here = and ∼= denote the

identity and conjugation in the braid group, respectively. At (∗1), we use the relation

(σ1σ2 · · · σn−2)(σn−2 · · · σ2σ1) = δτ−1 and at (∗2), we use the relation Aδ = δA since δ is the full

twist of (n− 1) strands.

Theorem 2. If β ∈Brn(L) admits a nondegenerate exchange move, then the set

{ent(exk(β)) | k ∈ Z} is unbounded. In particular, the set {exk(β) | k ∈ Z} ⊂Brn(L) con-

tains infinitely many distinct conjugacy classes.

Let S be a closed orientable surface minus finitely many open disks and puncture points

in its interior. A simple closed curve c in S is essential if c is neither boundary parallel nor

surrounds a single puncture. We denote by Tc the Dehn twist along c. A family of essential

simple closed curves {c1, . . . , cN} fills S if max i(c, ci) 6= 0 for any essential simple closed

curve c, where i(c, c′) denotes the geometric intersection number. Our proof is based on the

following theorem of Fathi [Fa, Theorem 7.9].
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Theorem 3. Let f ∈MCG(S) and c1, . . . , cN be essential simple closed curves in S.

Assume the following.

(i) The set of curves {c1, . . . , cN} fills S.

(ii) i(ci, ci+1) 6= 0 for i= 1, . . . , N − 1 and i(cN , c1) 6= 0.

Then for given R> 0, there is k = k(R)> 0 such that Tn1
c1 T

n2
c2 · · · T

nN
cN
f is pseudo-Anosov

whose dilatation is >R whenever |ni|> k for all i.

Remark. Although the statements and assumptions of Theorem 3 are slightly different,

Theorem 3 follows from the proof of [Fa, Theorem 7.9]. First, assumptions (i) and (ii) allow

us to apply an interpolation inequality [Fa, Theorem 7.4]. Second, to get the dilatation

bound, we take a choice of ε > 0 on page 149 of the proof of [Fa, Theorem 7.9] as ε=

(K2R2l−1)−1 instead of (2K2)−1 as in the original argument. Then the same argument

gives the desired dilatation bound.

Proof of Theorem 2. The braid τ in the iterated exchange move corresponds to the

Dehn twist Tc along the simple closed curve c surrounding punctures 2 through n− 2. The

nondegeneracy assumption is equivalent to saying that A(c) 6= c and B(c) 6= c.

For i > 0, let c2i = βi−1(A(c)) = (AB)i−1A(c) and c2i−1 = βi−1(c) = (AB)i−1(c). Thus

{c1, c2, c3, c4, . . .}= {c, A(c), β(c), β(A(c)), . . .}. Since fTC = Tf(C)f for f ∈MCG(Dn),

for N > 0 we have

exk(β)N = (T kc AT
−k
c B) · · · (T kc AT−kc B)(T kc AT

−k
c B)

= (T kc T
−k
A(c)AB) · · · (T kc T−kA(c)AB)(T kc T

−k
A(c)AB)

= (T kc T
−k
A(c)AB) · · · (T kc T−kA(c)T

k
AB(c)T

−k
ABA(c)(AB)2)

= · · ·

= T kc1T
−k
c2 · · · T

k
c2N−1

T−kc2Nβ
N .

We equip a complete hyperbolic metric (of finite area) on Dn and take ci as a

closed geodesic. Let S be the smallest complete geodesic subsurface of Dn that contains

{c1, c2, c3, c4, . . .}. Then for sufficiently large M , the set of curves {c1, c2, . . . , cM} fills S.

By the nondegeneracy assumption, S contains ∂Dn in its boundary.

Claim 1. β preserves the subsurface S setwise. In particular, the restriction exk(β)|S ∈
MCG(S) is well defined for all k.

Proof of Claim 1. If S =Dn, then it is obvious, and so we assume that S 6=Dn.

Then C = ∂S \ ∂Dn is a nonempty multicurve. If β(S) 6= S, then β−1(S) 6= S and

i(β−1(C), C) 6= 0. Since {c1, c2, . . . , cM} fills S, this means i(β−1(C), ci) = i(C, β(ci)) =

i(C, ci+2) 6= 0 for some i. This is a contradiction since i(C, ci+2) = 0 by definition.

Claim 2. There exists N >M such that i(c1, c2N ) 6= 0.

Proof of Claim 2. Assume to the contrary that i(c1, c2N ) = 0 for all N >M . Let

S′ be the smallest geodesic subsurface of S that contains {c2M , c2(M+1), . . .}=

{c2M , β(c2M ), β2(c2M ), . . .}. By the same argument as Claim 1, β preserves S′, and

i(c, c′) = 0 for every curve c′ ⊂ S′. Then β−2(M−1)(c2M ) =A(c)⊂ S′, so i(c, A(c)) = 0. This

contradicts the nondegeneracy assumption.
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By the nondegeneracy assumption, i(ci, ci+1) 6= 0 for every i > 0. Thus by Claim 2, there

is N > 0 such that

exk(β)N |S = T kc1T
−k
c2 · · · T

k
c2N−1

T−kc2Nβ
N |S ∈MCG(S)

satisfies the assumptions of Theorem 3. Hence for any given R> 0, whenever |k| is

sufficiently large, exk(β)N |S is pseudo-Anosov whose dilatation λ(exk(β)N |S) is >R. Since

ent(exk(β)) = ent(exk(β)N )
N > ent(exk(β)N |S)

N = log λ(exk(β)N |S)
N > log R

N ,

the set {ent(exk(β)) | k ∈ Z} is unbounded.

Our proof shows that as k increases, a nondegenerate k-iterated exchange move increases

the entropy, the complexity of dynamics, as long as k is sufficiently large. Since the core

of Birman–Menasco’s proof of the (non)finiteness theorem is to reduce the complexity (the

number of singular points) of a braid foliation corresponding to a Seifert surface, it is natural

to expect relations between the entropy and braid foliation.

Question 1. If a braid β is obtained from β′ by an exchange move reducing the

complexity of braid foliation, then is ent(β) 6 ent(β′)?
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