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We examine the axisymmetric and non-axisymmetric flows of thin fluid films over a
spherical glass dome. A thin film is formed by raising a submerged dome through a
silicone oil mixture composed of a volatile, low surface tension species (1 cSt, solvent)
and a non-volatile species at a higher surface tension (5 cSt, initial solute volume
fraction φ0). Evaporation of the 1 cSt silicone oil establishes a concentration gradient
and, thus, a surface tension gradient that drives a Marangoni flow that leads to the
formation of an initially axisymmetric mound. Experimentally, when φ0 � 0.3 %, the
mound grows axisymmetrically for long times (Rodríguez-Hakim et al., Phys. Rev. Fluids,
vol. 4, 2019, pp. 1–22), whereas when φ0 � 0.35 %, the mound discharges in a preferred
direction, thereby breaking symmetry. Using lubrication theory and numerical solutions,
we demonstrate that, under the right conditions, external disturbances can cause an
imbalance between the Marangoni flow and the capillary flow, leading to symmetry
breaking. In both experiments and simulations, we observe that (i) the apparent, most
amplified disturbance has an azimuthal wavenumber of unity, and (ii) an enhanced
Marangoni driving force (larger φ0) leads to an earlier onset of the instability. The linear
stability analysis shows that capillarity and diffusion stabilize the system, while Marangoni
driving forces contribute to the growth in the disturbances.
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1. Introduction

Thin film flows play a crucial role in many practical applications. Tear films are optical
surfaces that give clarity to our vision (Braun 2012). Spin coating is commonly used
to apply photoresist coatings in photolithography (Lawrence 1988). The formation and
collapse of beer foams greatly dictate how consumers perceive the quality of a beer (Evans
& Sheehan 2002). The dynamics and stability of these films affect the evolution of their
thickness and lifetime (Oron, Davis & Bankoff 1997; Craster & Matar 2009; Karakashev
& Manev 2015). The development of flow instabilities in these systems often triggers
undesirable results in these same applications. It follows that a fundamental understanding
of the stability conditions can be very helpful in schemes designed to suppress these
instabilities.

Numerous factors contribute to the complexity of thin film flows and their stability. The
composition of the liquid film determines the physical forces that affect fluid flows and
thus their stability. Protein adsorption onto an water–air interface creates a viscoelastic
interface that ensures axisymmetric film drainage, whereas surfactant-laden interfaces can
exhibit non-axisymmetric drainage (Kannan, Shieh & Fuller 2019). The presence of mass
transport across phases can also lead to a remarkable thin film dynamics. The well-known
tears of wine phenomenon results from the preferential evaporation of ethanol, leading
to the formation of a water-rich front that pulls liquid upward along the wine glass;
gravity then works to pull down the accumulated liquid, forming the wine tears (Fournier
& Cazabat 1992; Venerus & Simavilla 2015). Sustained mass transport across curved
permeable liquid/liquid or liquid/air interfaces can trigger so-called spontaneous cyclic
dimpling (Velev, Gurkov & Borwankar 1993; Shi, Fuller & Shaqfeh 2020). Geometry of
the substrates that support a thin film can dictate the types of instabilities that are present
in a thin film system. A climbing, evaporating film on a flat, inclined, solid surface can
give rise to ridge structures (Hosoi & Bush 2001); silicone oil films coated on the inside of
horizontally placed cylinders exhibit Rayleigh–Taylor instabilities (Balestra et al. 2017);
and a viscous, spreading film over a spherical solid surface can yield fingering instabilities
along the contact line (Takagi & Huppert 2010).

Thin films over curved surfaces have been studied as model systems due to their
widespread presence in a wide range of applications. Flow instabilities associated with
these curved thin films have long been observed experimentally. Burrill & Woods (1973)
examined the drainage process of aqueous films of sodium lauryl sulphate surfactant with
potassium chloride, sandwiched between a bulk oil phase and an oil droplet. The authors
reported that the film undergoes a series of stages: upon the approach of the oil droplet
to the bulk aqueous solution/oil interface, a dimple forms, followed by axisymmetric
film drainage. In cases where the surfactant concentration is low, the axisymmetric
drainage step is followed by non-axisymmetric drainage that occurs prior to film rupture.
The authors attributed the non-axisymmetric drainage to a local imbalance between
the shear stress and surface tension gradients. Joye, Hirasaki & Miller (1994) studied
asymmetric drainage of aqueous surfactant films in a Scheludko cell. They showed a
typical drainage interferogram with an ellipsoidal pattern: the film thickens and discharges
along the major axis of the ellipsoid, and the film thins and draws in liquid along
the minor axis. Experimentally, they found that asymmetric drainage is associated with
solutions characterized by low surface shear viscosity, whereas films with high surface
shear viscosity retain axisymmetry during drainage. In their complimentary normal
mode linear stability analysis, the authors found that the instability is driven by surface
tension forces and, moreover, surface viscosity, elasticity and diffusivity stabilize the film.
Contemporaneously, Velev et al. (1995) demonstrated that the size of the Scheludko cell
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affects the manner of film drainage: films formed on a 3 mm diameter ring are generally
thicker and allow for the development of asymmetric patterns similar to those reported
by Burrill & Woods (1973) whereas films of the same composition formed on a 0.3
mm diameter ring exhibit an axisymmetric dynamics. Even more complicated symmetry
breaking patterns are observed in experiments where two droplets are forced toward each
other. Figure 24 in the review written by Chan, Klaseboer & Manica (2011) shows a high
degree of symmetry breaking of a silicone oil film sandwiched between glycerol–water
droplets. More recently, Zdravkov, Peters & Meijer (2006) reported symmetry breaking
associated with diffusive polymeric thin film systems.

Although the interference patterns are fascinating to examine, the complexity of these
experimental systems makes it challenging to determine the factors that contribute
to the formation of the non-axisymmetric flows. Liquid composition variations and
freely deformable interfaces are the primary factors that make these stability problems
challenging. To address the former challenge, assumptions are often made about the
distribution of the surface species and their effect on the surface velocity (Joye et al. 1994).
The latter challenge is often treated by assuming a plane parallel geometry (Gumerman &
Homsy 1975; Baldessari, Homsy & Leal 2007). Kaur & Leal (2009) presented an approach
that addressed these two challenges in a study of the stability of the liquid film sandwiched
between two approaching droplets in a biaxial extensional flow. The authors first solved
the time-dependent axisymmetric droplet shapes as the drops approached each other; the
shapes were then used as the base state in the subsequent normal mode analysis. In other
cases, the complexity of the flow requires a non-modal analysis. Balestra et al. (2019)
investigated the fingering instability associated with a Newtonian film spreading on a
horizontally placed cylinder. The gravity-driven base flow was assumed to be evolving in
time and in the azimuthal direction. In the subsequent linear stability analysis, the authors
introduced normal mode expansion in the axial direction of the perturbations, without
constraining the time rate of the disturbance growth. With this approach, the authors were
able to obtain the optimal spanwise wavenumber for the optimal gain.

Our present work provides an in-depth analysis of the instability observed by
Rodríguez-Hakim et al. (2019) (see figure 5( f ) in the supporting information). In our
previous work, we used a combination of interferometric techniques and lubrication theory
to study the evolution of an axisymmetric, evaporating, binary silicone oil film over a glass
dome. Silicone oil films are shown to have a negative disjoining pressure over a glass
surface. The stabilization due to this disjoining pressure allowed us to study the long-time
dynamics of these films across a range of film thickness from microns to nanometres.
While aqueous films have more relevance to biological applications, they readily dewet the
glass surface and therefore are not suitable for studying the long-time dynamics. The inert
and non-toxic nature of silicone oils also allows them to be model experimental materials,
especially as a model system for lubricant oils. Furthermore, silicone oils are readily
available in a wide range of surface tension and volatility, both of which play an important
role in inducing Marangoni flows. In the present study, the liquid phase is composed of a
low surface tension silicone oil that is highly volatile and a small fraction of a high surface
tension, non-volatile silicone oil (for a 1 cSt and 5 cSt silicone oil blend φ5 cSt � 0.3 vol%).
The dome geometry is studied for its relevance to thin film coating processes and tear film
drainage (Rabiah, Scales & Fuller 2019). A well-defined substrate geometry also allows
us to accurately track and quantify mass accumulation and flux, through the measurement
of the film thickness. Despite the simplicity in composition and geometry, these thin films
exhibited complex dynamic behaviour that arises from the competing effects of capillary
pressure, Marangoni regeneration and van der Waals interactions. A thin film is generated
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Figure 1. Schematic of a glass sphere approaching a silicone oil and air interface.

by pushing the glass dome through an initially flat oil/air interface (figure 1). Thereafter,
the dome is held fixed and the thin film evolves. When the initial solute concentration is
in the so-called ‘capillary regime’, capillarity and Marangoni regeneration balance each
other, leading to sustained, axisymmetric film thickening. The present study extends the
previous work and examines the non-axisymmetric flows associated with binary films at a
higher solute concentration (for a 1 cSt and 5 cSt silicone oil blend φ5 cSt � 0.35 vol%).

The article is organized as follows. We first introduce the experimental set-up, the
formulation of the lubrication theory and the numerical methods. We then describe the
instability observed as the film thickens, from both an experimental and a computational
perspective. In the subsequent sections, we provide a more detailed description of the flow
characteristics of the observed instability, followed by a parametric study in concentration
and diffusivity (the Peclet number). We finish with a generalized linear stability analysis
to elucidate the mechanism behind the instability.

2. Experiment

Experiments are conducted using the custom-built dynamic fluid-film interferometer.
These experiments use the same equipment set-up and procedures as presented in
our previous work (Rodríguez-Hakim et al. 2019). We therefore only provide a brief
description in the present manuscript.

A spherical glass dome with a radius of a = 7.6 mm is initially submerged in a chamber
of binary silicone oil, where the binary oil is composed of a majority 1 cSt silicone oil
(ShinEtsu DM-Fluid) and a dilute fraction of 5 cSt silicone oil (Clearco PSF). The relevant
material properties can be found in table 1 in our previous work (Rodríguez-Hakim et al.
2019). In order to examine the effects of initial solute concentration on the evolution of
the film, experiments were conducted at four different initial concentrations of the 5 cSt
silicone oil: φ0 = 0.0035, 0.005, 0.01 and 0.02.

For a typical experiment, the initial distance between the apex of the glass dome and
the silicone oil/air interface is b = 0.3 mm. At time t = 0, a motor moves the chamber of
liquid downward at a speed of U = 0.05 mm s−1 for a distance of d = 0.35 mm. During
this period, the glass dome is held fixed and penetrates the top air/oil interface, forming
a thin liquid film whose interference patterns are recorded by a top camera. Thereafter,
the relative positions of the glass dome and the chamber are held fixed. Throughout this
process, the chamber is open to the air and the 1 cSt silicone oil evaporates at a rate
of approximately E = 0.13 μm s−1, leaving the liquid in the chamber enriched in the
5 cSt silicone oil. The evolution of the liquid film thickness is then deduced from the
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interference patterns. Details of the dynamical evolution of the film thickness are discussed
in the results and discussion sections.

3. Theoretical model

3.1. Lubrication equations
We briefly summarize the theoretical framework that describes the dynamics of the
experiments and the major physical factors that affect the non-axisymmetric thin film
flow. This model expands upon our previous publication by including azimuthal flow
(see Rodríguez-Hakim et al. 2019). In this manuscript, the asterisk superscript represents
dimensional quantities.

Initially, a solid sphere of radius a is submerged in a binary mixture of 1 cSt and 5 cSt
silicone oils (figure 1). The origin is placed at the intersection of the initially flat oil/air
interface and the vertical axis of the sphere. A cylindrical coordinate system (z∗, r∗, θ ) is
adopted to account for the motion and the geometry of the sphere, where z∗ represents the
vertical axis, r∗ represents the radial coordinate and θ is the azimuthal angle. At t∗ = 0,
the apex of the sphere is placed a distance b below the origin. The sphere is then raised
upward against gravity for a distance d, until the apex of the sphere penetrates the origin
(i.e. d > b). The sphere is subsequently held fixed, mimicking the motion of the motor in
the experimental apparatus. Throughout this process, the volatile 1 cSt silicone oil freely
evaporates into the ambient environment. The experiments are done on a time scale over
which the 1 cSt silicone oil is not significantly depleted from the bulk region (i.e. the far
field). Thus, it is assumed that far from the origin, the concentration of the solute (5 cSt
silicone oil) remains at its initial concentration of φ0. The position of the no slip glass
dome is known at all times during the process and its distance to the top oil/air interface
will be denoted as the film thickness, h∗. In order to describe the non-axisymmetric flows
observed in the experiments, the theoretical model includes the coupled evolution of the
top oil/air interface h∗

1 and the solute species concentration φ∗.
In developing the lubrication equations, we assume that the liquid mixture viscosity μ

and density ρ are nearly those of the solvent, i.e. the 1 cSt silicone oil (μ = 0.82 g m−1 s−1

and ρ = 818 kg m−3). The surface tension of the air/liquid interface is assumed to be
linearly dependent on the composition

γ ∗ = γ1 cSt(1 − φ∗)+ γ5 cStφ
∗ = γ1 cSt + (γ5 cSt − γ1 cSt)φ

∗, (3.1)

where γ1 cSt = 16.9 mN m−1 and γ5 cSt = 19.7 mN m−1. These assumptions are
reasonable because of the dilute nature of the initial binary mixture. The evaporation rate E
of the 1 cSt silicone oil is experimentally determined by measuring evaporative mass loss
under conditions similar to those in the interferometric experiments (E = 0.13 μm s−1).
Evaporation induced thermal effects are neglected. In our previous work, thermal imaging
of the evaporating thin film showed negligible thermocapillary effects (Rodríguez-Hakim
et al. 2019). Over the range of concentrations studied in this work, the film never thins
to nanoscopic values and the van der Waals interactions have a negligible effect on the
dynamics of the film. However, to be consistent with our previous model formulation, the
Hamaker constant A is assumed to be 10−18 J. The binary diffusivity D = 0.0019 mm2 s−1

is extrapolated from the diffusivity of 1 cSt silicone oil in high viscosity silicone oils
(1000–100 000 cSt), following the procedures described by Walls, Meiburg & Fuller
(2018). Due to the wide range of extrapolation, there is high uncertainty associated with
this extrapolated value. Thus, in the calculations described below, we will examine a range
of Péclet number and, specifically, the effect of Péclet number on the film stability is
examined in § 4.3.
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To produce a set of non-dimensionalized equations, the following scales are chosen. The
obvious scale for solute concentration is its initial concentration φ0. The axial length scale
is the captured film thickness at the time when the motor stops moving: a

√
Ca, where the

capillary number Ca ≡ μU/γ1 cSt. It follows from continuity that the radial and azimuthal
length scales are aCa1/4. The pressure scale γ1 cSt/a is obtained by balancing capillary
stresses with the pressure. Finally, the axial velocity scale is U. The dimensionless
quantities are thus defined as (Rodríguez-Hakim et al. 2019)

r = r
aCa1/4 , t = γ1 cStCa1/2

μa
t∗, φ = φ∗

φ0
, h = h∗

aCa1/2 , and P = aP∗

γ1 cSt
.

(3.2a–e)

After applying the above scales, the dimensionless governing equations for the film
thickness h(t, r, θ) and the solute concentration φ(t, r, θ) are

∂h
∂t

+ 1
r
∂

∂r
(rh 〈vr〉)+ 1

r
∂

∂θ
(h 〈vθ 〉) = −Ev(1 − φ0φ), (3.3)

∂φ

∂t
+
(

〈vr〉 − 1
Pe

1
h
∂h
∂r

)
∂φ

∂r
+
(

〈vθ 〉 − 1
Pe

1
h

1
r
∂h
∂θ

)
1
r
∂φ

∂θ

− 1
Pe

(
1
r
∂

∂r

(
r
∂φ

∂r

)
+ 1

r2
∂2φ

∂θ2

)
= Ev

h
φ(1 − φ0φ), (3.4)

P = 2 − 1
r
∂

∂r

(
r
∂h
∂r

)
− 1

r2
∂2h
∂θ2 + Bo(h − h∞)− Ha

h3 , (3.5)

where

〈vr〉 = −h2

3
∂P
∂r

+ Ma
2

h
∂φ

∂r
, (3.6)

and

〈vθ 〉 = −h2

3
1
r
∂P
∂θ

+ Ma
2

h
1
r
∂φ

∂θ
. (3.7)

The corresponding initial and boundary conditions are

at t = 0 : h = h∞, φ = 1, P = 0,

as r → ∞ : h → h∞, φ → 1, P → 0,

and ψ(θ) = ψ(θ + 2π), where ψ = h, φ,P.

⎫⎪⎬
⎪⎭ (3.8)

The far-field film thickness is defined as

h∞(t, r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b

a
√

Ca
+ r2

2
− Ev(1 − φ0)t − t

(
t < tstop ≡ d

a
√

Ca

)

b

a
√

Ca
+ r2

2
− Ev(1 − φ0)t − tstop (t � tstop).

(3.9)

Finally, to complete the model, we shall briefly discuss the dimensionless parameters.
The capillary number Ca = μU/γ1 cSt compares the viscous stresses to capillary stresses.
The Bond number Bo = ρga2

√
Ca/γ1 cSt is defined as the square of the ratio of the

capillary length scale and the characteristic length scale (g is the gravitational acceleration:
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Ca μU/γ1 cSt 2.426 × 10−6

Bo (ρga2
√

Ca)/γ1 cSt 0.0427
Ha A/(6πa2Ca3/2γ1 cSt) 1.438 × 10−5

Ma/φ0 (γ5 cSt − γ1 cSt)
√

Ca/(μU) 106.4
Ev E/U 0.0026
Pe aU/D 100, 200, 1000
tstop d/(a

√
Ca) 29.57

Table 1. Dimensionless parameters used in this study.

g = 9.8 m s−2). The Hamaker number Ha = A/6πa2Ca3/2γ1 cSt gives an indication of
the strength of the van der Waals interactions to the capillary forces. The Marangoni
number Ma = (φ0(γ5 cSt − γ1 cSt)

√
Ca)/μU compares the solutocapillary stresses to the

viscous stresses. The evaporation number Ev = E/U is the ratio of the evaporation rate
to the characteristic velocity scale in the axial direction. Finally, the Péclet number aU/D
compares the length scales of advection and diffusion. We focus on only one silicone
oil blend: 1 cSt as the solvent and 5 cSt as the solute, one glass dome and one motor
speed. Therefore, the aforementioned dimensionless parameters remain constant for the
system of interest and only φ0 will be varied. From the extrapolated diffusivity, the
corresponding Péclet number is Pe = 200. However, because of the inaccuracy associated
with the power-law-based extrapolation for the diffusivity, we examine two additional
Péclet numbers that are spaced on a log scale around the estimated Péclet number:
Pe = 100 and Pe = 1000. Table 1 provides a summary of the parameter definitions and
their values used in this study.

3.2. Numerical methods
The governing equations are spatially discretized using the finite-difference method. To
avoid the singular point in the cylindrical coordinate system at r = 0, the two-dimensional
mesh is generated following the suggestions made by Mohseni & Colonius (2000).
A radially stretched map is used such that 62 % of the grid points are smoothly
clustered over r ∈ [0, 1] and the remaining 38 % of the points are positioned over
r ∈ (1,Rmax], where Rmax represents the size of the simulation domain in the radial
direction. A Crank–Nicolson scheme with adaptive time stepping is employed for the time
advancement (Rodríguez-Hakim et al. 2019). At each iteration, the linearized equations
are solved using the generalized minimal residual method (GMRES) solver provided in
the PETSc package (Balay et al. 2019). Verification against the one-dimensional solution
and validation against experimental data are presented in the following section.

4. Results and discussion

4.1. Symmetry breaking
In this section, we describe symmetry breaking associated with the dynamics of an
evaporating binary liquid film over a spherical glass dome. Expanding on our previous
study (Rodríguez-Hakim et al. 2019), the present work is focused on binary blends of 1
cSt and 5 cSt silicone oils at a higher volume fraction of the non-volatile, high surface
tension species (5 cSt, φ0 � 0.0035). Similar to the thin film dynamics that we previously
described as being in the ‘capillary regime’ (1 cSt and 5 cSt blend, 0.0002 � φ0 � 0.003),
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Figure 2. Interference patterns (a–c, t = 165, t = 218, t = 236) and the corresponding experimental
dimensionless film thickness profiles (d–f ) during a mound discharge event for a binary mixture of 1 cSt
silicone oil with 0.5 vol% of 5 cSt silicone oil. The diameter of the interferograms corresponds to 1 mm and
the horizontal bars in the film thickness profiles indicate a dimensionless radial length scale of 1.

the film dynamics for higher concentrations of the non-volatile species demonstrates initial
drainage due to the squeezing motion of the glass dome. A concentration gradient is
simultaneously developed as the volatile species evaporates. This concentration gradient
drives a Marangoni flow toward the apex of the glass dome, forming a solute-rich mound,
bounded by the rim, R(t, θ), where the film thickness is at its minimum. Because the
solute-enriched mound region is characterized by a higher surface tension than that
in the bulk surrounding region, the liquid is continuously drawn into the mound. In
the previously described capillary regime, the mound volume continues to grow in an
axisymmetric manner throughout this process. However, at higher initial non-volatile
solute concentration, φ0, while the mound volume is growing, the film thickness at the
rim of the mound grows unevenly, leading to symmetry breaking and non-axisymmetric
liquid discharge from the mound into the bulk.

Figure 2 contains interferograms and their corresponding film thickness maps, before,
during and after a mound discharge event for a 1.00–5.00 cSt (φ0 = 0.005) blend. Figure 3
provides the parameter matched simulation film thickness and solute concentration
surfaces at the corresponding time points. At the start of visible symmetry breaking, the
film thickness and solute concentration fields remain near axisymmetric (figures 2d and
3a,d). As the disturbances grow, one side of the film thins while its opposite side thickens
(figures 2e and 3b), leading to a visible loss of axisymmetry. As the asymmetry becomes
even more apparent, the apex of the mound shifts away from r = 0 and toward the direction
of film thickening. Simultaneously, the solute-rich region is convected toward the region
of film thickening (figure 3e). The spatial shift in the high surface tension region leads
to an azimuthal Marangoni flow that pulls more liquid toward the location of the radially
shifted mound. Eventually, the region of increased film thickness grows to such an extent
that the previously well-defined rim becomes a shoulder and there is no clear distinction
between the mound region and the thicker, bulk region in the direction of film thickening
(figures 2f and 3c). This process completes one cycle of mound discharge.

In the experiments, ambient disturbance events such as ambient air disturbances
and vibrations can induce a mound discharge event; in the numerical simulation
shown in figure 3, the accumulated numerical error leads to the eventual mound
discharge event. Despite the difference in the source of the disturbance, the simulation
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Figure 3. Film thickness and concentration profiles during a mound discharge event of a simulation conducted
at φ0 = 0.005 and Pe = 200. The other simulation parameters are Ca = 2.426 × 10−6, Bo = 0.0427, Ma/φ0 =
106.4, Ev = 0.0026, tstop = 29.57 and Ha = 1.438 × 10−5. For the rest of the paper, these parameters are kept
constant. (a–c) Film thickness surface plots at time points 356, 369 and 381. The horizontal bar indicates a
dimensionless radial length scale of 1. (d–f ) Contour plots of the non-evaporative species concentration (in
filled colour) overlaid with the location of the rim (white lines). The directions of mound discharge (‘Ds’), film
thinning (‘Th’) and the locations between the two points (‘Ds + π/2’ and ‘Th + π/2’) are labelled with white
dots. The arrows plotted over the four positions indicate the general flow direction at that point. The length
of the arrows gives a general indication of the growth in flow magnitude. The arrow lengths are not drawn to
scale.
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and the experiment agree quantitatively in the form of the break in symmetry, suggesting
that the most dangerous mode follows the form of the observed disturbance in the
simulations.

Based on the observations above, we conducted an analysis of the evolution of the rim
thickness and the apex location to further characterize the mound discharge event and
compare the simulation against the experiment. The rim film thickness (hR) corresponding
to the panels shown in figures 2 and 3 is extracted and plotted in figures 4(a) and 4(d).
When plotted against the azimuthal angle, the rim film thickness takes the approximate
form of a cosine function. Fourier transform of hR confirms this observation (figure 4b,e):
as the mound discharges, the amplitude of the signal with an azimuthal wavenumber of
one grows (m = 1, vertical dashed line). Thus, for this system, apparently the disturbance
that is amplified follows the form of ψ̃(t, r, θ) = cos(θ)ψ̂(t, r), where ψ = h1, φ. During
the discharge, the apex of the mound moves away from r = 0 at an exponential rate
(figure 4c, f ). In the simulation, during 0 < t < 310, the flat line in the radial position of
the apex signifies the smallest radial grid point away from r = 0 (for details on meshing,
see the numerical methods section).

4.2. Flow characteristics during symmetry breaking
In this section, we examine flow characteristics during the symmetry breaking event by
comparing the results of two-dimensional and one-dimensional (1-D) (i.e. axisymmetric)
simulations conducted with the same set of parameters (i.e. those presented in figure 3).
The most visible indication of a mound discharge event is the deviation in the mound
volume (Vm defined below) in the 2-D simulation as compared to the 1-D simulation. In
the 1-D simulation, the assumption of axisymmetry restricts the solution of the governing
equations to be only a function of t and r. Therefore, the solution does not have a second
spatial dimension into which momentum can be transferred. In the 2-D simulation, the
liquid can move in both the radial and the azimuthal directions. Thus in these two cases,
there is a distinct difference in the evolution of the ‘mound volume’, defined as

Vm(t) =
∫ 2π

0

∫ R(t,θ)

0
h(t, r, θ)r dr dθ, (4.1)

where the rim position, R(t, θ), is the radial location of the minimum film thickness in a
given azimuthal direction. For the 1-D simulation, this quantity simply becomes

Vm,1D(t) = 2π

∫ R(t)

0
h(t, r)r dr. (4.2)

Figure 5(a) shows the comparison of the mound volume evolution of the 2-D and 1-D
simulations. In both sets of simulations, the mound volume first undergoes a transient
growth, after which the mound enters a monotonic growth region beyond t = 76. From
t = 76 until approximately t = 356, the mound volume grows at the same rate for both
1-D and 2-D simulations, and there is apparently no break in symmetry. At t = 368, the
disturbance in the 2-D simulation has grown to a large enough amplitude to create an
asymmetric mound discharge event, thus leading to a sharp drop in the mound volume. In
the 1-D simulation, the mound volume continues to grow.

A second set of measures that indicate symmetry breaking are the film thicknesses at
both the apex and the rim. In a 2-D simulation, the apex is defined as the location of
the maximum film thickness within the mound region; whereas in a 1-D simulation, the
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Figure 5. Comparison of the time evolutions of selected quantities associated with the simulation shown in
figure 3 and the corresponding 1-D axisymmetric simulation. (a) Mound volume evolution. (b) Apex and
rim film thickness. In the 1-D simulation, the apex is located at r = 0 and the rim is located at the position of
minimum film thickness. For the 2-D simulation, the film thicknesses at the apex and at the rim on the opposing
sides along the direction of the mound discharge are plotted; ‘Ds’ and ‘Th’ stand for ‘discharging side’ and
‘thinning side’ respectively. (c) Radial velocity at the rim locations. (d) Pressure (‘P’) and Marangoni (‘M’)
contributions to the radial velocity at the rim locations. (e) Azimuthal velocities at the rim locations that are
π/2 offset from the discharging and thinning sides. ( f ) Pressure and Marangoni contributions to the azimuthal
velocity at the rim locations presented in (e).

apex is always located at r = 0 (figure 5b). Similar to the mound volume evolution, the
apex film thickness in the 2-D simulation decreases at around t = 368 (i.e. at the onset
of a discharge event), while its 1-D counterpart grows indefinitely due to the symmetry
constraint. For the 2-D simulation, the locations of the maximum and minimum rim film
thickness can be examined. These opposing rim locations are of interest because they are
positioned along the axis of mound discharge, and thus where film thickness changes are
most rapid and pronounced. The direction in which the film thickens during discharge
is referred to as the discharging side (‘Ds’). This is the side where the apex and rim
will eventually merge, thus signalling the end of a mound discharge event. The opposing
side is referred to as the thinning side (‘Th’), where the film thickness decreases during
discharge.
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To examine the total liquid flow into and out of the mound region, we look at the depth
averaged radial and azimuthal volumetric flux per unit circumference evaluated at the rim

〈vr〉R =
(

−h2

3
∂P
∂r

+ Ma
2

h
∂φ

∂r

)∣∣∣∣
R
, and 〈vθ 〉R =

(
−h2

3
1
r
∂P
∂θ

+ Ma
2

h
1
r
∂φ

∂θ

)∣∣∣∣
R
.

(4.3a,b)

Both velocities have two contributing terms: the pressure contribution and the Marangoni
contribution (figure 5c–f ). For the pressure contribution of the radial velocity, the
dominant term comes from capillary forces. Based on the definition of the coordinate
system, a positive value in 〈vr〉R signifies liquid flow away from r = 0 towards the
bulk. During the transient mound growth (tstop < t < 33), the film thickness grows
monotonically in all azimuthal directions. The volume of the mound is then reduced
quickly as liquid flows out axisymmetrically due to the dominant pressure contributions
(figure 5(d), 33 < t < 76). During this period, a concentration gradient is established
such that the Marangoni term overwhelms the pressure term, leading to an inward
radial flux toward r = 0 (〈vr〉R < 0, 76 < t < 178). The film thickens as a result of
Marangoni regeneration, thereby increasing the magnitude of both contributions and
reducing the magnitude of the total inward flow (figure 5(c), 178 < t < 356). Soon after,
the difference in rim film thickness between the discharging and thinning side increases.
On the discharging side, the film thickens and the pressure contribution to the radial flow
eventually overwhelms the Marangoni flow, leading to the eventual outward discharge
flow (figure 5(c) when the dash-dotted line goes from being negative to positive). On
the thinning side, the film thickness is further reduced and both contributions to the radial
flow decrease in magnitude; however, the Marangoni contribution decreases at a slower
rate, leading to a stronger inward flow (in figure 5(c) the solid line grows more negative).
In addition to the change in flow magnitude on the two opposing sides, as the mound is
shifted in the direction of discharge, the solute rich mound gets convected. The off-centre
mound creates secondary Marangoni flows in the azimuthal direction (thus a non-zero
〈vθ 〉R) that draws more liquid into the mound and speeds its radial discharge (figure 3d–f ).

Finally, we look at the azimuthal flow 〈vθ 〉R at selected rim locations. Figure 5(e, f )
shows the magnitude of the azimuthal flow at rim locations that are π/2 away from the
discharging and thinning locations. These locations were chosen because they have the
maximum azimuthal flow amplitude; whereas, at the discharging and thinning locations,
the magnitude of the azimuthal flow is small due to the mirror symmetry along the
axis of mound discharge. The azimuthal flow has negligible magnitude until significant
symmetry breaking occurs (0 < t < 330). When the mound discharges along the axis of
symmetry breaking, it convects the high surface tension liquid away from the z-axis, thus
rendering the concentration/surface tension profile non-axisymmetric. The disruption in
the concentration profile leads to an increase in the magnitude of the azimuthal Marangoni
flow, which is slightly damped by the pressure contributions (figure 5f ). Overall, at π/2
away from the discharging and thinning rim locations, the azimuthal flows drive fluid
toward the discharging side, thus further thickening the film at that location (figure 5( f ),
and see the arrows in figure 3).

4.3. Effects of solute concentration and diffusivity on the onset of symmetry breaking
As one can deduce, of primary interest are the effects of φ0 and Pe on the onset
of symmetry breaking. The experimental set-up is subjected to ambient disturbances
throughout an experiment. In simulations, we can inject a known form of disturbance at a
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Figure 6. Time evolution of experimental (a) and simulation (b) apex film thickness at four concentrations.
The error bars in the experimental data represent the standard deviation taken from fifteen experiments
conducted for each concentration. The simulations were conducted at Pe = 200, Ca = 2.426 × 10−6, Bo =
0.0427, Ma/φ0 = 106.4, Ev = 0.0026, tstop = 29.57 and Ha = 1.438 × 10−5. For each simulation, the same
disturbance was introduced at t = 127.

specific time point to determine its effect on the subsequent mound discharge. Because
the sources and amplitudes of the disturbance in the experiments and the simulations
are different, we choose to compare the trends in how the experiments and simulations
respond to changes in one input parameter. To this end, we introduce the following form
of disturbance at t = 127 for all the simulations shown in this section:

h̃1,ini = Ch cos(θ)
r

2R3 + r3 , and φ̃ini = Cφ cos(θ)
r

4R5 + r5 , (4.4a,b)

where C is a normalization coefficient. The analytical form of the injected disturbance was
found by fitting a smooth surface to the difference between the 2-D solution during mound
discharge and the corresponding solution in the 1-D simulation. Noise-injection time of
t = 127 is chosen such that all simulations studied are in the Marangoni regeneration
regime and have yet to break axisymmetric flow. The rim location, R, is found for each
simulation at the time of the noise injection. The normalization coefficients, Ch and
Cφ , are chosen such that the injected disturbance is sufficiently large to create a system
response that is not overshadowed by the intrinsic numerical difference between the 2-D
and the axisymmetric simulations, while small enough such that there is agreement with
the linearized disturbance evolution at short times. We will devote more discussion to the
linear stability analysis in the next section. (See Appendix A for the specific values of
the normalization coefficients and a comparison of the radial profiles of the disturbance
quantities.)

We study the binary mixtures at four initial concentrations (φ0 = 0.0035, 0.005, 0.01,
0.02). These concentrations were chosen such that the onset of the discharge time in the
experiments is individually distinguishable. Figure 6 shows experimental and simulation
apex film thickness and mound volume evolution up to the end of the first mound discharge
event. Marangoni driving forces increase in magnitude as the initial concentration
increases. As a result, Marangoni regeneration happens at an earlier time and mound
discharge also happens more quickly. Figure 7 shows the experimental and simulation
mound discharge time plotted as a function of initial concentration. In the simulations,
three Péclet numbers were examined to account for the uncertainty in diffusivity. The
diffusivity that corresponds to Pe = 200 is extrapolated from four binary diffusivities
of 1 cSt silicone oil at 1000, 10 000, 60 000 and 100 000 cSt, reported by Walls et al.
(2018). Clearly the extrapolation has a high level of uncertainty associated with it. Thus
we examine three Péclet numbers to account for this uncertainty.
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Figure 7. Effects of initial concentration on experimental (a) and simulation (b) mound discharge time. For
each simulation, the same disturbance was introduced at t = 127. Except for φ0 and Pe, all other simulation
parameters are the same as the ones used in figure 3.

For all three Péclet numbers, as the concentration increases, the time for the mound to
discharge decreases, in agreement with the experimental observations. For the simulation
conducted at φ0 = 0.0035,Pe = 100, the disturbance ultimately decayed, indicating a
stability boundary in the parameter space of φ0 and Pe. This strongly suggests that
diffusion plays a crucial role in stabilizing the system. In the experiments, the film
thickness profile remained axisymmetric for φ0 � 0.003 and symmetry breaking is
observed for φ0 � 0.0035. This observation of the stability cross-over in the experiments
further validates the predictions of our theoretical model. Note that no attempt has been
made to examine the complete stability boundary in φ0 and Pe space, and this is a fruitful
direction for future studies.

In the range of concentrations and Péclet numbers studied, it is unclear if there is a
critical film thickness or a critical mound volume at which the system will discharge. A
closer look at the disturbance evolution is necessary to elucidate the mechanism behind
this instability. In this context, we therefore turn to linear stability analysis.

4.4. Linear stability analysis
In this section, we examine the system response to an asymptotically small perturbation,
by looking at the linearized disturbance evolution. Based on experimental observations,
the initially axisymmetric film evolves until it transitions to a non-axisymmetric state and
the Marangoni-regenerated mound discharges along a given axis. The constant presence of
evaporation indicates that the system continuously evolves in time. Thus, the base state in
this case is the axisymmetric, 1-D solution that evolves in time and is a function of only the
radial coordinate. The complexity of the base state suggests that we formulate a linearized
initial value problem to study the transient response of the system to small perturbations
(Schmid 2007), without making the assumption of exponential disturbance growth in time
(the usual eigenvalue problem). The linearized disturbance equations are derived by taking
the difference in the governing equations for the 2-D and the 1-D systems, followed by
neglecting all nonlinear terms in the disturbance quantities, ψ̃ ≡ ψ2D − ψ1D, where ψ
represents h1 (position of the top air/oil interface), φ, 〈vr〉, 〈vθ 〉 and P. We seek solutions in
the form of ψ̃ = exp(imθ)ψ̂(t, r), i.e. the disturbance quantities in the azimuthal direction
follow a sinusoidal form. After some algebra, the disturbance quantities are governed by
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the following set of linearized disturbance equations:

∂ ĥ1

∂t
+ 1

r
∂

∂r

(
rh1D

〈
v̂r
〉)+ 1

r
∂

∂r

(
r 〈vr〉1D ĥ1

)
+ h1D

im
r

〈
v̂θ
〉− Evφ0φ̂ = 0, (4.5)

∂φ̂

∂t
+ 〈vr〉1D

∂φ̂

∂r
+ ∂φ1D

∂r

〈
v̂r
〉− 1

Pe
1
r
∂

∂r

(
r
∂φ̂

∂r

)
+ 1

Pe
m2

r2 φ̂ + · · ·

− 1
Pe

1
h1D

∂φ1D

∂r
∂ ĥ1

∂r
− 1

Pe
1

h1D

∂h1D

∂r
∂φ̂

∂r
+ 1

Pe
1

h2
1D

∂h1D

∂r
∂φ1D

∂r
ĥ1

= Ev
1 − 2φ0φ1D

h1D
φ̂ − Ev

φ1D(1 − φ0φ1D)

h2
1D

ĥ1, (4.6)

where

〈
v̂r
〉 = −h2

1D
3
∂P̂
∂r

− 2
3

h1D
∂P1D

∂r
ĥ1 + Ma

2
∂φ1D

∂r
ĥ1 + Ma

2
h1D

∂φ̂

∂r
, (4.7)

〈
v̂θ
〉 = −h2

1D
3

im
r

P̂ + Ma
2

h1D
im
r
φ̂, and (4.8)

P̂ = −1
r
∂

∂r

(
r
∂ ĥ1

∂r

)
+ m2

r2 ĥ1 + Boĥ1 + 3Ha

h4
1D

ĥ1. (4.9)

In the numerical implementation, the above equations are rearranged such that only
ĥ1 and φ̂ are solved with an initial condition that captures the form, as described above
(4.4a,b), of what is apparently the ‘most dangerous mode’ – i.e. a smooth approximation
to the difference between the fully 2-D simulations during mound discharge and the
corresponding 1-D axisymmetric state. By setting m to an integer value and applying the
following initial and boundary conditions, we complete the initial value problem

ĥ1(tini, r) = r
2R3 + r3 , (4.10)

φ̂(tini, r) = r
4R5 + r5 , and (4.11)

as r → ∞, ĥ1 → 0,
∂ ĥ1

∂r
→ 0,

∂2ĥ1

∂r2 → 0,
∂3ĥ1

∂r3 → 0, φ̂ → 0,
∂φ̂

∂r
→ 0.

(4.12)

In the linear stability analysis, we are particularly interested in the ‘gain’ of the
linearized disturbance quantities, specifically,

G(t) ≡

∫ ∞

0

(
ĥ2

1 + φ̂2
)

r dr∫ ∞

0

(
ĥ2

1,ini + φ̂2
ini

)
r dr

. (4.13)
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Correspondingly, the gain associated with the disturbances injected into the 2-D simulation
is defined as

G2D(t) =

∫ 2π

0

∫ ∞

0

(
(h1,2D − h1,1D)

2 + (φ2D − φ1D)
2
)

r dr dθ

∫ 2π

0

∫∞
0

(
h̃2

1,ini + φ̃2
ini

)
r dr dθ

. (4.14)

Note that the gains, as defined in (4.13) and (4.14), are suitably scaled inner products of
the fluctuations in h1 and φ. When the gain of the disturbances decays to a value well
below one, the system is stable, whereas a value above one indicates disturbance growth.
By comparing the gain associated with the linearized disturbances, G(t) and G2D , we can
also establish the time range in which the linear stability analysis is applicable. To such an
end, we examine two simulations in the φ0 − Pe parameter space: φ0 = 0.0035,Pe = 100
and φ0 = 0.005,Pe = 200. In the full 2-D simulations φ0 = 0.0035,Pe = 100 is the only
parameter set with a long-time stable response, whereas the other parameter set gives an
unstable response.

Figure 8 shows the evolution of the gain of the disturbances for these two parameter sets.
In the 2-D simulations, the disturbance defined by (4.4a,b) is introduced at t = 127 as a
one-time noise injection. The 2-D simulations are evolved and we track the deviation from
the corresponding axisymmetric, 1-D simulation without noise injection. We examine the
most dangerous azimuthal mode m = 1. Higher-order modes are found to be more stable
(see Appendix A).

The evolution in mound volume gives a direct visual clue to the onset of mound
discharge. For the stable case (φ0 = 0.0035, Pe = 100, figure 8a), up to t = 600, there
is no significant difference between the mound volume in the 2-D simulation with noise
injection and that in the axisymmetric simulation, signifying that the injected noise decays
over time. For the unstable case (φ0 = 0.005, Pe = 200, figure 8b), the mound discharged
by t = 200, shortly after the noise injection, signifying that the injected noise brings about
the onset of symmetry breaking.

Figures 8(c) and 8(d) compare the disturbance gain obtained from the 2-D simulation
with noise injection and from linearized disturbance equations. For the stable case, there
is good agreement in the gain from the noise injection at t = 127 until t = 250 (figure 8c).
The amplitude of the gain first grows, reaching its peak value at t = 150. It then decays
to its initial value of one at t = 200. Thereafter, the disturbance further decays, showing
that the system is linearly stable for the parameter set of φ0 = 0.0035 and Pe = 100. In the
unstable case, the disturbance gain grows immediately after noise injection (figure 8d).
The linearized disturbance growth follows that of the 2-D simulation until t = 190, at
which point the mound in the 2-D simulation starts to discharge. From t = 190 onward,
the amplitude of the gain of the linearized disturbances grows exponentially, while the gain
in the 2-D simulation is affected by secondary, nonlinear flows associated with symmetry
breaking.

The linear stability analysis conducted for these two parameter sets has shown that, at
t = 127, one is linearly stable while the other one is linearly unstable. This analysis will
now be carried out at different time points, i.e. the initial value problem will be solved
at different starting points during Marangoni regeneration. For the linearly stable case
(φ0 = 0.0035 and Pe = 100, figure 9a), the system shows a linearly stable response at
tini = 127, 152, 178, 203, 229 and 254. The growth rate and magnitude of the gain differ
for each tini, but they all eventually decay, showing that this parameter set is indeed linearly
stable. For the other parameter set, the disturbances immediately grow when the linearized
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Figure 8. (a,b) Contain comparisons of mound volume evolution between the corresponding noise-injected
2-D simulations and the axisymmetric 1-D simulations. (c,d) Contain comparisons of the gain of the linearized
disturbance (circles) to the gain associated with the injected disturbances in the 2-D simulations (lines). (a,c)
Correspond to the simulations conducted at φ0 = 0.0035 and Pe = 100. (b,d) Correspond to the simulations
conducted at φ0 = 0.005 and Pe = 200. The noise is injected at t = 127.
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Figure 9. Evolution of the gain of the linearized disturbance quantities. (a) Corresponds to simulations
conducted at φ0 = 0.0035 and Pe = 100. (b) Corresponds to simulations conducted at φ0 = 0.005 and
Pe = 200. Each simulation is a solution to the linearized initial value problem, starting at tini. The horizontal
dashed lines are reference lines with values of one. Values above the dashed line indicate disturbance growth,
when compared to the initial condition.

disturbance equations are solved (figure 9b), confirming that the system is unstable. From
these two figures we conclude that the linear stability analysis can accurately depict the
stability for the two parameter sets. We now present the factors that affect the evolution
of the gain of the linearized disturbance quantities and reveal the mechanism behind this
instability.
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4.5. Symmetry breaking mechanism
To elucidate the mechanism behind the observed instability, we analyse the factors that
affect the evolution of the gain of the linearized disturbance quantities. By algebraically
manipulating the linearized disturbance equations, we obtain a scalar equation that relates
the time rate of change in the gain, G, to the four main physical factors that affect the
disturbances, namely Marangoni flow (Ma), pressure-driven flow (P), diffusion (Pe) and
evaporation (Ev), i.e.

1
2

dG
dt

= dGMa

dt
+ dGP

dt
+ dGPe

dt
+ dGEv

dt
. (4.15)

A positive value contributes to disturbance growth, while a negative value indicates a
stabilizing influence on the disturbances. Note that, while we have denoted the terms
dGP/dt as ‘pressure-driven flow’, we found in all cases that the pressure was almost
entirely created by capillary forces. Thus, we could have equally called this term
‘capillary-driven flow’. The detailed expressions for each of these terms can be found
in Appendix A. Herein, we focus on the evolution of each of these four terms and the key
contributing terms to dGMa/dt and dGP/dt

Ai ≡ −

∫ ∞

0
ĥ1

1
r
∂

∂r

(
rh1D

〈
v̂r
〉
i

)
r dr∫ ∞

0

(
ĥ2

1,ini + φ̂2
ini

)
r dr

, where i = Ma,P (4.16)

BMa ≡

∫ ∞

0
ĥ1

Ma
2

m2

r2 h2
1Dφ̂r dr∫ ∞

0

(
ĥ2

1,ini + φ̂2
ini

)
r dr

, (4.17)

BP ≡ −

∫ ∞

0
ĥ1

m2

r2

h3
1D
3

P̂ dr∫ ∞

0

(
ĥ2

1,ini + φ̂2
ini

)
r dr

. (4.18)

Here, AMa and AP are associated with the radial advection of fluid mass, and BMa and BP
are associated with flows in the azimuthal directions.

Figure 10 presents the time evolution of these quantities, for the disturbance quantities
defined by (4.10) and (4.11). The linearized disturbance equations are solved starting at
tini = 127, with an azimuthal wavenumber of m = 1, i.e. the same disturbance introduced
in the linearized stability analysis presented in figure 8. The solution to the linearized
disturbance equations is then integrated to yield the terms in (4.15). The analysis is
conducted for the two cases presented in the previous section: the first one corresponds
to the linearly stable case (φ0 = 0.0035,Pe = 100, figure 10a–c), and the second one
corresponds to the unstable case (φ0 = 0.005,Pe = 200, figure 10d–f ).

In the first case, dGMa/dt is positive and contributes to the growth of the gain while
dGP/dt is negative and serves to stabilize the system. From tini = 127 to t = 140, the
growth in dGMa/dt is dominated by AMa and the decay in dGP/dt is driven by AP.
As the disturbances evolve, the terms related to the azimuthal flow grow in magnitude
(see the peaks of BMa and BP after t = 140 in figure 10a,b). These observations suggest
that, initially, the radial advective Marangoni flow acts to destabilize while the radial
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Figure 10. Evolution of the time rate of change in the gain (G) for two parameter sets: φ0 = 0.0035,Pe = 100
(a–c) and φ0 = 0.005,Pe = 200 (d–f ). The linearized disturbance equations are solved starting at t = 127,
with m = 1 (same noise introduced in figure 8); dGMa/dt, dGP/dt, dGPe/dt, and dGEv/dt represent the total
contributions of Marangoni flow, capillarity, diffusion and evaporation to the time rate change of the gain.
In panels (a,d) and (b,e), the lines labelled ‘AMa’, ‘BMa’ and ‘AP’, ‘BP’, respectively, represent the top two
contributing terms for Marangoni flow and for capillarity. Their analytical expressions are defined in (4.16),
(4.17), and (4.18).

pressure-driven flow counteracts and stabilizes. These interactions lead to a growth in the
azimuthal flows, which further accentuates the destabilizing nature of Marangoni flows
and the stabilizing effects of the pressure-driven flow. The total sum of these two effects
are overall destabilizing (red dashed line in figure 10c), which is offset by the stabilizing
effect of diffusion primarily at long times (t = 160–240), leading to an eventual decay in
the gain. Evaporation is destabilizing for short times, until t = 175, and thereafter is nearly
negligible. Thus, diffusion is the primary stabilizing factor, as we had anticipated from the
results shown in figure 7.

In the unstable case, the evolution in dGMa/dt and dGP/dt is similar: Marangoni
terms act to destabilize, while the pressure/capillary terms act to stabilize. The initial
growths of dGMa/dt and dGP/dt are driven by the advective terms, and the azimuthal
contribution later fuels the growth of each term. Similar to the previous case, the overall
effect of the Marangoni and pressure terms are destabilizing (figure 10f ). In contrast to the
previous case, the contributions from the Marangoni and pressure terms dominate over the
stabilizing effects of evaporation and diffusion, leading to the eventual exponential growth
in the gain.

Through the gain-component analysis, we have elucidated the mechanism behind the
instability. In the two cases studied, dGMa/dt acts to increase the gain (figure 10a,d),
while dGP/dt serves to stabilize the system (figure 10b,e). For the linearly stable case,
diffusion has a significant stabilizing effect that contributes to the eventual decay in
the gain (figure 10c). For the unstable parameter set, the contributions from diffusion
and evaporation are negligible, and the destabilizing effect of Marangoni contributions
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Figure 11. Comparisons of radial profile evolution between the linearized disturbance quantities (black dashed
line, ψ̂) and the θ = 0,π cuts in the 2-D simulation with noise injection at t = 127 (blue solid lines, ψ2D −
ψ1D). (a,b) Correspond to the simulations conducted at φ0 = 0.0035 and Pe = 100. (c,d) Correspond to the
simulations conducted at φ0 = 0.005 and Pe = 200. The radial profiles of the linearized disturbance quantities
have been extended in the negative r direction comparison to ψ2D − ψ1D evaluated at θ = π.

overwhelms the stabilizing effects of the pressure/capillary contribution, leading to the
exponential growth of the disturbance quantities (figure 10f ).

5. Conclusion

In this study, we present the symmetry breaking thin film dynamics associated with
evaporating binary silicone oil films over a glass dome. Through a combination of
experiments and simulations, we document the behaviour of the symmetry breaking
event and elucidate the mechanism behind the observations. The binary silicone oil is
composed of a highly evaporative, low surface tension species (1 cSt) and a relatively
non-evaporative, high surface tension species (5 cSt). A binary thin film is formed atop
a glass dome by pushing the glass dome through a bath of the silicone oil mixture. Once
the glass dome stops, evaporation establishes a concentration gradient that drives liquid
toward the apex of the glass dome, creating a mound region that is relatively high in
surface tension. The film then undergoes a period of axisymmetric mound growth, during
which the radial Marangoni flow that draws liquid toward the apex of the mound dominates
over the radial pressure-driven flow that pushes liquid away from the apex of the mound.
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Once the difference between the two flows becomes small enough, ambient disturbances
disrupt the balance, causing one side of the mound rim to thicken and the opposite side
to thin. The imbalance in the radial flow leads to a shift in the position of the mound and
thus the location of the high surface tension liquid. This shift then drives the growth of
azimuthal Marangoni flows that further fuels the motion of this off-centre mound, yielding
a mound discharge event characterized by a flow with an azimuthal wavenumber of m = 1.

We then present a parametric study in composition (φ0) and diffusivity (Pe). The
theoretical model successfully captures a stability cross-over point, that has been observed
in the experiments: as the initial concentration of the non-evaporative silicone oil
increases, the film has an earlier onset of mound discharge. The simulations have also
demonstrated that increased diffusivity (smaller Péclet number) tends to stabilize the
system.

Finally, we conduct a linearized stability analysis to further understand these
observations. Specifically, we showed calculations for two parameter sets: a linearly stable
case with φ0 = 0.0035,Pe = 100 and an unstable case with φ0 = 0.005,Pe = 200. In the
stable case, the disturbances undergo a period of transient growth driven by Marangoni
flows, followed by the eventual decay, caused by the combined stabilizing effects of
diffusion and the pressure-driven flow. In the unstable case, the disturbances immediately
grow, under the overwhelming influence of Marangoni destabilization.

In summary, this work is a comprehensive investigation of the symmetry breaking
phenomenon of a Newtonian binary thin film over a curved substrate in the presence of
evaporation. Aside from presenting the physical observations and elucidating the physical
mechanism behind the instability, we have introduced a rigorous procedure to study related
thin film stability problems. With the framework presented in this manuscript, we look
forward to examining even more complex thin film flows.
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Appendix A

A.1. Time evolution of the disturbance radial profiles
From the linear stability analysis, it is clear that the amplitude of the noise injected
into the 2-D simulation is small enough to induce a linear response in the short
term. The values of the normalization coefficients Ch and Cφ are chosen such that
the following holds true. For the simulation with parameter set Pe = 100, φ0 = 0.0035,∫ 2π

0

∫∞
0 h̃2

1,inir dr dθ = 3.494 × 10−8 and
∫ 2π

0

∫∞
0 φ̃2

inir dr dθ = 2.249 × 10−8. For the

simulation with parameter set Pe = 200, φ0 = 0.005,
∫ 2π

0

∫∞
0 h̃2

1,inir dr dθ = 5.807 ×
10−8 and

∫ 2π

0

∫∞
0 φ̃2

inir dr dθ = 3.602 × 10−8.
To verify the implementation of the linearized disturbance equations, the time evolution

of the radial profiles of relevant disturbance quantities are compared in figure 11.
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Figure 12. Evolution of the gain of the linearized disturbance quantities. The first row corresponds to
simulations conducted at φ0 = 0.0035 and Pe = 100. The second row corresponds to simulations conducted
at φ0 = 0.005 and Pe = 200. Each simulation is a solution to the linearized initial value problem, over the
time range of the plot, at the indicated azimuthal mode number. The horizontal dashed lines are reference lines
with values of one. Values above the dashed line indicate disturbance growth, when compared to the initial
condition.

The blue solid lines represent ψ2D − ψ1D(t, r, θ = 0,π) and the black dashed lines
represent the linearized disturbance quantities (ψ̂). All plotted variables are normalized
by the maximum value in the injected disturbance. At t = 126.9, the profiles for ψ2D −
ψ1D(t, r, θ = 0,π) are non-zero, due to numerical error accumulation in the simulations.
On the other hand, with the linear stability analysis, ψ̂ = 0. This difference will cause a
subsequent difference in the two sets of disturbance evolutions, although the difference is
insignificant when compared to the flow triggered by the injected noise. At t = 127, 2-D
noise is injected into the full, nonlinear simulation and the initial value problem for the
linearized disturbance quantities also starts. At the onset of noise injection, the two sets
of profiles are in good agreement. In the subsequent disturbance evolution, they are also
in good agreement, thus further verifying that the two types of disturbance growths agree
with each other.

A.2. Time evolution of higher modes of perturbations
To demonstrate that higher azimuthal modes (m > 1) are more stable than the most
dangerous mode (m = 1), we provide here the evolution of the gain of the linearized
disturbance quantities at m = 1, 2, 3, 5, 10 (figure 12). For each parameter set, the
linearized disturbance equations are solved starting at six different time points. For all
cases examined, the m = 1 mode exhibits the fastest disturbance growth. All higher modes
grow at a slower rate than the m = 1 mode.

A.3. Expressions for the time rate of change in the gain of the linearized disturbance
quantities

Here, we provide the expressions for the four contributing terms in (4.15)

Gcoeff
dGMa

dt

=
∫ ∞

0
ĥ1

(
−1

r
∂

∂r

(
rh1D

〈
v̂r
〉
Ma

)− 1
r
∂

∂r

(
r 〈vr〉1D,Ma ĥ1

)
+ Ma

2
m2

r2 h2
1Dφ̂

)
r dr

915 A45-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

13
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.136


Instability and symmetry breaking in binary evaporating

−
∫ ∞

0
φ̂

(
〈vr〉1D,Ma

∂φ̂

∂r
+ ∂φ1D

∂r

〈
v̂r
〉
Ma

)
r dr, (A1)

Gcoeff
dGP

dt

= −
∫ ∞

0
ĥ1

(
1
r
∂

∂r

(
rh1D

〈
v̂r
〉
P

)+ 1
r
∂

∂r

(
r 〈vr〉1D,P ĥ1

)
+ m2

r2

h3
1D
3

P̂

)
r dr

−
∫ ∞

0
φ̂

(
〈vr〉1D,P

∂φ̂

∂r
+ ∂φ1D

∂r

〈
v̂r
〉
P

)
r dr, (A2)

Gcoeff
dGPe

dt

= 1
Pe

∫ ∞

0
φ̂

(
1
r
∂

∂r

(
r
∂φ̂

∂r

)
− m2

r2 φ̂

)
r dr

+ 1
Pe

∫ ∞

0
φ̂

(
+ 1

h1D

∂h1D

∂r
∂φ̂

∂r
+ 1

h1D

∂φ1D

∂r

(
∂ ĥ1

∂r
− 1

h1D

∂φ1D

∂r
ĥ1

))
r dr, (A3)

Gcoeff
dGEv

dt
= Ev

∫ ∞

0

(
φ0φ̂ĥ1 + 1 − 2φ0φ1D

h1D
φ̂2 − φ1D(1 − φ0φ1D)

h2
1D

φ̂ĥ1

)
r dr, (A4)

where

Gcoeff =
∫ ∞

0

(
ĥ2

1,ini + φ̂2
ini

)
r dr. (A5)

The radial velocity is split into the Marangoni and the capillary contributions via

〈
v̂r
〉
Ma = Ma

2
∂φ1D

∂r
ĥ1 + Ma

2
h1D

∂φ̂

∂r
, (A6)

〈
v̂r
〉
P = −h2

1D
3
∂P̂
∂r

− 2
3

h1D
∂P1D

∂r
ĥ1 (A7)

〈vr〉1D,Ma = Ma
2

h1D
∂φ1D

∂r
, (A8)

〈vr〉1D,P = −h2
1D
3
∂P1D

∂r
. (A9)
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