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ABSTRACT
Higher-Order Spectra (HOS) are used to characterise the nonlinear aeroelastic behaviour of
a plunging and pitching 2-degree-of-freedom aerofoil system by diagnosing structural and/or
aerodynamic nonlinearities via the nonlinear spectral content of the computed displacement
signals. The nonlinear aeroelastic predictions are obtained from high-fidelity viscous fluid-
structure interaction simulations. The power spectral, bi-spectral and tri-spectral densities
are used to provide insight into the functional form of both freeplay and inviscid/viscous
aerodynamic nonlinearities with the system displaying both low- and high-amplitude Limit
Cycle Oscillation (LCO). It is shown that in the absence of aerodynamic nonlinearity (low-
amplitude LCO) the system is characterised by cubic phase coupling only. Furthermore, when
the amplitude of the oscillations becomes large, aerodynamic nonlinearities become prevalent
and are characterised by quadratic phase coupling. Physical insights into the nonlinearities
are provided in the form of phase-plane diagrams, pressure coefficient distributions and Mach
number flowfield contours.
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NOMENCLATURE
b semi–span [m]
b̂ bi-coherence
B bi-spectrum
f frequency [Hz]
G pitching freeplay nonlinearity term
h, ḣ, ḧ plunging displacement [m], velocity [m/s] and acceleration [m/s2]
Iα aerofoil moment of inertia about the elastic axis [kg·m2]
Kα pitching stiffness [N/rad]
Kh plunging stiffness [N/m]
L time varying aerodynamic lift/unit span[N]
m aerofoil mass [kg]
M higher-order spectra number of data segments
Mα time-varying aerodynamic pitching moment about the elastic axis [N·m]
M∞ freestream Mach number
N total number of data points
p∞ freestream static pressure [Pa]
q∞ freestream dynamic pressure [Pa]
R correlation coefficient
Sα static unbalance moment about the elastic axis [kg·m]
t time [s]
T tri-spectrum
T∞ freestream static temperature [K]
V∗ velocity index V ∗ = V∞/bωα

√
μ

V∞ freestream velocity [m/s]
y(t) time-series
Y(f) Fourier transform of y(t)
Y∗(f) complex conjugate of Y(f)

Greek Symbol

α, α̇, α̈ pitching displacement [°], velocity [°/s] and acceleration [°/s2]
αs pitching freeplay margin [°]
α0 angle-of-attack
μ structural-to-fluid mass ratio μ = m/πρ∞b2

ρ∞ freestream air density [kg/m3]
τ tri-coherence
� phase
ωh, ωα plunging and pitching uncoupled natural frequencies [Hz]
ωh, aero, ωα, aero wetted plunging and pitching un-coupled natural frequencies [Hz]

1.0 INTRODUCTION
The development of reliable and efficient modelling for nonlinear aeroelastic phenomena
is currently a critical field of study. Augmenting the fidelity of aeroelastic modelling
and ensuring that the computational cost of simulation remains feasible has significant
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benefits in the aeroelastic community, in particular understanding and diagnosing types of
nonlinear behaviour which induce nonlinear aeroelastic phenomena, such as Limit Cycle
Oscillation (LCO). LCOs are a result of structural and/or aerodynamic nonlinearities within
an aeroelastic system(1). More specifically, an LCO is a bounded periodic or quasi-periodic
dynamic phenomenon which, in the context of aeroelasticity, is bound by structural or
aerodynamic nonlinear phenomena. The resultant oscillatory (potentially high-amplitude)
motion can cause significant structural damage on the airframe including fatigue failure due
to LCO or catastrophic failure if divergence is encountered.

Aerodynamic nonlinearities generally result from transonic flow phenomena, i.e.
shockwave–boundary-layer interactions and shock-induced separation, high angle-of-attack
dynamic stall operations or, within critical regions of the flight regime, transonic buffet.
Structural nonlinearity can be either distributed or concentrated. Distributed nonlinearities
will affect the entire wing (i.e. nonlinear material properties or stiffening due to large
deformation), whereas concentrated nonlinearities are localised to regions of the airframe, e.g.
at locations where there are structural loads due to externally mounted pylons with scientific
payload and ordnance, freeplay, backlash providing nonlinear stiffness and friction(1). For
a given aeroelastic system exhibiting a nonlinear response, nonlinear system identification
techniques are employed with the aim of detecting, characterising and quantifying the type
of nonlinearity. Identifying such systems can become an arduous task if the system contains
multiple types of nonlinearity, the type of nonlinearity is not distinguishable due to high-
amplitude dynamic oscillations or contaminated by a high signal-to-noise ratio. Considering
this, there is a requirement for the development of a robust system identification framework
capable of detecting and characterising single or multiple types of nonlinearity in complex
noisy aeroelastic signals. Furthermore, there is a requirement to improve our comprehension
of how different types of nonlinearity drive nonlinear aeroelastic phenomena, in particular,
for this study, LCO.

Generally, freeplay is considered to be inherited from loosened mechanical linkages
between the main wing and control surfaces, main wing and store link system or within an
all-movable horizontal tail. Current design criteria for freeplay-induced LCO are outdated
and based on an elementary comprehension of the phenomena(2); hence, it is necessary to
improve our understanding of freeplay-induced LCO characteristics. Control surface freeplay
is the most common form of freeplay and has been found to induce LCO in various civilian-
and defense-based assets. However, these occurrences are not well documented in the public
domain. Loosened mechanical linkages can also lead to cubic stiffening within a linkage
(rather than a freeplay, which is representative of a dead-zone in the control actuation).
Authoritative studies on freeplay nonlinearity for typical sections are provided for subsonic
flow in References(3–5) and transonic flow in References(6,7). In transonic flow regimes,
complex unsteady shock motion may occur as a result of the wing dynamic structural
motion. The relationship between the motion of the shock and the dynamic structural
motion of the wing is generally linear. However, as the motion increases in amplitude it
can shift from Tijdeman Type-A to Type-B, shock motion(8), which is characterised by
disappearance and re-appearance of a shock wave and is inherently an inviscid phenomenon.
This discontinuity of the pressure distribution across the lifting surface can introduce a
dynamic nonlinearity(9). Nonlinear transonic aerodynamic phenomena for typical sections
have been studied extensively, with some examples included in Refs 10–14.

Higher-Order Spectra (HOS) analysis is a valuable tool when analysing nonlinear
aeroelastic systems. Their superiority when comparing to traditional linear methods, such
as the power spectrum, comes from the ability of the higher-order statistics to predict the
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presence of nonlinearities. The power spectrum is only able to define second-order statistics
and, therefore, can only rigorously unveil physics associated with linear processes. HOS
methods are a powerful tool in nonlinear aeroelastic analysis as they demonstrate quadratic
and cubic phase coupling between frequencies which result from nonlinearities; hence, HOS
can be used to identify the presence and form of nonlinearities, and the transition from linear
to nonlinear behaviour within an aeroelastic system(15–18).

HOS methods have been utilised to analyse various nonlinear aeroelastic studies including
the analysis of wind-tunnel and flight test experiments, and fundamental research(19).
Experimental flutter wind-tunnel results of a pitch/plunge apparatus were analysed using HOS
in a study conducted by Silva et al(20). The analysis proved beneficial in identifying regions of
linear and nonlinear behaviour and also in identifying the transition from linear to nonlinear
aeroelastic behaviour. Further, HOS has been applied to the results of a wind-tunnel flutter
experiment for the flexible High-Speed Civil Transport (HSCT) semi-span model in a study
conducted by Hajj and Silva(21). Nonlinearly coupled frequencies within the aerodynamic
forces on the model were identified. HOS is applied to F/A-18 flight flutter test data in a
study conducted by Silva and Dunn(22). It was found that HOS were valuable in detecting
nonlinearities within the experimental data. Hajj and Beran(23) performed HOS analysis on F-
16 flight flutter test data. The analysis demonstrated areas in which nonlinearities were most
prominent and relations between nonlinearities and vibration modes of various components.
Finally, the Volterra series has been applied in fundamental analytical studies of nonlinear
aeroelasticity by Marzocca et al(24). Whilst the aforementioned studies involving aircraft
wings or full aircraft proved to be beneficial in identifying nonlinear behaviour, the paradox
remains that in all cases the studies are conducted via the analysis of flight test or wind-tunnel
data, which is expensive in both cost and time. What has not been considered extensively are
comprehensive studies which couple HOS methods with nonlinear aeroelastic predictions.
The development of such a method would alleviate the requirement of costly experiments
when identifying and analysing nonlinear aeroelastic systems.

In the present study, HOS are utilised to analyse the nonlinear aspects of a two-dimensional
pitch/plunge aerofoil system in the presence of pitching freeplay and viscous/inviscid
aerodynamic nonlinearities, and under various initial setting angles and speeds. The
magnitude of pitching freeplay, initial setting angle and speed are varied, investigating the
individual and combined effect of the three parameters on the amplitude and frequency of
the limit cycle response. Furthermore, the types of nonlinearity present at various conditions
are identified and correlations are made with the identified nonlinear form (quadratic or cubic
phase coupling). This provides an initial platform by which different types of aerodynamic
and structural nonlinearity can be diagnosed in situations where LCO is observed. A high-
fidelity numerical model of the Isogai benchmark configuration(25,26) is considered modified to
include freeplay nonlinearities. The methodology applied in the present paper provides a basis
for the development of a robust nonlinear aeroelastic analysis capability which, when LCO or
other nonlinear aeroelastic phenomena are encountered, is able to diagnose and quantify the
type of nonlinearity present.

2.0 METHODS
In this study, two-way Fluid-Structure Interaction (FSI) simulations are performed; this is a
numerical technique which combines transient rigid body pitch/plunge aerofoil motion with
high-fidelity Computational Fluid Dynamics (CFD).
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Figure 1. Computation grid.

2.1 Fluid structure interaction

The FSI simulations are computed using the commercial CFD solver ANSYS Fluent 16.2(27).
The nonlinear pitch/plunge structural system is embedded within the ANSYS Fluent solver
via a user defined function (UDF). Explicit coupling between the aerodynamic and structural
models is achieved via UDF to prescribe generalised motion of the aerofoil. The time–step is
chosen to be 0.001 s according to a time-step convergence study to be presented. The transient
simulations are initialised from a converged steady-state solution.

2.2 Computational fluid Dynamics

The Navier-Stokes equations for transient flowfields are solved via a coupled pressure-based
solver with second-order upwind spatial accuracy. The convergence criteria are set to 10−3

for the scaled residuals at each time step. The one-equation Spalart-Allmaras(28) RANS
turbulence model is chosen to model the viscous flowfield. In order to facilitate the movement
of the aerofoil, the C-type grid (Fig. 1) is designed in the interest of preserving cell quality.
The grid consists of approximately 9,000 cells with a y-plus value of less than 3. A diffusion
smoothing method is implemented with a diffusion parameter of 1.5, aiming to preserve cells
closest to the wall and apply the dynamic motion to the cells in the interior of the far-field.
The diffusion smoothing method is chosen as it generally results in a better-quality mesh when
compared to other smoothing methods such as spring-based smoothing(27).

2.3 Validation

In order to validate the fluid structure interaction methodology which has been implemented in
this study, the linear flutter boundary is computed at a range of Mach numbers and compared
to the results of Hall et al(29) and Timme et al(30), as presented in Fig. 2.

A comparison is made between results from different numerical methods illustrating the
instability boundary as a critical flutter speed index V ∗

f versus freestream Mach number M∞.
The decrease in flutter speed index in the deep transonic region, followed by a second stable
branch for higher values of the flutter speed index, is typical of the well-known transonic dip
and is distinct for each approach. In the present work, the stability boundary is obtained by
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Figure 2. (Colour online) Validation of the numerical model.

increasing V* incrementally until the oscillations are observed to no longer converge (this is
repeated for each Mach number). The discrepancy in the comparison of the studies illustrated
is generally attributed to the treatment of the boundary layer, as the results of Hall et al(29)

are using the inviscid Euler equations, while the study of Timme et al(30) employs viscous
simulations with a RANS methodology. For the conditions used in this validation study, see
Refs 29 and 30.

2.4 Structural model

The NACA 64A010 aerofoil is used with a structural model based on the Isogai case(25,26).
Nonlinearities are introduced via a freeplay dead-zone and cubic stiffness, which are
incorporated within the pitch/plunge system depicted in Fig. 3. The stiffness values are also
varied from the Isogai case(25,26), as presented in Table 3.

The aeroelastic governing equations for the system are define in matrix form as

[
m Sα

Sα Iα

]{
ḧ
α̈

}
+

[
kh 0
0 kα

] {
h
α

}
+

[
0

G(α)

]
=

{
L

Mα

}
,

where h represents plunging motion and α represents pitching motion and Kh and Kα are the
linear stiffness coefficients in plunge and pitch, respectively. Sα is the static unbalance moment
about the elastic axis per unit span and Iα is the cross-section mass moment of inertia about
the elastic axis per unit span. Finally, L is the time-varying lift per unit span, and MEA is the
time-varying aerodynamic moment about the elastic axis per unit span. G(α) represents the
pitching freeplay nonlinearity as depicted in Fig. 3 and can be defined as

G(α) = Kαα for α > αs,

G(α) = 0 for −αs ≥ α ≥ αs,

G(α) = Kαα for α < αs

… (1)
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Figure 3. (a) Two-degree-of-freedom NACA64A010 aerofoil geometry and (b) stiffness as a function of
the pitching displacement.

Finally, this can be represented by a system of first-order equations and solved via the
fourth-order Runge-Kutta method.

2.5 Operating conditions

The present study considers 20 cases in which the pitching freeplay range of motion αs and
initial setting angle α0 are varied. This provides understanding of the individual effect of each
parameter as well as the effect of the parameters on each other. All simulations are conducted
at a fixed freestream Mach number of M∞ = 0.8 with the two velocity index values, V* =
0.85 and V* = 1.0. This provides the freestream conditions as presented in Table 1. Table 2
summarises the freeplay and initial setting angle variables.

2.6 Configuration

A benchmark case often used for numerical comparison is the Isogai Case A, a two-
dimensional pitch/plunge aeroelastic model with a NACA 64A010 aerofoil section(25,26).
The structural parameters of this configuration are chosen to represent the dynamics of the
outer section of a swept-back wing, with centre of gravity, xCG = 0.4, with offset to centre
of rotation, xα = −1.8, and radius of gyration about the centre of rotation, rα = 1.865. This
places the pivot point forward of the leading edge. The ratio of uncoupled natural frequencies
ωh/ωα = 0.63. No structural damping is considered. The remainder of the structural variables
are summarised in Table 3.

3.0 HIGHER–ORDER SPECTRA
HOS are an increasingly used and valuable tool in identifying higher-order statistics that can
predict the presence of nonlinearities. The present section provides a brief description of the
HOS and their workings, for a more detailed description and derivation the reader is referred
Refs 15–18. In this respect, HOS methods can unveil phase coupling between frequencies
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Table 1
Operating conditions

V ∗ M∞ T∞ [K] ρ∞ [kg/m3] p∞ [Pa] q∞ [Pa]

0.85 0.8 421.30 0.212 25,667 11,498
1.0 0.8 484.12 0.212 35,526 15,916

Table 2
Operating conditions

V∗ = 0.85 V∗ = 1.0

Case Case Case Case Case
ID αs α0 Case ID αs α0 Case ID αs α0 ID αs α0

1 0.2 0.0 6 0.2 2.0 11 0.2 0.0 16 0.2 2.0
2 0.4 0.0 7 0.4 2.0 12 0.4 0.0 17 0.4 2.0
3 0.6 0.0 8 0.6 2.0 13 0.6 0.0 18 0.6 2.0
4 0.8 0.0 9 0.8 2.0 14 0.8 0.0 19 0.8 2.0
5 1.0 0.0 10 1.0 2.0 15 1.0 0.0 20 1.0 2.0

Table 3
Structural parameters

m [kg] Iα [kg·m2] Sα [kg·m] ωh [Hz] ωα [Hz] ωh/ωα

10 17.4 9 10.70 17 0.63

within an aeroelastic system which originates from nonlinearity, hence, HOS can be used to
identify the presence of nonlinearity and the transition from linear to nonlinear behaviour.

Bi-spectral and tri-spectral density analysis can be used to identify quadratic and cubic
processes respectfully within the aeroelastic system. The bi-spectrum determines nonlinear
interactions within the aeroelastic system by estimating third-order moments in the frequency-
domain. The bi-spectral density or bi-spectrum can be defined as

B( f1, f2) = 1
M

M∑
i=1

Yi( f1)Yi( f2)Y ∗
i ( f1 + f2), … (2)

where the block length M is the number of data segments to be considered. The bi-spectrum
B(f1, f2) can be displayed against two frequency variables f1 and f2 in a three-dimensional
plot. Each point on the plot describes the bi-spectral energy density of the signal at the
bi-frequency (f1, f2). The bi-spectrum at any bi-frequency (f1, f2) measures the level of
interaction between the two frequencies f1 and f2. The interactions are a result of quadratic
phase coupling between the frequency components, and hence the bi-spectrum detects the
presence of quadratic nonlinearity. Y(f) is the Fourier transform of the time series F (y(t)). To
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give a better understanding of the nature of the identification of phase coupling which occurs
via the bi-spectrum, one can consider the definition of the bi-spectrum as

Y ( f1)Y ( f2)Y ∗( f1 + f2) = ||Y ( f1)||||Y ( f2)||||Y ∗( f1 + f2)||e j�( f1, f2 ), … (3)

where ||Y(f1)||||Y(f2)||||Y*(f1 + f2)|| measures the magnitude of the interaction between f1 and
f2, and e j�( f1, f2 ) measures the phase. It is also worth noting that

�( f1, f2) = arctan
Im[B( f1, f2)]
Re[B( f1, f2)]

= �( f1) + �( f2) − �( f1 + f2) … (4)

While the bi-spectrum detects quadratic relationships between frequency components, it
does not provide a basis for the comparison of levels of nonlinearity; hence, as a general
practice, the bi-spectrum is conveniently normalised to give the bi-coherence which is
bounded between 0 and 1, where spikes in the magnitude of the bi-coherence function
represent levels of nonlinearity.

The bi-coherence function b̂ is defined as

b̂( f1, f2) = | 1
M

∑M
i=1 Yi( f1)Yi( f2)Y ∗

i ( f1 + f2)|
1

M

∑M
i=1 |Yi( f1)Yi( f2)|2 · 1

M

∑M
i=1 |Y ∗

i ( f1 + f2)|2 … (5)

Similarly, the tri-spectrum identifies cubic nonlinearity within the aeroelastic system by
estimating fourth-order moments in the frequency domain, the tri-spectrum is formulated
in the same manner as the bi-spectrum; however, it takes into consideration phase coupling
between three frequency components (as opposed to two), which can be defined as

T ( f1, f2, f3) = 1
M

M∑
i=1

Yi( f1)Yi( f2)Yi( f3)Y ∗
i ( f1 + f2 + f3) … (6)

Here the tri-spectrum at any tri-frequency (f1, f2, f3) measures the level of cubic interaction
between the three frequencies f1, f2 and f3 as a result of cubic nonlinearity within the system.
The tri-spectrum is also conveniently normalised, producing the tri-coherence, which is
defined as

τ( f1, f2, f3) = | 1
M

∑M
i=1 Yi( f1)Yi( f2)Yi( f3)Y ∗

i ( f1 + f2 + f3)|
1

M

∑M
i=1 |Yi( f1)Yi( f2)Yi( f3)|2 · 1

M

∑M
i=1 |Y ∗

i ( f1 + f2 + f3)|2 … (7)

Essentially, the bi-spectrum and tri-spectrum indicate whether a phase relationship exists
at f1, f2 and f1 + f2 (bi-spectrum) or f1, f2, f3 and f1 + f2 + f3 (tri-spectrum). If no phase
relationship exists, the bi- or tri-coherence will be at or near zero, indicating no quadratic or
cubic coupling. Conversely, if a phase relationship does exist, and hence quadratic or cubic
coupling, the value will be near unity. Values between zero and unity indicate partial quadratic
or cubic coupling.

3.1 Time-series and block length

In estimating the HOS, the data is split into blocks which are evaluated individually and
averaged. It is essential that particular attention be given to the block length M in comparison
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Figure 4. (Colour online) Bi-coherence and tri-coherence for the Helmholtz-Duffing equation.

to the total data length N. A larger block size will provide a finer resolution, but this
comes with greater variance(31). It is suggested by Dalle Molle and Hinch(32) that when
identifying nth-order cumulants, the block length should be (n – 1)th root of the sample size
to have confidence in the spectral estimate. The present work uses a higher-order Blackman
window(33) to smooth the time-domain and reduce spectral spillage.

Although particular attention must be paid to the number data points N and block length M
in estimating the HOS content of a system, the recommendation by Dalle Molle and Hinch(32)

is highly impractical in most cases; for example, to estimate the tri-spectrum using a 512-point
FFT (block length of 512 points) the required number of data points would be 134,217,728.
As this number of data points is formidable, this section presents a convergence study where
the number of data points is increased incrementally until the bi-coherence and tri-coherence
values converge to a value sufficient for this research, providing a realistic minimum number
of data points to be used.

As the objective of this paper is to characterise various types of nonlinearity via the
higher-order frequency content of the system, the requirement of the bi-coherence and tri-
coherence analysis to provide insight as to whether each nonlinear form has an underlying
quadratic, cubic or coupled quadratic/cubic relationship. Hence, the convergence criteria for
the minimum required time-series length are that the bi-coherence and tri-coherence values
are bounded within a range of ±0.1. To test the time–series length requirements, the single
degree of freedom (s-DOF) Helmholtz-Duffing equation(34) is considered

mÿ + cẏ + k1y + k2y2 + k3y3 = x(t) … (8)

The parameters are chosen to be equivalent to those in Ref. 34, where m = 1 kg, c =
2 N/m/s, k1 = 104 N/m, k2 = 107 N/m2 and k3 = 5 · 109 N/m3 resulting in an undamped
natural frequency of 15.92 Hz. The input function x(t) is Gaussian white noise, low-pass pass
filtered through 100 Hz. The bi-coherence and tri-coherence are estimated from the velocity
ẏ(t) where a clear peak can be seen at 15.9 Hz via self-interaction of the natural frequency as
presented in Fig. 4.

By modifying Equation (8) such that (i) just the cubic term is removed and (ii) just the
quadratic term is removed, it would be expected that (i) the bi-coherence presents a peak
via self-interaction of the natural frequency while the tri-coherence is zero and (ii) the tri-
coherence presents a peak via self-interaction of the natural frequency while the bi-coherence
is zero. The bi-coherence and tri-coherence estimates in the present research are based on
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Figure 5. Convergence of the bi-coherence and tri-coherence with respect to the length of the data set N.

a block length of a 1,024-point FFT, respectively. To examine the convergence of the bi-
coherence and tri-coherence the total number of data points N = 2n are incremented from
n = 10 to 20 for the bi-coherence and n = 9 to 22 for the tri-coherence, as presented
in Fig. 5.

The HOS estimates are highly sensitive to total number of data points, number of blocks
(averages) and block length; thus, from a simulation perspective, HOS analysis is limited by
the total number of data which are able to be simulated whilst minimising computational
cost. Furthermore, from an experimental perspective HOS analysis is limited due to nonlinear
phenomena, such as LCO being dangerous for an asset or wind-tunnel model to endure for
long periods of time, again limiting the total number of data points which can be collected. To
give an indication as to whether the system is linear, quadratic or cubic (in normalised form)
whilst minimising computational cost a minimum of 1017 data points have been found to be
sufficient for a SDOF MSD system, no less that 1015 can be used as a minimum. This is to give
an indication of the bi-/tri-coherence value to within 0.1 where the entire bi-/tri-coherence
spectrum is defined between 0 and 1. For more precise HOS estimations, the recommendations
of Dalle Molle and Hinich should be considered. When considering real-world applications
for this analysis method rigorous convergence studies should be completed prior to gaining
full confidence in the HOS estimates.

3.2 Mesh and time-step convergence

The mesh density and time-step �t convergence studies are conducted using the operating
conditions as presented in Table 4. The convergence of mesh densities and time-steps is
defined in terms of the correlation coefficient R, which quantifies the statistical relationship
between two or more observed data values as a percentage. The nominal mesh density consists
of 9,000 cells, fine of 36,000 cells and super-fine of 144,000 cells. As presented in Table 5,
the nominal fine and super-fine mesh densities differentiate statistically by less than 3%;
therefore, for the sake of computational efficiency, the nominal mesh density was selected.
Table 6 presents the time-step convergence. It can be seen that �t = 0.01 s and 0.005 s have
less than 5% statistical relations to the smaller time-steps. By decreasing the time-step, it can
be seen that �t = 0.001 s and 0.0005 s differ statistically by less than 2%. Hence, �t = 0.001 s
is chosen to be a sufficient time-step.
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Table 4
Operating conditions for mesh and time-step convergence

M∞ T∞ [K] ρ∞ [kg/m3] p∞ [Pa] q∞ [Pa] αs [°] α0 [°]

0.8 421.30 0.212 25,667 11,498 0.5 0.0

Table 5
Correlation coefficient values for the mesh density convergence study

R Nominal Fine Super-fine

Nominal 1.000 0.987 0.971
Fine 0.987 1.000 0.989
Super-fine 0.971 0.989 1.000

Table 6
Correlation coefficient values for the time-step convergence study

R 0.01 s 0.005 s 0.001 s 0.0005 s

0.01 s 1.000 0.000 − 0.011 − 0.017
0.005 s 0.000 1.000 0.036 0.037
0.001 s − 0.011 0.036 1.000 0.984
0.0005 s − 0.017 0.037 0.984 1.000

Figure 6. (Colour online) Example static Mach number flowfields at (a) α0 = 0° and (b) α0 = 2°.

4.0 RESULTS
The results are presented in the form of time-histories, Power Spectral Density (PSD),
bi-coherence plots, tri-coherence plots, pressure distributions and Mach number flowfield
contours. Examples of the Mach number flowfields for both setting angles can be observed in
Fig. 6. It can be seen that the steady-state flow properties differ significantly between the two
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Figure 7. (Colour online) Phase portraits in (a) plunge and (b) pitch with V* = 0.85 and α0 = 0° (Case ID
1–5). Vertical lines indicate freeplay dead-zone region.

Figure 8. (Colour online) Change in (a) lift and (b) moment with respect to pitch for V* = 0.85 and α0 = 0°
(Case ID 1–5). Vertical lines indicate freeplay dead-zone region.

setting angles. At α0 = 0°, there is an even distribution of sub- and supersonic flow on both
the upper and lower surfaces. Whereas for α0 = 2°, a strong shockwave is observed on the
upper surface whilst the flow remains subsonic on the lower surface.

4.1 Case ID 1–5

Observation of the phase portraits presented in Fig. 7 indicates that the aeroelastic system is
in limit cycle. In plunge, the motion can be seen to be quasi-periodic, and in pitch, it tends
towards periodicity. Both modes indicate that the amplitude of the oscillations is low, and
in the pitching mode, the deflection of the torsional spring past the freeplay margin is low
(not indifferent to the aerofoil re-bounding back and forth between the freeplay boundaries).
Mapping the lift and pitching moment against pitching spatial displacement provides insight
as to the nature of the aerodynamic forces on the aerofoil as presented in Fig. 8. A clear
inflection can be observed in the pitch phase plane, pitching moment and lift diagrams just
past the point at which the aerofoil induces maximum deflection of the torsional spring, this
indicates that there is some oscillation occurring at the peak deflection as opposed to a clean
reversal of the pitching velocity. This is likely due to the impact/release from the freeplay
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Figure 9. (Colour online) PSD plots for (a) plunge and (b) pitch V* = 0.85 and α0 = 0° (Case ID 1–5).

boundary and the interaction with the flow. The power spectral densities (linear frequency
contributions) in plunge and pitch are presented in Fig. 9. It is clear that all modes oscillate
about a driving frequency of approximately 11.23 Hz (the wetted plunging natural frequency
ωh, aero) and its super-harmonics. The strong presence of super-harmonics is an expected
finding considering the structural freeplay nonlinearity. The difference between the two DOFs
here is that the plunge mode is oscillating at 3ωh, aero whilst the pitch mode oscillates about
ωh, aero. The super-harmonics are increasing in odd integers according to f = ωh, aero, 3ωh, aero,
5ωh, aero…; this is due to the symmetry of the system about α0 = 0° and hence super-harmonics
are generated twice per cycle. The even integers ( f = 2ωh, aero, 4ωh, aero, 4ωh, aero...) are non-
existent at αs = 0.2° and become weak at αs = 1.0° and, hence, are related to the size of the
freeplay margin. Finally, close inspection of Fig. 9 indicates a slight decrease in frequency as
the freeplay margin increases; this is to be expected as a greater fraction of the cycle is spent
in freeplay and only being acted upon by aerodynamic forces.
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Figure 10. (Colour online) Tri-coherence estimates in (a), (b) plunge and (c), (d) pitch for V* = 0.85 and
α0 = 0° with αs = 1.0° (Case ID 5). Right-hand image represents a 2D planar interpretation of the

left-hand figure.

The bi-coherence estimates at this speed are not shown as in both DoFs the bi-coherence
estimates are null. Contrastingly, the tri-coherence contributions are strong as presented in
Fig. 10. These plots indicate strong cubic phase coupling in both modes via the tri-interaction
of ωh, aero. There is also very weak cubic phase coupling in the plunge mode where the self-
interacting ωh, aero couples 3ωh, aero. In both modes, only αs = 1.0° is shown as the others do not
differ. The low amplitude of the oscillations (absence of aerodynamic nonlinearity), absence
of quadratic phase coupling and strong cubic phase coupling suggests that the freeplay
nonlinearity (in isolation from aerodynamic nonlinearity) is a cubic phenomenon; this is to
be further investigated in the coming sections.

4.2 Case ID 6–10

With a setting angle of α0 = 2° the nature of the flowfield changes as indicated in Fig. 6 such
that the static flowfield is characterised by a shock on the upper surface of the aerofoil and
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Figure 11. (Colour online) Phase portraits in (a) plunge and (b) pitch with V* = 0.85 and α0 = 2° (Case ID
6–10). Vertical lines indicate freeplay dead-zone region.

Figure 12. (Colour online) Change in (a) lift and (b) moment with respect to pitch for V* = 0.85 and α0 =
2° (Case ID 6–10). Vertical lines indicate freeplay dead-zone region.

subsonic flow on the lower surface. As a result, the system is no longer symmetrical, and hence
the phase portraits and spectral content of the system changes significantly. The phase portraits
presented in Fig. 11 indicate that at αs = 0.2° and αs = 0.4° the momentum gained when the
aerofoil rebounds off the upper freeplay boundary is not great enough for the aerofoil to strike
the lower boundary at the trough of the cycle; hence, the trough of the cycle is characterised by
aerodynamics. Furthermore, due to the positive setting angle the aerofoil never plunges below
the zero-axis. Figure 12 indicates how the aerodynamic forces are changing with the pitching
displacement. It can be seen that below αs = 0.8°, the lift and pitching moment are lift are
constantly positive. With close examination of the pitching moment cycle, it can be seen that,
at αs = 0.2° and αs = 0.4°, the motion is linear, this is due to the linear nature of the torsional
spring and the small margin of freeplay dead-zone that aerofoil is exposed to. The change in
lift with pitching angle (Fig. 12) indicates that the trajectory for αs = 0.2° and αs = 0.4° is
elliptical; however, above this, it moves to being a lemniscate trajectory. This indicates that the
lift when the aerofoil motion is positive is greater than when it is negative for approximately
half of the cycle and vice versa for the other half; this is due to the aerodynamic phenomenon
of Type-B shock such that shock waves are appearing and disappearing on both surfaces in
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Figure 13. (Colour online) PSD plots for (a) plunge and (b) pitch V* = 0.85 and α0 = 2° (Case ID 6–10).

an asymmetrical fashion. Figure 13 presents the pitching and plunging PSD plots. It can be
seen that for αs = 0.2° and αs = 0.4°, the system is characterised by ωα, aero, whereas for αs =
0.6°–1.0°, the system is characterised by ωh, aero. In both cases, odd and even super-harmonics
are present. The presence of ωα, aero at low freeplay margins can be attributed to the range of
motion in pitch taking precedence over the range of motion in plunge (Fig. 11), and hence the
pitching mode is activated.

Similar to α0 = 0.0° the bi-coherence estimates in plunge are zero for all setting angles
aside from αs = 1.0° where very weak quadratic phase coupling can be observed via the self-
interaction of ωh, aero as per Fig. 14. On the other hand, in pitch there is no quadratic phase
coupling for αs = 0.2° and αs = 0.4°; however, above this, the quadratic phase coupling is at
unity via the self-interaction of ωh, aero. A physical explanation for this finding is provided in
Figs 15 and 16, where it can be seen that at αs = 1.0°, the aerodynamics is highly nonlinear,
characterised by strong Type-B shock motion (the shockwave on the upper surface disappears
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Figure 14. (Colour online) Bi-coherence estimates in (a) plunge and (b) pitch for V* = 0.85 and α0 = 2°
with αs = 1.0° (Case ID 10).

Figure 15. Pressure coefficient distributions at the (a) peak and (b) trough of the cycle for V* = 0.85 and
α0 = 2° with αs = 1.0° (Case ID 10).

and re-appears within the cycle) and moderate-scale shock-induced flow separation on the
upper aerofoil surface. The flowfields are similar for αs = 0.6° and 0.8°; however, for αs =
0.2° and αs = 0.4°, no nonlinear aerodynamic phenomena are found to occur. This suggests
that the nonlinear aerodynamics can be characterised by quadratic phase coupling.

The cubic phase coupling is negligible in plunge and hence is not presented. On the other
hand, in pitch (Fig. 17), the magnitude of the cubic phase coupling can be seen to be dependent
on the nature of the oscillations. At αs = 0.2° and αs = 0.4°, it is found that the oscillations
are low magnitude and not impacting with both freeplay margins within the cycle (Figs 11
and 12). As a result, the cubic form of the freeplay nonlinearity is not complete and hence
difficult to detect, for these freeplay margins a very low-magnitude peak is observed via the
tri-interaction of ωh, aero. Above αs = 0.4°, the system is completing a full cycle, rebounding
off both freeplay boundaries, and hence strong cubic phase coupling is observed via the tri-
interaction of ωh, aero.

4.3 Case ID 11–15

By increasing the velocity index to V* = 1.0, the system is well above the linear flutter
boundary and ordered limit cycle behaviour is observed. Figure 18 indicates that above αs

= 0.4°, the plunge mode contains a symmetrical knot; however, at αs = 0.2° and αs = 0.4°,
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Figure 16. (Colour online) Mach number distributions at the (a) peak and (b) trough of the cycle for V* =
0.85 and α0 = 2° with αs = 1.0° (Case ID 10) (0 < M∞ < 1.3).

Figure 17. (Colour online) Tri-coherence estimates in pitch for V* = 0.85 and α0 = 2° with (a,b) αs = 0.2°
and (c,d) αs = 1.0° (Case ID 10). Right-hand image represents a 2D planar interpretation of the left-hand

figure.
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Figure 18. (Colour online) Phase portraits in (a) plunge and (b) pitch with V* = 1.0 and α0 = 0° (Case ID
11–15). Vertical lines indicate freeplay dead-zone region.

Figure 19. (Colour online) Change in (a) lift and (b) moment with respect to pitch for V* = 1.0 and α0 = 0°
(Case ID 11–15). Vertical lines indicate freeplay dead-zone region.

the knot does not exist, and hence the super-harmonics in the system are subdued. In the
pitching mode, it can now be seen that the oscillations extend far beyond the freeplay margins.
In plunge, as the freeplay margin increases, it can be seen that the inflection in the dead-
zone region increases; however, the pitching inflection in the dead-zone remains unchanged.
This suggests that the amplitude of the pitching oscillations is not being driven solely by the
freeplay nonlinearity and that the aerodynamics is taking effect. Figure 19 indicates that the
change in lift and pitching moment with respect to pitching displacement remains constant
for all freeplay margins, providing further evidence to suggest that the aerodynamics is now
a key factor in defining the amplitude of the limit cycle. Another interesting finding is that
the amplitude of the plunging motion has decreased when comparing to V* = 0.85; however,
the amplitude of the lift has increased. This indicates that the aerodynamics is suppressing
the plunging mode of the aerofoil and essentially it is rotating about its pitch axis at high
amplitude with low amplitude oscillations in plunge.

The power spectral density plots presented in Fig. 20 indicate that the driving frequency in
both modes has shifted to approximately 15.5–16.5 Hz (depending on the freeplay margin);
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Figure 20. (Colour online) PSD plots for (a) plunge and (b) pitch V* = 1.0 and α0 = 0° (Case ID 11–15).

this is denoted by ωα, aero. Similar to V* = 0.85 the odd super-harmonics are prominent in all
modes; however, in plunge, 2ωα, aero is also prominent. Furthermore, in the plunge mode it
can be seen that there is a low-magnitude peak at approximately 38 Hz for αs = 0.2° and αs =
0.4°. This is the a result of the modular frequency interaction ωα, aero + 2ωh, aero.

The bi-coherence estimates are now strong (near unity); as presented in Figs 21 and 22,
this coincides with high-amplitude pitching oscillations and, as a result, the development of
aerodynamic nonlinearity. As the size of the freeplay margin increases, it can also be seen that
the magnitude of the super-harmonic 2ωh, aero increases, as to be expected for a freeplay-type
nonlinearity. To give some insight into the type of aerodynamic nonlinearity, Figs 23 and 24
present the pressure distributions and flowfield at the peak and trough of the cycle; this is
symmetrical about α0 = 0.0°. It is clear that the Type-B shock motion is strong as the shock
disappears and reappears on both surfaces as the aerofoil moves through the cycle. Some
separation can be observed; however, this is not large scale, and hence the strong quadratic
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Figure 21. (Colour online) Bi-coherence estimates in plunge for V* = 1.0 and α0 = 0° with (a) αs = 0.2°,
(b) αs = 0.4°, (c) αs = 0.6°, (d) αs = 0.8°, (e) αs = 1.0° (Case ID 11–15).

phase coupling is likely attributed to the Type-B shock motion. This is further investigated for
the next case (V* = 1.0, α0 = 2.0°).

The tri-coherence estimates are at unity for all cases via the tri-interaction of ωα, aero due to
the freeplay. This is expected due to the freeplay nonlinearity inducing cubic phase coupling.
As these plots do not differ in either mode or for aerodynamic forces, they are not shown.
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Figure 22. (Colour online) Bi-coherence estimates in pitch for V* = 1.0 and α0 = 0° with αs = 1.0° (Case
ID 15).

Figure 23. Pressure coefficient distributions at the (a) peak and (b) trough of the cycle for V* = 1.0 and
α0 = 0° with αs = 1.0° (Case ID 15).

Figure 24. (Colour online) Mach number distributions at the (a) peak and (b) trough of the cycle for V* =
1.0 and α0 = 0° with αs = 1.0° (Case ID 15) (0 < M∞ < 1.3).
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Figure 25. (Colour online) Phase portraits in (a) plunge and (b) pitch with V* = 1.0 and α0 = 2° (Case ID
16–20). Vertical lines indicate freeplay dead-zone region.

Figure 26. (Colour online) Change in (a) lift and (b) moment with respect to pitch for V* = 1.0 and α0 = 2°
(Case ID 16–20). Vertical lines indicate freeplay dead-zone region.

4.4 Case ID 16–20

Figure 25 presents the phase portraits for the system at V* = 1.0 with a setting angle of
α0 = 2°. It is demonstrated that in plunge a knot begins to develop as the freeplay margin
increases; this is evident for αs = 0.8° at h = 0.08 m and for αs = 1.0° at h = 0.068 m.
In pitch, the system exhibits typical high-amplitude limit cycle behaviour. The magnitude
of the pitching moment (Fig. 26) changes significantly with freeplay amplitude; however,
the form appears to remain constant – this is contrary to α0 = 0.0° where the pitch and
pitching moment remain unchanged for all freeplay margin values. This indicates that the
amplitude of the oscillations at α0 = 2.0° are not limited solely by aerodynamic phenomena,
and the size of the freeplay margin is a significant factor in determining the amplitude of
the oscillations. The PSD plots in Fig. 27 demonstrate that the system (in both modes) is
driven by ωα, aero and both its odd and even super-harmonics. Interestingly, this is the only
case at which 2ωα, aero increases as the freeplay margin increases. The bi-coherence estimates
presented in Fig. 28 corroborate the observations made in the aforementioned sections with
respect to the effect of the nonlinear aerodynamics and quadratic form that the nonlinear
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Figure 27. (Colour online) PSD plots for (a) plunge and (b) pitch V* = 1.0 and α0 = 2° (Case ID 16–20).

aerodynamics is defined by. In plunge, it can be seen that very weak quadratic phase coupling
is up to αs = 0.8 which becomes strong at αs = 1.0, this coincides with the presence of Type-
B shock motion and large scale separation (Figs 29 and 30). Thus, it is strongly suggested
that the presence of nonlinear aerodynamics can be diagnosed by quadratic phase coupling
within the system. Although not shown here, similar observations are made in the pitch
DOF.

Similar to V* = 0.85 the cubic phase coupling in plunge is negligible and hence is not
shown. However, in pitch (Fig. 31), it is found that there is a strong cubic interaction for all
freeplay margins via the tri-interaction of ωα, aero. From the perspective of structural health
monitoring and nonlinearity diagnosis, this is a promising finding such that the cubic form
freeplay nonlinearity can be detected even when the oscillations are characterised by high-
amplitude limit cycle behaviour.
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Figure 28. (Colour online) Bi-coherence estimates in plunge for V* = 1.0 and α0 = 2° with (a) αs = 0.2°,
(b) αs = 0.4°, (c) αs = 0.6°, (d) αs = 0.8°, (e) αs = 1.0° (Case ID 16–20).

5.0 CONCLUDING REMARKS
HOS are utilised to analyse high-fidelity numerical simulations of a two-dimensional
pitch/plunge aeroelastic aerofoil system with the inclusion of a pitching freeplay nonlinearity
in pitch. The limit cycle condition is examined for various combinations of speed, initial
setting angle and freeplay margin. The significant effect of freeplay and viscous/inviscid
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Figure 29. Pressure coefficient distributions at the (a) peak and (b) trough of the cycle for V* = 1.0 and
α0 = 2° with αs = 1.0° (Case ID 20).

Figure 30. (Colour online) Mach number distributions at four different evenly spaced stages between the
peak and trough of the cycle where (a) represents the peak and (d) represents the trough for V* = 1.0

and α0 = 2° with αs = 1.0° (Case ID 20) (0 < M∞ < 1.3).

aerodynamic nonlinearity on the structure of the limit cycle and nonlinear phase coupling is
presented. At a lower speed, the response is dominated by the plunging natural frequency and
its harmonics, whereas, at a higher speed, the response is dominated by the pitching natural
frequency and its harmonics.
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Figure 31. (Colour online) Tri-coherence estimates in pitch for V* = 1.0 and α0 = 2° with (a,b) αs = 0.2°
and (c,d) αs = 1.0° (Case ID 16 and 20). Right-hand image represents a 2D planar interpretation of the

left-hand figure.

It is found that at a lower speed (V* = 0.85), the zero initial setting angle condition is
characterised by low-amplitude oscillations in both modes, which rebound back and forth
between the freeplay margins. The nonlinear spectra for this case demonstrate zero quadratic
phase coupling and strong cubic phase coupling in all modes via the tri-interaction of the
plunging natural frequency. Weak cubic phase coupling is also evident via the interaction
of super-harmonic at double the plunging natural frequency. No aerodynamic nonlinearity is
clearly evident. At the same speed with a 2 degree initial setting, angle oscillations at low
freeplay margins fail to make impact with both freeplay margins, but rather, move into a low-
amplitude limit cycle which rebound back and forth off the upper margin, no aerodynamic
nonlinearity is clearly evident. The bi-coherence here is null in both modes, and the tri-
coherence presents weak cubic phase coupling. At higher freeplay margins, the aerofoil moves
between both boundaries of the dead-zone and the amplitude of the limit cycle increases
significantly in pitch. The magnitude of the nonlinear spectra here are at unity in both modes
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via the self-interaction of the plunging natural frequency. This coincides with the presence
of aerodynamic nonlinearity in the form of strong Type-B shock motion and some low-scale
separation on the upper surface.

It is found that at a higher speed (V* = 1.0) with zero initial setting angle, the pitch mode is
characterised by high-amplitude symmetrical limit cycle behaviour for all freeplay margins,
while in plunge, the motion is characterised by a very low-amplitude limit cycle for all freeplay
margins. The flowfield is by strong Type-B shock motion. The nonlinear spectra here are at
unity in all modes.

Finally, at the same speed with a 2 degree initial setting angle, the system is characterised
by a high-amplitude asymmetrical limit cycle in pitch and a very low-amplitude asymmetrical
limit cycle in plunge. A high gradient drop in lift is observed in the plunge mode. The
flowfields are characterised by strong Type-B shock motion, large-scale flow separation and
dynamic stall for large freeplay margins and just moderate to strong Type-B shock motion
for lower freeplay margins. Here the nonlinear spectra are negligible in plunge. However, in
pitch, both nonlinear spectra display low-moderate magnitude nonlinear phase coupling for
low freeplay margins and high-magnitude for higher freeplay margins.

The results of the present study suggest that freeplay is a cubic phenomenon and can be
diagnosed by the presence of cubic phase coupling whilst inviscid and viscous aerodynamic
nonlinearities can be diagnosed by the presence of quadratic phase coupling. Interestingly, if
a freeplay dead-zone is present, however, asymmetrical aerodynamic loading leads to limit
cycle behaviour which is characterised by the aerofoil only rebounding back and forth off one
of the freeplay margins, the cubic phase coupling is weak and the freeplay nonlinearity may
be difficult to diagnose.

Future work will consider the inclusion of a linearised reduced-order aerodynamic model
to further isolate the sources of nonlinearity. Further, this analysis is to be extended to
high-fidelity aeroelastic simulations of three-dimensional wing and full aircraft models or
experimental/flight test data with known types of nonlinearity. The aim is to develop a
rigorous system identification framework to diagnose the type of nonlinearity present when
an asset encounters limit cycle or chaotic response.
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