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Abstract

The conjecture of Brown, Erdős and Sós from 1973 states that, for any k ≥ 3, if a
3-uniform hypergraph H with n vertices does not contain a set of k + 3 vertices spanning
at least k edges then it has o(n2) edges. The case k = 3 of this conjecture is the celebrated
(6, 3)-theorem of Ruzsa and Szemerédi which implies Roth’s theorem on 3-term arithmetic
progressions in dense sets of integers. Solymosi observed that, in order to prove the conjec-
ture, one can assume that H consists of triples (a, b, ab) of some finite quasigroup �. Since
this problem remains open for all k ≥ 4, he further proposed to study triple systems coming
from finite groups. In this case he proved that the conjecture holds also for k = 4. Here we
completely resolve the Brown–Erdős–Sós conjecture for all finite groups and values of k.
Moreover, we prove that the hypergraphs coming from groups contain sets of size �(

√
k)

which span k edges. This is best possible and goes far beyond the conjecture.

2010 Mathematics Subject Classification: 05C65 (Hypergraphs), 05C35 (Extremal prob-
lems), 20K01 (Finite abelian groups)

1. Introduction

One of the main research directions in discrete mathematics concerns emergences of
certain local sub-structures in objects of high density. Many classical results, such as
Szemerédi’s theorem on arithmetic progressions in subsets of integers of constant density
or Turán’s theorem on the existence of complete graphs in very dense graphs, belong to this
category of problems. In the study of hypergraphs, one of the most important open questions
in this direction is the Brown–Erdős–Sós conjecture from 1973.

CONJECTURE 1·1 (Brown–Erdős–Sós [3]). For any c > 0 and any integer k there exists
n0 = n0(c, k), such that every 3-uniform hypergraph H with n ≥ n0 vertices and at least cn2

edges contains a subset of k + 3 vertices which span at least k edges.

† The first and the second author were supported in part by SNSF grant 200021-175573.
‡ Supported in part by ERC Starting Grant 633509 and ERC Starting Grant 676632.
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Already the simplest case k = 3 of this conjecture, which is usually called the (6, 3)-
problem, had many interesting consequences. In particular, in the course of proving it Ruzsa
and Szemerédi [17] used Szemerédi’s regularity lemma to obtain an auxiliary result which
is now known as the triangle-removal lemma. This lemma and its extensions have many
striking application in combinatorics, number theory and theoretical computer science. For
example, it implies Roth’s theorem [16] on 3-term arithmetic progressions in dense sets of
integers and its stronger corner version by Ajtai and Szemerédi [1] (see [19]). A removal
lemma for larger complete graphs was later obtained by Erdős, Frankl and Rödl [5] in
the course of extending the (6, 3)-theorem of Ruzsa and Szemerédi to higher uniformities.
Deriving a hypergraph removal lemma was one of the driving forces behind development
of the hypergraph regularity method (see, e.g., [15]), with one of the main applications in
mind being a simpler proof of Szemerédi’s theorem [22] which generalises Roth’s theorem
to arithmetic progressions of arbitrary length.

Despite a lot of research over the last 40 years, the Brown–Erdős–Sós conjecture remains
open for all values k ≥ 4. The best upper bound on the number of vertices which are known
to span k edges is k + 2 + �log k�, obtained by Sárközy and Selkow [18].

It is not difficult to see that we may assume H is linear, that is no two edges share more
than one vertex. Indeed, if a pair of vertices in H is shared by k edges, then this already gives
k + 2 vertices spanning at least k edges. Otherwise a simple greedy argument produces a
linear subgraph H ′ ⊂ H of size at least (c/k)n2. Furthermore, by partitioning vertices of H ′

at random into three parts we obtain a tripartite hypergraph H ′′ with (2/9)(c/k)n2 edges.
These hyperedges can be seen as entries of a partial n × n Latin square. Using a result
of Evans [7] which states that every partial n × n Latin square can be embedded into a
2n × 2n Latin square, Solymosi [20] observed that, by the previous, the Brown–Erdős–Sós
conjecture can be phrased in terms of quasigroups1.

CONJECTURE 1·2. For every integer k ≥ 3 and c > 0, there exists n0 ∈N such that if � is
a finite quasigroup with |�| ≥ n0, then for every set S of triples of the form (a, b, ab) ∈ �3

with |S| ≥ c|�|2 there exists a subset T ⊆ � of k + 3 elements which spans at least k triples
from S, that is, at least k triples from S belong to T 3.

Remark. Without loss of generality, here and in the rest of the paper, we assume that every
triple (as a set) appears in S only once. Moreover for every such triple we fix some ordering
(a, b, ab) in which the third element is the product of the first two.

As a step towards understanding this conjecture, Solymosi [20] suggested to consider the
case where � is a group. In particular, he showed that the Brown–Erdős–Sós conjecture for
groups holds also when k = 4. Very recently, while we were completing this paper, Solymosi
and Wong [21] made a further step towards Brown–Erdős–Sós conjecture in groups. They
proved that for any group and every set of quadratically many triples (a, b, ab) there are
infinitely many values of k such that there is a set of size (3/4 + o(1))k spanning at least k
triples. In their result the value of k can not be chosen in advance and depends on the group
and more importantly on the set of triples.

1Recall that a finite set � forms a quasigroup under a binary operation if it satisfies all group axioms except
associativity, or, combinatorially, if its multiplication table forms a Latin square.
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In this paper we completely resolve Brown–Erdős–Sós problem in groups for all values
of k. Unlike Conjecture 1·2 which, if true, would be optimal, we show that in the case of
groups there are already sets of size O(

√
k) spaning k triples.

THEOREM 1·3. For every integer k ≥ 3 and c > 0, there exists n0 ∈N such that if � is
a finite group with |�| ≥ n0, then for every set S of triples of the form (a, b, ab) ∈ �3 with
|S| ≥ c|�|2 there exists a subset of � of size at most

min
{

k + 3, 8
√

k
}

which spans at least k triples from S.

Note that, since our hypergraphs are linear, the bound of �(
√

k) is tight up to a constant
factor. Interestingly, as 8

√
k does not depend on c we have that triple systems coming from

groups are much denser locally than globally.

Note added in proof . After this paper was written we learned that Theorem 1·3 was proved
independently by Long [12], and a weaker result (where constant in front of

√
k depends on

density c of triples) was obtained independently by Wong [23].

2. Proof of Theorem 1·3
In the proof of Theorem 1·3 we utilise two classical theorems in additive combinatorics:

the density version of the Gallai–Witt theorem [8, 10, 15] (also known as the multidi-
mensional Szemerédi’s theorem) and the multidimensional density Hales–Jewett theorem
[4, 9, 13]. Let us recall them here, starting with the former.

THEOREM 2·1. Let d be a positive integer, R be a finite subset of Nd , and c > 0. If n ≥
n0(d, R, c) is sufficiently large, then every subset C ⊆ [n]d of size |C | ≥ cnd contains a
homothetic copy of R, that is there exist s ∈ [n]d and an integer t ≥ 1 such that s + t R ⊆ C.

Let m, d and z be integers, with d ≤ m. A d-dimensional combinatorial subspace of a
cube [z]m is defined as follows: partition the ground set [m] into z + d sets X1, . . . , Xz ,
W1, . . . , Wd such that W1, . . . , Wd are non-empty; the subspace consists of all sequences
x = (x1, . . . , xm) ∈ [z]m such that xi = j whenever i ∈ X j and x is constant on each set
W j , that is if i, i ′ ∈ W j then xi = xi ′ . There is an obvious isomorphism between [z]d and
any d-dimensional combinatorial subspace: the sequence a = (a1, . . . , ad) is sent to the
sequence x such that xi = j whenever i ∈ X j and xi = a j whenever i ∈ W j . With this notion
at hand, we are ready to state the multidimensional density Hales–Jewett theorem.

THEOREM 2·2. For every c > 0 and every pair of integers z and d there exists a positive
integer M DH J (z, d, c) such that, for m ≥ M DH J (z, d, c), every subset C ⊆ [z]m of size
|C | ≥ czm contains a d-dimensional combinatorial subspace of [z]m.

We now prove Theorem 1·3.

Proof of Theorem 1·3. Let � be a finite group with |�| > n0, for some sufficiently large n0.
Let G ⊆ � be an arbitrary subgroup of �. Recall that the sets of both left and right cosets of
G partition the elements of the group �. Therefore direct product of such cosets �G × Gr
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partitions � × � into sets of size |G|2. Thus, by averaging there exist �, r ∈ � such that
the set

S�,r = S ∩ {(a, b, ab) : a ∈ �G, b ∈ Gr}
is of size at least |S�,r | ≥ c|G|2. Let

S′ = {(a, b, ab) : a, b ∈ G such that (�a, br, �abr) ∈ S},
and note that |S′| = |S�,r |. Crucially, for any sets A, B ⊆ G and P ⊆ AB such that

|S′ ∩ A × B × P| ≥ k, (2·1)

we have

|S ∩ �A × Br × �Pr | ≥ k.

Therefore, to prove the theorem it suffices to find such sets A, B and P in G with |A| +
|B| + |P| ≤ min{k + 3, 8

√
k}.

By an observation of Erdős and Straus [6], � contains an abelian subgroup �′ with
|�′| ≥ 0.9 log |�|. A better (and tight) estimate on the size of a largest abelian subgroup
was obtained by Pyber [14], however this results relies on the classification of finite simple
groups and for our purposes a much more elementary result of Erdős and Straus suffices. In
fact, any estimate which allows us to assume that �′ is sufficiently large, provided � is large,
would do as well.

Let K and m be sufficiently large constants (m will depend on K ) which we choose later.
From the fundamental theorem of finite abelian groups we have that �′ is isomorphic to a
direct sum of the form

h⊕
i=1

Z
mi
qi

,

where all qi ’s are distinct. Therefore, by choosing n0 to be large enough we can assume that
there exists some i ∈ [h] such that either qi > K or mi > m. For brevity let us call qi = q and
mi = m. By the above discussion, in the first case we can reduce problem to Zq and in the
second to Z

m
q . In both cases, for the rest of the proof we switch to additive notation.

Case 1: q ≥ K . Let C ⊆ [q]2 be a subset consisting of all (a, b) ∈Z
2
q such that (a, b, a +

b) ∈ S′, and note that |C | ≥ cq2. Choose K sufficiently large, so that we can apply Theorem
2·1 to find s = (s1, s2) ∈Z

2 and some positive integer t such that s + t R ⊂ C , where R =
[k]2.

Let A = {s1 + ti : i ∈ [h]} and B = {s2 + t j : j ∈ [h]}, for h = �√k�. Note that for every
a ∈ A and b ∈ B we have (a, b) ∈ C and thus (a, b, a + b) ∈ S′. Therefore, by the choice
of h, the sets A, B and P = A + B satisfy (2·1). As A + B ⊂ {s1 + s2 + t� : � ∈ [2, 2h]}, we
have |A + B| < 2h. Thus |A| + |B| + |P| < 4h ≤ 8

√
k, with room to spare.

We apply a similar approach to find sets with the sum of sizes at most k + 3. For that
choose A = {s1 + ti : i ∈ [h]}, this time with h = �k/2�, and B = {s2 + t, s2 + 2t}. If k is
even set P = A + B, and otherwise P = (A + B) \ {s1 + ht + s2 + 2t}. A routine check
shows that in both cases the obtained sets satisfy (2·1) and |A| + |B| + |P| = k + 3.

Case 2: q < K . Choose m to be sufficiently large so that we can apply density Hales–
Jewett theorem (Theorem 2·2) with c, d = k and z = K 2. Our aim is to show there exists
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a k-dimensional vector space W ⊆ Zm
q and â, b̂ ∈ Zm

q such that for every a ∈ â + W and

b ∈ b̂ + W we have (a, b, a + b) ∈ S′. Before we prove that such W and â, b̂ exist, let us
first show how it implies the existence of desired sets A, B and P ⊆ A + B.

Let u1, . . . , uk be an arbitrary basis of W . Let d ∈N0 be the largest integer such that
q2d ≤ k, and then let t ∈N be the smallest integer such that t2q2d ≥ k. In particular, we have
1 ≤ t < q. Set

W ′ = {
λ1u1 + · · · + λd+1ud+1 : λ1, . . . , λd ∈ [0, q − 1], λd+1 ∈ [0, t − 1]}.

For A = â + W ′ and B = b̂ + W ′ we have (a, b, a + b) ∈ S′ for every a ∈ A and b ∈ B, thus
the choice of t and d implies that the sets A, B and P = A + B satisfy (2·1). As A + B is of
size at most 2tqd , we have |A| + |B| + |P| ≤ 4tqd . If t = 1 then q2d = k, thus 4tqd ≤ 4

√
k.

Otherwise, for t ≥ 2 we have

(t/2)2q2d ≤ (t − 1)2q2d < k,

which implies 4tqd < 8
√

k. In either case, we have |A| + |B| + |P| ≤ 8
√

k, as desired.
As in Case 1, a similar approach is also used to find subsets with the sum of sizes k + 3.

Let h = k/(2q − 1)�, t = �(k − h(2q − 1))/2� and set

A = â + {λui : λ ∈ [0, q − 1] and i ≤ h} ∪ {λuh+1 : λ ∈ [0, t − 1]}
and

B = b̂ + {0, u1, . . . , uh, uh+1}.
Note that |A| = h(q − 1) + t and |B| = h + 2. Again, for a ∈ A and b ∈ B we have
(a, b, a + b) ∈ S′. This time we do not take P = A + B, which would be too large, but only
a subset of it, namely

P = â + b̂ + {λui : λ ∈ [0, q − 1] and i ≤ h} ∪ {λuh+1 : λ ∈ [0, t]}.
Moreover, if k − h(2q − 1) is not even then P := P \ {tuh+1}. Note that |P| = h(q − 1) +
t + 1 when k − h(2q − 1) is even and |P| = h(q − 1) + t otherwise. Thus, it is easy to verify
that |A| + |B| + |P| = k + 3. Let us briefly check that (2·1) is also satisfied. We do this
only in the case k − h(2q − 1) is even. The other case is done analogously. First, for every
i ∈ {1, . . . , h} and every

a ∈ â + {λui : λ ∈ [0, q − 1]} and b ∈ {b̂, b̂ + ui }
we have a + b ∈ P . Overall this amounts to h · 2q − (h − 1) triples in S′. Similarly, for every

a ∈ â + {λuh+1 : λ ∈ [0, t − 1]} and b ∈ {b̂, b̂ + ui }
we again have a + b ∈ P , which contributes additional max(0, 2t − 1) triples (notice that
we have already counted (â, b̂, â + b̂) in the previous step). Using 2t = k − 2hq + h we
conclude that this amounts to k triples in total.

It remains to show, using Theorem 2·2, that a desired k-dimensional vector subspace
W ⊆ Zm

q and elements â, b̂ exist. Consider a subset C ⊆ V m , where V =Zq ×Zq , which
contains an element

((a1, b1), . . . , (am, bm))
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if and only if (a, b, a + b) ∈ S′ for a = (a1, . . . , am) and b = (b1, . . . , bm). As |C | ≥
c(qm)2 = c|V |m and m is sufficiently large, by Theorem 2·2 the set C contains a
k-dimensional combinatorial subspace. Let {X(e1,e2)}(e1,e2)∈V and W1, . . . , Wk be the par-
tition of [m] corresponding to this subspace. Define â ∈Z

m
q by setting âi = j for every

i ∈ ⋃
e2∈Zq

X( j,e2) and, similarly, b̂i = j for every i ∈ ⋃
e1∈Zq

X(e1, j). For all i ∈ W1 ∪ . . . ∪ Wk

set âi = b̂i = 0. Furthermore, let u1, . . . , uk ∈Z
m
q be vectors defined as (ui) j = 1 for j ∈ Wi

and (ui) j = 0 otherwise, for i ∈ [k]. It is clear that they are independent in Z
m
q and therefore

span a k-dimensional vector subspace, which we denote by W .
Let us briefly check that the obtained W and â, b̂ have the desired property. Consider some

a = (a1, . . . , am) ∈ â + W and b = (b1, . . . , bm) ∈ b̂ + W . Then ((a1, b1), . . . , (am, bm))

belongs to a k-dimensional combinatorial subspace of V m which is given by the parti-
tion {X(e1,e2)}(e1,e2)∈V and W1, . . . , Wk . As this combinatorial subspace lies in C , from the
definition of C we conclude (a, b, a + b) ∈ S′.

3. Concluding remarks

Theorem 1·3 shows that triples coming from groups contain much denser subsets than
conjectured. Determining the best possible constant C in the C

√
k-term of Theorem 1·3

remains an interesting problem. We were able to do it for cyclic groups Zn , where we obtain
C = √

12. We believe that the proof, which is presented in the Appendix, is interesting in
its own right as it establishes a correspondence between the Brown–Erdős–Sós conjecture
for Zn and the following discrete isoperimetric problem. Recall that the edge-boundary of a
vertex set S in a graph is defined as ∂e(S) := e(S, S), that is the number of edges leaving S.
The edge-isoperimetric problem for a graph G (that may be infinite) and an integer k asks
to find the minimum edge-boundary of vertex sets of size k in G.

Here we are particularly concerned with G being the two-dimensional triangular lattice
T , where the above question was answered by Harper [11, theorem 7·2].

THEOREM 3·1 ([11]). There exists a nested family of vertex sets in T , S = (Sk)k∈N, with
|Sk | = k, such that each Sk minimizes the edge-boundary over all sets of size k. The family
S contains all balls in the lattice metric of T , i.e. regular hexagons.

The following figure visualises S: the set Sk consists of all vertices labelled 1 through k.

The proof in [11] is not elementary, as it makes use of some powerful abstract tools that
can be applied to various other isoperimetric problems. It might be therefore of independent
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interest that as a by-product of determining the correct constant in Theorem 1·3 for Zn ,
we, somewhat unexpectedly, obtain a short elementary proof of Harper’s theorem. Recently
Angel, Benjamini and Horesh [2, theorem 2·4] proved an edge-isoperimetric inequality for
planar triangulations which generalises Harper’s theorem. Our result can be viewed as an
extension of Theorem 3·1 in a different direction, as we determine the minimum number of
axis-parallel lines occupied by any set of k points in T .

Finally, it would be interesting to determine the correct constant also in the Z
m
q -case as

this would in turn yield the optimal constant in Theorem 1·3.

Appendix

Here we shall determine the sharp constant in Theorem 1·3 for cyclic groups. For a set of
points P ⊆Z

2 define

g(P) := |{x : (x, y) ∈ P}| + |{y : (x, y) ∈ P}| + |{z : (x, y) ∈ P, x + y = z}|.
That is, g(P) measures the total number of rows, columns and lines of form x + y = c
(‘diagonals’ for short – note that we completely ignore the diagonals of the type x = y + c)
occupied by points in P . Let

g(k) = min
|P|=k

g(P).

The following lemma shows that g(k) precisely determines the size of a smallest subset
which is guaranteed to span at least k edges, in the case where � =Zn .

LEMMA 2. For every integer k ≥ 3 and c > 0, there exists n0 ∈N such that if n ≥ n0 then
for every set S of triples of the form (a, b, a + b) ∈Z

3
n with |S| ≥ cn2, there exists a subset of

Zn of size g(k) which spans at least k triples from S. Moreover, there exists a set S of n2/64
triples in which every subset of size g(k) − 1 spans less than k edges.

Proof. Let S be a given set of triples, and let C ⊆ [n]2 be the set of points containing all
(a, b) such that (a, b, a + b) ∈ S. In other words, each point in C corresponds to a triple
from S. Next, let P ⊆ [m]2 be a set of k points such that g(P) = g(k), where m ∈N, clearly,
depends only on k. By Theorem 2·1, C contains a homothetic copy of P , that is there exist
some s ∈ [n]2 and an integer t such that s + t P ⊆ C . We claim that the k edges corre-
sponding to points in s + t P span at most g(k) elements of Zn . This easily follows from
the observation that g(s + t P) = g(P) = g(k) and the number of different elements a + b
where (a, b) ∈ s + t P is at most the size of the set

Q = {z : (a, b) ∈ s + t P, a + b = z},
where the addition is done in Z instead of Zn (hence, |Q mod n| can be strictly smaller
than |Q|).

Let us now exhibit a set of triples S which shows the optimality of g(k). Consider
two intervals in Zn: A = [n/8, 2n/8 − 1] and B = [2n/8, 3n/8 − 1]. Then A + B =
[3n/8, 5n/8 − 2] and, in particular, A,B and A + B are disjoint. Let S the set of all
triples (a, b, a + b) where a ∈ A and b ∈ B, and note that |S| = n2/64. Identify each triple
(a, b, a + b) ∈ S with a point (a, b) ∈ A × B ⊆Z

2. Then for a set of k triples in S, corre-
sponding to a set P of k points in Z

2, the involved vertices in A, B and A + B correspond
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to rows, columns and diagonals occupied by P , respectively, owing to disjointness of these
sets. Hence, any set of k edges necessarily span at least g(k) elements.

The following theorem determines the growth rate of g(k) and, by Lemma 2, tight bounds
on the size of a smallest set which spans k edges in additive triples coming from � =Zn .

THEOREM 3. g(k) = (1 + o(1))
√

12k.

We prove Theorem 3 by considering a dual problem: given an integer m, what is h(m),
the size of a largest set of points P ⊆Z

2 such that g(P) = m? Note that g and h are inverse
functions, in the sense that if g(k) = m and g(k ′) > m then k ≤ h(m) < k ′.

To determine the growth rate of h, consider some fixed sets A, B ⊆Z, with |A| = a,

|B| = b, and let h(A, B, �) be the largest number of points in A × B occupying at most �

diagonals. The following lemma, which is the heart of the proof of Theorem 3, shows that
we can assume A and B to be intervals.

LEMMA 4. h(A, B, �) ≤ h([a], [b], �).

Proof. We apply induction on �; for � = 0 there is nothing to prove. Suppose that the
statement holds for � − 1, for some � ≥ 1. Let C be a set of � diagonals (recall that we
only consider diagonals of the form x + y = z, for some integer z) and suppose, towards a
contradiction, that P = C ∩ (A × B) satisfies |P| > h([a], [b], �).

Let A = {x1, . . . , xa} and B = {y1, . . . , yb} such that xi < xi+1 and yi < yi+1. For each
point (xi , y j ) ∈ A × B consider the point (i, j) ∈ [a] × [b], and let

D = {(i, j) : (xi , y j ) ∈ P} ⊆ [a] × [b]
be the set of all such points. Let P ′ ⊆ [a] × [b] be a set of points which is a certificate for
h([a], [b], � − 1), and recall that P ′ is a union of � − 1 diagonals intersecting [a] × [b].
In particular, if (i, j) /∈ P ′ then (x, y) /∈ P ′ for every x ∈ [a] and y ∈ [b] such that x + y =
i + j . Note that

|D| = |P| > h([a], [b], �) ≥ h([a], [b], � − 1) = |P ′|,
thus there exists some (i, j) ∈ D \ P ′. Let P1 = {(x, y) ∈ A × B : x + y = xi + y j } ⊆ P and
P2 = P \ P1. In other words, P1 consists of all the points of P which lie on the same diagonal
as (xi , y j ), and P2 are all the points which remain after removing this diagonal.

CLAIM 5.

|P1| ≤ |{(x, y) ∈ [a] × [b] : x + y = i + j}| =: |T |.
Proof. Let

D1 = {(u, w) : (xu, yw) ∈ P1}.
Note that (i, j) ∈ D1 ∩ T and define D−

1 := {(x, y) ∈ D1 : x < xi }. For all x, y with x + y =
xi + y j we have at most one such y for every x and vice versa, and if x < xi then y > y j .
Since there are at most i − 1 values x < xi and at most b − j values y < y j , we get

|D−
1 | ≤ min{i − 1, b − j} = |T ∩ ([i − 1] × [b])|.
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Analogously, for D+
2 := {(x, y) ∈ D1 : x > xi } we obtain

|D−
2 | ≤ |T ∩ ([i + 1] × [b])|,

and the claim follows by addition.

By the induction hypothesis we have

|P2| ≤ h(A, B, � − 1) ≤ h([a], [b], � − 1) = |P ′|,
and since P ′ ∩ T = ∅, by an earlier observation, we obtain

h([a], [b], �) ≥ |P ′| + |T | ≥ |P2| + |P1| = |P| > h([a], [b], �),

thus a contradiction. This proves the induction step, and the statement follows.

The previous lemma reduces the problem of estimating h(m) to finding integers a, b, �,
such that a + b + � = m, which maximize h([a], [b], �).

Proof of Theorem 3. To prove the theorem it suffices to determine the growth rate of h(m).
By Lemma 4, for any integer m we have that

h(m) = max {h([a], [b], �) : a, b, � ∈N such that a + b + � = m}.
For brevity, we write h([a], [b], �) =: h(a, b, �).

CLAIM 6. h(m) is realised by h(a, b, �), where m/3� ≤ a, b, � ≤ �m/3�.

Proof. Let di(a, b) be the size of the i-th largest intersection of a diagonal with [a] × [b].
Then, for a ≤ b, we have

d1 = · · · = db−a+1 = a, db−a+2 = db−a+3 = a − 1, . . . , da+b−2 = da+b−1 = 1.

A term by term comparison of h(a, b, �) = ∑�

i=1 di (a, b) and h(a + 1, b − 1, �) =∑�

i=1 di (a + 1, b − 1) shows that to achieve h(m) we must have |b − a| ≤ 1. Similarly,
by comparing h(a, a, �) with h(a + 1, a + 1, � − 2) and h(a − 1, a − 1, � + 2), and
h(a, a + 1, �) with h(a + 1, a + 2, � − 2) and h(a − 1, a, � + 2) (alternatively, it is not dif-
ficult to see that h(a, b, c) = h(a, c, b) = h(b, c, a) always holds) we obtain that h(m) is
realised when a, b, c are within 1 of each other. We omit the straightforward calculations.

By the above discussion

h(a, a, a) = a + 2(a − 1) + · · · + 2(a/2) + o(a2) = 2

(
a

2

)
− 2

(
a/2

2

)
+ o(a2)

= (3/4)a2 + o(a2).

Therefore

h(m) = 3

4
(m/3)2 + o(m2) = m2

12
+ o(m2).

Inverting the function yields g(k) = (1 + o(1))
√

12k, completing the proof of Theorem 3.
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Note that as a corollary of Theorem 3 we immediately obtain an asymptotic version of
Harper’s theorem (Theorem 3·1). Too see this, observe that the triangular lattice T is isomor-
phic to the square lattice with all the diagonals x + y = c ‘drawn in’ (formally: the Cayley
graph on Z

2 generated by (1, 0), (0, 1) and (1, −1)), where in the latter the edge-boundary
of a set P satisfies

∂e(P) ≥ 2g(P) ≥ 2g(|P|). (A.1)

Thus, by Theorem 3 we obtain ∂e(P) ≥ 4(1 + o(1))
√

3|P|, which asymptotically matches
the edge-boundary of the regular hexagons.

To derive Theorem 3·1 in full from here, note that in the course of the proof we determine
g(k) via h(m) precisely. Since the extremal sets claimed in Theorem 3·1 are also extremal
sets for g(k) (as the corresponding unions of rows, columns and diagonals are extremal for
h(m)), Theorem 3·1 follows.

Finally, note that Harper’s theorem does not claim a complete classification of extremal
sets for the edge-isoperimetric problem on T . In fact, for most values for k it is easy to see
that even up to isometry there is more than one extremal example. That said, the extremal
examples are unique for values of k that are volumes of balls in T . This can be deduced
from our argument as follows. If P is extremal, by (A.1) it has to have no ‘gaps’ (the inter-
section with each of the three axes has to be an interval), and be extremal for g(k). However,
the regular hexagon of radius a in T corresponds in T ′ to the union of the 2a + 1 longest
diagonals in [2a + 1] × [2a + 1], which, by a uniqueness analysis in Claim 6, is the unique
up to dilation extremal set for h(3(2a + 1)) and therefore the unique gap-free extremal set
for g(k).
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[12] J. LONG. A note on the Brown–Erdős–Sós conjecture in groups. Preprint (arXiv:1902.07693).
[13] D. POLYMATH. A new proof of the density Hales–Jewett theorem. Ann. of Math. (2012), 1283–1327.

https://doi.org/10.1017/S0305004119000203 Published online by Cambridge University Press

https://arXiv:1902.07693
https://doi.org/10.1017/S0305004119000203
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