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Joint probabilities and mixing of isolated scalars
emitted from parallel jets
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Mixing and reaction between two scalars initially separated by scalar-free ambient
fluid is important in problems ranging from ecology to engineering. Using a
two-channel planar laser-induced fluorescence (PLIF) system the instantaneous spatial
structure of two independent scalars emitted from parallel jets into a slow coflow is
quantified. Of particular interest is the scalar covariance used to define the correlation
coefficient. Joint probability distribution functions (JPDFs) and instantaneous images
of the scalar fields demonstrate that initially the flow mainly consists of incursions of
fluid from one jet into the other, and vice versa, before scalars have time to assemble
in attracting regions of the flow and coalesce due to diffusive flux. Decomposing the
joint probability distribution exhibits the effect these events have on scaler overlap
and scalar covariance. Along the centreline near where the mean profiles of the jets
meet, the scalar covariance is negative; however, the covariance becomes positive as
the scalars converge in shared structure and diffusive flux bridges a reduced barrier
of ambient fluid. The mixing path between scalar filaments can be probabilistically
observed through the conditional diffusion of the two scalars at various points in the
flow.

Key words: jets, reacting flows, turbulent mixing

1. Introduction
1.1. Reactive and non-reactive mixing

The overwhelming majority of studies of two-scalar mixing and reaction consider
only the condition where the two scalars initially share a material interface. In
this binary topology, fluid stirring necessarily stretches the shared interface, sharpens
scalar gradients and increases diffusive flux normal to the interface, and thus enhances
mixing and any reaction between the two scalars. However, if the two scalars are
initially separated by ambient fluid, the role of stirring on subsequent mixing and/or
reaction is more complex. For efficient mixing or reaction to occur in the latter
scenario, the flow must first locally aggregate filaments of the two scalars such that
diffusion can bridge a substantially reduced barrier of ambient fluid. The processes
that permit this aggregation are not well understood, despite the fundamental nature
of this problem. In this study, we examine mixing and reaction (in the low-Damköhler
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Mixing of isolated scalars emitted from parallel jets 131

limit) between two parallel turbulent jets, each marked with a different scalar and
separated by a finite transverse distance. We examine the role of instantaneous stirring
processes on resulting probabilities of local co-occurring concentrations to develop a
framework for understanding how stirring influences mixing and reaction between the
two initially distant scalars.

Using simple second-order reaction kinetics, the dimensional reaction product is
(Mao & Toor 1971)

Θ̃ = kΦ̃AΦ̃B, (1.1)

where k is a reaction rate constant and Φ̃A and Φ̃B are the local concentrations of
the reactants. Although higher-order reactions have more complicated reaction kinetics,
the physics of how two reactive scalars coalesce are essentially the same (Komori
et al. 1991). In the low-Damköhler limit (i.e. when the reaction is very slow), the
reaction has a negligible effect on the existing scalar fields, and conserved scalars are
meaningful proxies for studying the dynamics of stirring for reactive scalars (Crimaldi,
Cadwell & Weiss 2008). Thus, in the present paper the local non-dimensional scalar
overlap ΦAΦB will be used to quantify mixing between the two scalars. This scalar
overlap quantifies the role of fluid stirring on the local reaction production in (1.1).

When scalar concentrations are decomposed into mean and fluctuating terms
(Φ = 〈Φ〉 + φ′), the time-averaged scalar overlap can be written as (e.g. Cetegen &
Sirignano 1990; Crimaldi, Hartford & Weiss 2006)

〈ΦAΦB〉 = 〈ΦA〉 〈ΦB〉 +
〈
φ′Aφ

′
B

〉
, (1.2)

where the first term on the right-hand side is the product of the mean concentrations
and the second term is the scalar covariance. The scalar covariance defines correlation
between the fields of ΦA and ΦB and quantifies the average contributions of
instantaneous processes to the scalar overlap. In both reactive and non-reactive
cases, the instantaneous contributions from the scalar covariance are essential to
define mixing or reaction between the two scalars. A comprehensive understanding of
how the scalar covariance forms and evolves is essential in understanding turbulent
mixing processes between multiple scalars.

The scalar covariance is commonly normalized as the correlation coefficient (e.g.
Sirivat & Warhaft 1981)

ρ =
〈
φ′Aφ

′
B

〉
(〈
φ′A

2〉 〈
φ′B

2〉)1/2 , (1.3)

where 〈φ′A2〉 and 〈φ′B2〉 are the scalar variances. The correlation coefficient is bounded
by −1 6 ρ 6 1, where ρ = −1 and ρ = 1 indicate perfect linear anticorrelation and
correlation, respectively.

1.2. Binary and isolated topology
In the binary topology (where two scalars initially share a material interface) the mass
fractions of the two conservative scalars must sum to unity, ΦA +ΦB = 1, and scalar
covariance can be defined in terms of the variance of a single scalar,

〈
φ′Aφ

′
B

〉=−〈φ′A2〉 =−〈φ′B2〉. (1.4)

This implies that ρ =−1 everywhere in the flow and knowledge of the concentration
of a single scalar can be used to infer the concentration of the other.
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132 M. A. Soltys and J. P. Crimaldi

In contrast to the binary topology, many flow scenarios exist where the two scalars
of interest are separated by a third ambient fluid (Crimaldi & Browning 2004;
Crimaldi et al. 2006, 2008; Crimaldi 2012; Crimaldi & Kawakami 2013). The scalar
covariance in this topology can be indirectly computed using measurements of each
individual scalar, followed by measurements of the combined scalar field (Warhaft
1984)

2
〈
φ′Aφ

′
B

〉=
〈(
φ′A + φ′B

)2
〉
− 〈φ′A2〉 − 〈φ′B2〉. (1.5)

The method of inference has been used to calculate covariance between multiple
scalar mixing in a variety of flows including grid turbulence (Stapountzis 1988),
boundary layer flows (Sawford, Frost & Allan 1985; Davies & Jones 2000), jet flows
(Tong & Warhaft 1995), and turbulent channel flow (Costa-Patry & Mydlarski 2008).
Although this method permits quantification of the scalar covariance in a number of
flows, it lends no insight into the direct role of instantaneous flow processes on the
development of scalar covariance. In the present study we overcome this limitation by
directly measuring instantaneous fields of φ′Aφ

′
B and can observe how instantaneous

structures affect the covariance.

1.3. Probability distributions
The probability distribution function (PDF) for each scalar P(Φ) and more specifically
the joint probability distribution function (JPDF) between two scalars P(ΦA, ΦB)

contain all of the statistical moments for each scalar and scalar interactions at a
point in a flow. Because of the wealth of information contained in the PDFs, they
have been widely used to estimate unclosed terms, including scalar covariance, in
turbulence models (e.g. Pope 1985; Mitarai, Riley & Kosály 2005).

The form of the single-scalar PDF P(Φ) varies widely in the literature and depends
on many factors including boundary conditions, flow geometry, nature of turbulence,
the Schmidt number of the scalars, etc. Studies involving the transport of heat in
jets (Venkataramani, Tutu & Chevray 1975) revealed Gaussian-shaped scalar PDFs;
however, many studies since have suggested non-Gaussian shapes. Eswaran & Pope
(1988) computed numerical simulations of one scalar in two states (Φ=−1 or Φ= 1)
and found the scalar PDF to have a bimodal distribution that relaxed to a Gaussian
distribution between the two initial states at longer timescales. In the near field, scalar
PDFs have also been described using beta distributions (Girimaji 1991; Beta et al.
2003), gamma distributions (Villermaux & Duplat 2003; Villermaux 2004), Gaussians
with exponential tails (Jayesh & Warhaft 1991) and skewed Gaussians (Dahm &
Dimotakis 1990).

Similar to P(Φ), the two-scalar JPDF P(ΦA, ΦB) varies greatly according the
flow geometry, nature of turbulence, separation distance between scalars and scalar
Schmidt number. JPDFs are reported for homogenous isotropic turbulence (Juneja &
Pope 1996), scalar mixing layers (Bilger, Saetran & Krishnamoorthy 1991; Sawford
& de Bruyn Kops 2008) and coaxial jets (Cai et al. 2011; Rowinski & Pope 2013).
In the binary scalar topology, the mixing path between the two scalars falls on a
straight line where ΦA + ΦB = 1 (Sawford & de Bruyn Kops 2008). In the isolated
topology, scalars must first mix with ambient fluid before mixing with each other
(Cai et al. 2011). The result is the mixing path between the two scalars must first
make a detour toward the ambient state (Sawford & de Bruyn Kops 2008; Cai et al.
2011); however, the size and shape of this detour depends on the separation between
the scalars and the nature of the turbulence. For reactive flows, the mixing path also

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

11
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.113


Mixing of isolated scalars emitted from parallel jets 133

depends on travel time and reactivity of the two scalars expressed as the Damköhler
number (Bilger et al. 1991). As the scalars become well-mixed at long timescales,
P(ΦA, ΦB) approaches a joint-normal distribution (Juneja & Pope 1996).

The evolution of the JPDF in homogeneous flows is defined in terms of the
conditional diffusion (Juneja & Pope 1996),

∂P (ΦA, ΦB)

∂t
=− ∂

∂Φi

[
P (ΦA, ΦB) γi (ΦA, ΦB)

]
, (1.6)

where the conditional diffusion γi(ΦA, ΦB) is defined as the conditional expectation

γi (ΦA, ΦB)=
〈
Di∇2Φi | (ΦA, ΦB)

〉
. (1.7)

In scalar space the conditional diffusion has two vector components, γA and γB,
describing the transport velocity of the JPDF (Cai et al. 2011). The magnitude and
direction of the conditional diffusion is important as it describes not only the mixing
path of the two scalars, but also the speeds of various mixing processes in the flow.

1.4. Turbulent jets
Turbulent jets are a prototypical flow for studying turbulence structure (e.g. Crow &
Champagne 1971; Hussein, Capp & George 1994; Ball, Fellouah & Pollard 2012)
and scalar mixing (e.g. Tong & Warhaft 1995; Catrakis & Dimotakis 1996; Warhaft
2000). Interactions between multiple jets are a natural extension of this fundamental
problem and are of interest for mixing studies in the areas of combustion, chemical
mixing, pollutant transport and environmental processes. Velocity fields for multiple
jets have been studied for inclined jets (Becker & Booth 1975; Wang, Lin & Sheu
1993; Villafruela, Castro & Parra 2008), coaxial jets (Champagne & Wygnanski 1971)
and parallel jets both experimentally (Yuu, Shimoda & Jotaki 1979; Pani & Dash
1983; Lin & Sheu 1990; Anderson & Spall 2001; Fujisawa, Nakamura & Srinivas
2004; Bunderson & Smith 2005) and numerically (Spall, Anderson & Allen 2004;
Zarruk & Cowen 2008).

For parallel jets, also referred to as ‘twin jets’ and ‘dual jets’ (Erdem & Atl 2002),
three regions are commonly defined. Beginning at the origin, the converging region is
defined where the velocity fields of both jets are separate and a recirculating flow
is found between the two. The merging region extends from the point where the
streamline velocity is zero until it reaches its maximum. In this region, transverse
profiles of the streamwise velocity have two peaks that move closer together. At the
point after the velocity in the streamwise direction is maximum, the mean velocity
field of the two jets resembles that of a single jet (i.e. Gaussian), and measurements
of mean and fluctuating velocity profiles are self-similar (Erdem & Atl 2002).

Scalar fields have been measured in multiple plane jets (Grandmaison & Zettler
1989) and multiple round jets (Hodgson, Moawad & Rajaratnam 1999; Wang &
Davidson 2003). Stapountzis et al. (1992) studied the reaction product of two scalars
emitted from parallel jets, but did not quantify the reactant fields themselves. The
study suggests if jet velocities, scalar diffusivities and reactivities are symmetric, the
reactant field will be Gaussian in profile. Fujisawa et al. (2004) visualized mixing
between two parallel jets with different velocities, but did not calculate reaction or
correlation statistics. Duplat & Villermaux (2008) visualized two scalars from parallel
jets in a small duct. PDFs of the individual scalars were skewed Gaussian, and were
used to create the inference PDF of the combined scalar field.
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FIGURE 1. (a) Instantaneous image from Re=1500 and S̃=2.5. The vertical line indicates
the division between upstream and downstream images, while the horizontal dashed lines
indicate the location of the centerline of each jet. The jet diameter d̃, spacing S̃, as well
as the virtual origin are denoted. The colour map used to display the data is shown (b)
where the concentrations are normalized by the initial jet fluid concentration.

Low Re= 750 High Re= 1500

Close S̃= 1.4 cm ˜̄u= 40 cm s−1 Q̃= 280 ml min−1

Far S̃= 2.5 cm ˜̄u= 20 cm s−1 Q̃= 138 ml min−1 ˜̄u= 40 cm s−1 Q̃= 280 ml min−1

TABLE 1. Experimental conditions for the three cases in the present study.

The present study uses a two-channel planar laser-induced fluorescence (PLIF)
technique to measure two initially isolated conserved scalars emitted by parallel
round jets. The scalars can be simultaneously and independently measured to give
mixing statistics, including ρ, as well as higher-order statistics in the form of the
JPDF P(ΦA, ΦB) and the conditional diffusion γi. These statistics are examined in
parallel with instantaneous images to understand the physics of how the two scalars
come together, and how instantaneous processes cause scalar covariance to evolve.

2. Experimental approach

Two parallel round jets with separation S̃, each marked with a separate scalar, issue
into the ambient fluid of a recirculating flume (figure 1). Jet spacing and Reynolds
number were varied in the present study as shown in table 1. The jets consist of
2.75 m of straight 0.39 cm diameter round tubing oriented horizontally into the
ambient flow. The viscosity of the fluid was 1.04× 10−6 m2 s−1. The test section of
the recirculating flume is 0.4 m deep × 1.25 m wide.

The flow of the jet fluid was driven using two matching pulseless gear pumps.
The long development length of the jet tubing (>700d̃) provides a fully developed
velocity profile (Durst et al. 2005). A slow laminar and shear-free ambient coflow
of 0.37 cm s−1 was passed through the test section to prevent accumulation of jet
fluid. The ambient flow first passed through a 15 cm thick honeycomb with 0.69 cm
diameter cells just upstream of the jet exits. The coflow velocity was less than 2 % of
the mean jet velocity at the low Reynolds number, and thus its affect on the turbulent
jet structure is assumed to be minimal in the test section (Nickels & Perry 1996).
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Mixing of isolated scalars emitted from parallel jets 135

The jets exit with a parabolic velocity profile and transition to turbulent jets a short
distance downstream. For purposes of self-similarity we define a location to be used
as a virtual origin for subsequent analysis. This point is defined by performing a
linear fit to the inverse centreline concentration of the two jets and the resulting x-
intercept defines x̃= 0 (Zarruk & Cowen 2008). The centreline between the two jets
is denoted as z̃= 0. In figure 1, and throughout the rest of this paper, axes are non-
dimensionalized by the jet spacing as x= x̃/S̃ and z= z̃/S̃.

The jets were imaged using a two-channel PLIF system that simultaneously and
independently measures the two scalar fields. Details of the technique, including the
acquisition and processing of image data are outlined in Soltys & Crimaldi (2011).
Beams from separate lasers (argon-ion and krypton-ion) are combined to form a
single light sheet 0.5 mm wide that passes vertically through the axis of each jet.
The top jet was marked with fluorescein (Φ̃0 = 0.05 p.p.m.), which is excited by
the 488 nm line of the argon-ion laser. The bottom jet was marked with oxazine
(Φ̃0 = 0.25 p.p.m.), which is excited by the 647 nm line of the krypton-ion laser.
Both concentrations were sufficiently low to be optically thin (Melton & Lipp 2003)
and were normalized by the concentration at the jet exit as Φ = Φ̃/Φ̃0. Tests showed
that the laser sheet was sufficiently thin to produce converged scalar statistics (Soltys
& Crimaldi 2011). Two cameras with optical filters matched to the emission spectra
of each dye recorded instantaneous fluorescence from the two dyes with a pixel
resolution of 0.14 cm pixel−1.

Data was collected for two adjacent 20.0 cm × 14.8 cm regions with 4.8 cm of
overlap between the upstream and downstream regions. In figure 1 the vertical line
denotes the separation between the upstream and downstream dataset; however, in
subsequent figures no distinction between the two datasets for each flow case will
be made. One thousand image pairs were captured at a frame rate of 2 Hz for each
Reynolds number (defined based on the exit velocity and nozzle diameter), jet spacing
and streamwise location.

Images from each camera were then post-processed to rectify the images to the
same plane and correct for errors caused by fluorescence from background dye,
fluorescence saturation, laser attenuation, spatial variation in the light sheet, lens
vignette and variations in gain and offset using a robust image processing algorithm
outlined in Soltys & Crimaldi (2011). The algorithm

ΦA,n = bA,n
IA,n − BA,n

BA,n −DA
(2.1)

corrects the intensity field for the nth image, In, using the background dye
concentration for the nth image, Bn, interpolated from images before and after
the experiment and the camera dark response, D. If one-directional cross-talk from
channel A (i.e. fluorescein) to channel B (i.e. oxazine) occurs, equation (2.1) can be
corrected as

ΦB,n = bB,n
IB,n − BB,n − λ

[
IA,n − BA,n

]

BB,n −DB − λ
[
BA,n −DA

] (2.2)

where λ is the cross-talk occurring from channel A to channel B. Because stokes
fluorescence only occurs from shorter wavelengths to longer wavelengths, cross-talk
will only occur in one direction. The constant λ varies based on parameters of the
system such as camera spectral sensitivity, relative laser power for both lasers and
the pH of the fluid. Therefore, λ is determined from a separate experiment with a
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FIGURE 2. (a) Spatial distribution of 〈ΦA〉 and 〈ΦB〉 for Re= 1500 and S̃= 1.4 cm. The
colour map is the same as in figure 1(b). (b) Normalized transverse profiles at x = 2.5
(+), 5 (E), 10 (∗) and 20 (·) indicated by grey dashed lines in the left. Solid lines are
Gaussian profiles centred at each jet axis.

single fluorescein jet, while b1 and b2 were calibrated using images of known uniform
concentrations of fluorescein and oxazine.

The images are recombined into a single image (e.g. figure 1) with the colour
map shown in figure 1(b). The colour map uniquely displays concentrations of the
individual scalars, as well as any combination of the two. The concentration of the
upper jet, ΦA, is shown in varying tints of blue while the lower jet, ΦB, is shown
in varying tints of red. Ambient fluid is shown as white, and any mixture of ΦA and
ΦB is displayed as a unique hue of purple. All possible mixtures are contained in the
triangular region of figure 1(b).

3. Results

Typical spatial distributions of the scalar means 〈ΦA〉 and 〈ΦB〉 are shown in
figure 2(a) for high Reynolds number and close jet spacing. Figure 2(b) shows
normalized transverse profiles for both Reynolds numbers at the far jet spacing at
locations denoted by grey dashed lines in figure 2(a). The profiles are normalized by
plume width σ and centreline concentration ΦCL based on Gaussian fits to the data.
The mean plumes are Gaussians centred at x = 0.5 and x = −0.5 for ΦA and ΦB,
respectively. The solid lines in figure 2(b) are Gaussian profiles centred at each jet
axis. The close fit of the data to the Gaussian profiles suggests the mean jet flows
see little influence from interactions with the opposite jet.

In (1.2), we show that the time-averaged scalar overlap 〈ΦAΦB〉 can be decomposed
into the sum of the product of the mean concentrations 〈ΦA〉〈ΦB〉 and the scalar
covariance 〈φ′Aφ′B〉. Figure 3 shows the streamwise development of transverse profiles
of each of these three terms. Due to the fact that both 〈ΦA〉 and 〈ΦB〉 are Gaussian
and equally spaced about z = 0, the product of the two, 〈ΦA〉〈ΦB〉, will also be a
Gaussian centred at z= 0. Here 〈ΦAΦB〉 also has a Gaussian appearance and thus the
scalar covariance term can be approximated as the difference of two Gaussians. In
figure 3, solid lines are Gaussian fits to 〈ΦAΦB〉 and 〈ΦA〉〈ΦB〉, and to the difference
of the two Gaussians for 〈φ′Aφ′B〉.

At x= 2.5, a positive Gaussian of the product 〈ΦA〉〈ΦB〉 forms as ΦA and ΦB begin
to reach the centerline between the two jets. Here 〈ΦAΦB〉 is also Gaussian with an
amplitude approximately half that of 〈ΦA〉〈ΦB〉 and a slightly larger width. Because
〈ΦAΦB〉 and 〈ΦA〉〈ΦB〉 vary in width and magnitude, the scalar covariance has both
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FIGURE 3. Profiles of the time-averaged scalar overlap 〈ΦAΦB〉, the product of the scalar
means 〈ΦA〉〈ΦB〉, and the scalar covariance 〈φ′Aφ′B〉 at (a) x = 2.5, (b) x = 5, (c) x = 10
and (d) x= 20 for Re= 1500 and S̃= 1.4 cm. The grey lines are Gaussians fitted to the
data, or to the difference of two Gaussians in the case of the scalar covariance.

positive and negative regions. The majority of the scalar covariance at this point is
negative, with a local minimum at z= 0. Small positive regions exist near z=±0.7.

Farther downstream at x= 5, coalescence between the two scalars has continued to
increase. 〈ΦA〉〈ΦB〉 has widened and decreased in magnitude as the scalars mix across
y and z. The scalar covariance increases in magnitude everywhere with positive regions
centred near z=±1. At x= 10 both 〈ΦA〉〈ΦB〉 and 〈ΦAΦB〉 have decreased and more
notable positive regions are visible in 〈φ′Aφ′B〉. By x = 20, the peak of 〈ΦA〉〈ΦB〉 is
smaller than that of 〈ΦAΦB〉, and 〈φ′Aφ′B〉 is positive, albeit small, everywhere.

Figure 4 displays the streamwise evolution of 〈ΦAΦB〉, 〈ΦA〉〈ΦB〉, and 〈φ′Aφ′B〉 along
the centreline between the two jets for both Reynolds numbers and spacings. The
scalar overlap reaches a maximum near x≈ 4 for the close spacings and near x≈ 6 for
the far spacings. Here 〈ΦAΦB〉 is higher for close nozzle spacing and high Reynolds
numbers and 〈ΦA〉〈ΦB〉 is greater than 〈ΦAΦB〉 until x ≈ 17 with local maximums
occurring slightly upstream of the peak reaction. The scalar covariance in this region
is negative with local minimums near x = 3 for the close spacing and x = 4 for the
far spacing. Downstream of x≈ 17, the product of the mean scalar concentrations is
lower than the mean reaction and 〈φ′Aφ′B〉 becomes positive.

The spatial distribution of the correlation coefficient ρ is shown in figure 5. The
correlation coefficient highlights the spatial evolution of the scalar covariance by
normalizing it by the variance of each scalar (1.3). Near the source the centreline
region is dominated by negative correlations, with positive correlations occurring off
the centreline (compare with figures 3 and 4). Progressing downstream, ρ increases
in magnitude, becoming positive at the centreline near x≈ 17. Far from the centreline
and far downstream, ρ tends to unity as the scalar covariance and the product of the
variances vanish at equal rates (Tong & Warhaft 1995; Viswanathan & Pope 2008).
Mixing still occurs between the two jets along the centreline (figure 4) even though
negative correlations dominate in these regions.

3.1. Instantaneous fields
Representative instantaneous scalar fields are shown for upstream (figure 6a) and
downstream (figure 7a) locations. The spatial scale varies between the two figures,
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FIGURE 4. Streamwise evolution along the centreline (z= 0) of the scalar overlap 〈ΦAΦB〉,
the product of the means 〈ΦA〉〈ΦB〉 and the scalar covariance 〈φ′Aφ′B〉 shown for both
spacings (rows) and Reynolds numbers (columns): (a,c) Re= 750; (b,d) Re= 1500.
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FIGURE 5. Time averaged correlation coefficient ρ. Here Re = 750 is displayed in the
(a,c) and Re= 1500 is displayed on (b,d), while the S̃= 1.4 cm in (a,b) and S̃= 2.5 cm
in (c,d).

but both share the same colour map as figure 1(b). As the jets spread toward one
another in the upstream region, coherent flow structures from one jet transport the
scalar from that jet transversely into the second jet, displacing the second scalar.
These scalar incursions are initially insulated from contact with the second scalar by
a buffer of ambient fluid (e.g. figure 6a x = 1.8, z = 0.2). As the incursions advect
downstream they are stirred by local structures in the resident jet, thinning the buffer
of ambient fluid and enabling diffusion to promote overlap between the two scalars.
Farther downstream (figure 7a) the velocity and scalar fields of the two jets have
largely merged across the domain, although the scalars remain somewhat segregated
at small scales due to combined effects of the ambient fluid buffer and the weak
scalar diffusivities.

The resulting instantaneous scalar overlap as quantified by ΦAΦB is shown in
figures 6(b) and 7(b). Note that both the spatial scales and color maps differ between
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FIGURE 6. (a) Instantaneous concentrations ΦA and ΦB for Re= 1500 and S̃= 1.4 using
the same colour map as figure 1. (b) Instantaneous contributions to the scalar overlap
ΦAΦB. (c) Instantaneous contributions to the scalar covariance φ′Aφ

′
B.

the two figures. The overlap is close to zero far upstream, but grows downstream
and spreads transversely. Strong local occurrences of ΦAΦB are seen to be associated
with with scalar incursions shown in figure 6(a) (e.g. x = 4, z = 0.25) that continue
to be stirred and mixed as shown in figure 7(a) (e.g. x= 14.5, z= 2.75).

The instantaneous contributions to the scalar covariance φ′Aφ
′
B are shown in

figures 6(c) and 7(c). Again both the spatial scales and colour maps differ between the
two figures. Incursions of one scalar displacing the other are responsible for strong
negative contributions to the scalar covariance (e.g. figure 6c). Positive contributions
occur in regions where both scalars overlap in concentrations above the local mean
concentrations (e.g. figure 7c x= 14.5, z= 2.75), or where ambient fluid dominates.

Figures 6 and 7 give insight into the spatial evolution of ρ (figure 5), suggesting
displacement events resulting in negative correlations are common near the centreline
for x < 17. Farther downstream and off the centreline, incursions continue to be
stirred and mixed and positive correlations are more likely. Although the images
provided only contain a few representative cases of structures contributing to the
scalar covariance, the detailed discussion of the probabilities of these events in the
following section can give more insight into the flow-field.
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FIGURE 7. (a) Instantaneous concentrations ΦA and ΦB for Re=750 and S̃=1.4 using the
same colour map as figure 1. (b) Instantaneous contributions to the scalar overlap ΦAΦB.
(c) Instantaneous contributions to the scalar covariance φ′Aφ

′
B.

3.2. Joint probability distribution functions
The JPDF P(ΦA, ΦB) (e.g. figures 8–10) quantifies the probability of various mixtures
of ΦA, ΦB, and ambient fluid at a given location in the flow. Upstream of the virtual
origin (x6 0), the scalar space consists of three distinct states: (ΦA,ΦB)= (1, 0) inside
the scalar A jet, (ΦA, ΦB) = (0, 1) inside the scalar B jet, or (ΦA, ΦB) = (0, 0) in
pure ambient fluid. As ΦA and ΦB each initially mix with surrounding ambient fluid,
contributions to P(ΦA, ΦB) evolve along the ΦA and ΦB axes toward the origin. The
interior of the scalar space becomes populated only as ΦA and ΦB diffuse across the
ambient buffer and mix with each other. Since both jets must first mix with ambient
fluid, it is not possible for P(ΦA, ΦB) to evolve directly along the line ΦA +ΦB = 1
that connects (0, 1) and (1, 0).

We present P(ΦA, ΦB) for a number of specific locations in each flow. For
smoothing purposes each location represents statistics averaged over a 2 mm× 2 mm
region. We take advantage of geometric symmetry and present P(ΦA, ΦB) only for
z > 0. Data from z< 0 is averaged with the z> 0 data after being mirrored in scalar
space across the line ΦA =ΦB.

In figures 8–12, contours containing 80 %, 60 %, 40 % and 20 % of the total
probability are shown for each plot, and are shaded with the darker regions indicating
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FIGURE 8. The JPDF P(ΦA, ΦB) for Re= 1500 and S̃= 1.4 cm displayed at z= 0, 0.5
and 1 (rows) and x= 2.5, 5, 10 and 20 (columns). Probabilities are shown on a log scale
with contours containing 80 %, 60 %, 40 %, and 20 % of the data. Blue lines show the
mean concentrations 〈ΦA〉 and 〈ΦB〉.
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FIGURE 9. The JPDF P(ΦA, ΦB) for Re= 1500 and S̃ = 2.5 cm displayed at z= 0 and
0.5 (rows) and x= 2.5, 5 and 10 (columns). Probabilities are shown on a log scale with
contours containing 80 %, 60 %, 40 % and 20 % of the data. Blue lines show the mean
concentrations 〈ΦA〉 and 〈ΦB〉.

events of higher probability. The local means 〈ΦA〉 and 〈ΦB〉 are indicated by
horizontal and vertical blue lines, and the local correlation coefficient is listed in
the upper corner of each plot.
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FIGURE 10. The JPDF P(ΦA, ΦB) for Re= 750 and S̃= 1.4 cm displayed at z= 0 and 0.5
(rows) and x= 2.5, 5, 10 and 20 (columns). Probabilities are shown on a log scale with
contours containing 80 %, 60 %, 40 % and 20 % of the data. Blue lines show the mean
concentrations 〈ΦA〉 and 〈ΦB〉.
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FIGURE 11. (a) The JPDF P(ΦA, ΦB) for Re = 1500 and S̃ = 1.4 cm at x = 5, z = 0.
Probabilities are shown on a log scale with contours containing 80 %, 60 %, 40 % and
20 % of the data. (b) Corresponding contributions to 〈ΦAΦB〉 contoured to show 80 %,
60 %, 40 % and 20 % of the total contributions. (c) Corresponding contributions to 〈φ′Aφ′B〉
divided into eight equispaced contours with warm colours denoting positive contributions
and cold colours denoting negative contributions.

3.2.1. Spatial evolution of P(ΦA, ΦB)

Figure 8 shows P(ΦA, ΦB) at four streamwise locations (x = 2.5, 5, 10, 20) and
three cross-stream locations (z= 0, 0.5, 1) for Re= 1500 and S̃ = 1.4. We begin by
considering the streamwise evolution of P(ΦA, ΦB), focusing on the centreline between
the jets (z = 0, bottom row of figure 8). Due to geometric symmetry (see figure 1),
centreline occurrences of ΦA and ΦB are equally probable and P(ΦA, ΦB) at z= 0 is
symmetric about the line ΦA =ΦB.

At x = 2.5, filaments of ΦA and ΦB begin reaching the centreline while mixing
with the ambient fluid, resulting in decreased concentrations of the two scalars. As a
result, probabilities move in scalar space along the axes toward the origin. The most
probable ΦA or ΦB filaments at this location fall between 0.2.Φ . 0.4, as indicated
by the darkest regions along the axis in figure 8. High probabilities of pure ambient
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FIGURE 12. (a) The JPDF P(ΦA, ΦB) for Re= 1500 and S̃= 1.4 cm at x= 20, z= 0.5.
Probabilities are shown on a log scale with contours containing 80 %, 60 %, 40 % and
20 % of the data. (b) Corresponding contributions to 〈ΦAΦB〉 contoured to show 80 %,
60 %, 40 % and 20 % of the total contributions. (c) Corresponding contributions to 〈φ′Aφ′B〉
divided into eight equispaced contours with warm colours denoting positive contributions
and cold colours denoting negative contributions.

fluid result in a delta function at (ΦA, ΦB)= (0, 0). Weaker probabilities of coexisting
concentrations of ΦA and ΦB populate the interior of scalar space close to the origin,
indicating that coalescence between the two only occurs after significant dilution with
the ambient fluid.

By x=5, many filaments of ΦA and ΦB have come into close proximity in attracting
regions of the flow. Diffusive flux between filaments of ΦA ≈ 0.2 near filaments of
ΦB≈ 0.2 forms a bridge of high probability across ΦA+ΦB≈ 0.2. This bridge shows
scalar mixing across a material interface of ΦA and ΦB with a minimal buffer of
ambient fluid between the two. Because local mixtures of ΦA and ΦB are enclosed
between filaments of the two scalars, ΦAΦB mixtures cannot diffuse with the ambient
fluid. This results in a low-probability region located between the peak at the origin
and the ΦA +ΦB ≈ 0.2 band.

As scalar filaments continue to mix with each other, probabilities migrate away from
the axes and increasingly populate the interior region of P(ΦA, ΦB). At x = 20, ΦA

is less likely to exist apart from ΦB and probabilities along the axis of scalar space
are low.

Moving away from the centreline to the axis of the upper jet at z= 0.5 (middle row
of figure 8), initially there will be only ΦA diluted with ambient fluid (e.g. x=2.5) and
probabilities will occur along the ΦA axis. Progressing downstream, scalar incursions
of ΦB that have mixed with ΦA reach z=0.5 and probabilities migrate off the axis. By
x = 10 significant amounts of ΦB are present; however, there are no structures large
or energetic enough to bring pure ΦB to the centreline of the ΦA jet.

Outside of the two jets at z = 1 (top row of figure 8), ambient fluid initially
dominates (x = 2.5). As the jets spread in the z direction, higher concentration
filaments of ΦA increase in likelihood (x = 5). Here ΦB does not appear in the
upper reaches of the flow until farther downstream (x= 10), and here only in diluted
concentrations. By x = 20 both scalars have diluted with ambient fluid considerably
and the structure of P(ΦA, ΦB) has a lobed shape similar to that at z= 0.5, x= 20.
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3.2.2. Effect of jet spacing and Reynolds number on P(ΦA, ΦB)

The JPDF P(ΦA, ΦB) for the far jet spacing at Re = 1500 are shown in figure 9.
Note that statistics for z= 1 are not shown due to the very low probabilities of ΦB
reaching this location in the study section. Along the centreline between the two jets
(bottom row of figure 9), the streamwise evolution of P(ΦA, ΦB) follows a similar
pattern to that of the close jet spacing, although the patterns for any given value of
x = x̃/S̃ are dissimilar. The on-axis nature of P(ΦA, ΦB) persists farther downstream
than for the close jet spacing, and because the scalars have more time to dilute with
ambient fluid, overlap between the two scalars occurs at lower concentrations than at
the close spacings.

Along the centreline the point at which the mean jet profiles overlap scales as
x̃/S̃. Because the jets have little influence on one another the marginal PDF for
each scalar, P(Φ), will evolve the same for both jet spacings at given locations of x̃.
Because P(ΦA, ΦB) is dependent on both, there is no expectation of simple scaling
of P(ΦA, ΦB) with x̃ or x = x̃/S̃, and it is not expected that P(ΦA, ΦB) in figures 8
and 9 will be similar at given values of x.

Figure 10 shows P(ΦA, ΦB) for the low Reynolds number and close jet spacing.
Due to the decreased Reynolds number, filaments are much slower to converge toward
attracting regions, and initially the majority of contributions to P(ΦA, ΦB) lie along
the axes. Mixing occurs by dilution with ambient fluid, and the bridging seen in the
high-Reynolds-number case (figure 8) is no longer present.

3.2.3. Contributions to P(ΦA, ΦB)

In § 3.1 the instantaneous contributions toward the scalar overlap ΦAΦB and scalar
covariance φ′Aφ

′
B are determined (figures 6 and 7). The distribution in scalar space

of instantaneous contributions to ΦAΦB and φ′Aφ
′
B can be obtained by appropriately

weighting P(ΦA, ΦB). To illustrate, P(ΦA, ΦB) at two locations, x = 5, z = 0 and
x = 20, z = 0.5 (shown previously in figure 8), is shown in figures 11(a) and 12(a).
At x = 5, z = 0 the majority of the probabilities fall along the axes, where one
scalar occurs without the other present, or just off the axes, where one scalar with
strong concentration co-occurs with a low concentration of the other. There also
exists a bridge along the line ΦA + ΦB ≈ 0.2 where diffusion is mixing scalars of
neighbouring filaments. At x= 20, z= 0.5 probabilities are skewed toward ΦA due to
the transverse position of this location. Here it is unlikely to observe ΦA apart from
ΦB, and probabilities along each axis are small.

Contributions to ΦAΦB can be found by weighting P(ΦA, ΦB) by the local value
ΦAΦB. Note that integrating these weighted distributions across the entire scalar space
yields the total mean overlap,

〈ΦAΦB〉 =
∫ 1

0

∫ 1

0
ΦAΦBP(ΦA, ΦB)dΦAdΦB. (3.1)

Figures 11(b) and 12(b) illustrate the contributions to 〈ΦAΦB〉 for the same locations
in figures 11(a) and 12(a). At x = 5, z = 0 the majority of the contributions fall
in the region ΦA + ΦB & 0.2. While regions occurring off the axes and away from
the origin have higher potential reaction, regions of P(ΦA, ΦB) close to (but not on)
the axes have probabilities orders of magnitude greater than those away from the
axes and therefore contribute a significant amount to the scalar overlap. At the farther
downstream location (x= 20, z= 0.5), contributions to 〈ΦAΦB〉 primarily come from
the region away from the axes and the origin.
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Contributions to φ′Aφ
′
B can be found by weighting P(ΦA, ΦB) by the local value

φ′Aφ
′
B. Note that the JPDF of the scalar fluctuations P(φ′A, φ

′
B) can be calculated by

repositioning the origin of scalar space to the intersection of the local means. Formally,
the scalar covariance can be defined from P(φ′A, φ

′
B) as

〈
φ′Aφ

′
B

〉=
∫ 1−〈ΦB〉

−〈ΦB〉

∫ 1−〈ΦA〉

−〈ΦA〉
φ′aφ

′
bP
(
φ′A, φ

′
B

)
dφ′A dφ′B. (3.2)

Figures 11(c) and 12(c) illustrate the contributions to 〈φ′Aφ′B〉 in eight equispaced
contours with positive contributions appearing in red and negative contributions
appearing in blue. Negative contributions to the scalar covariance exist in regions
where one scalar exists below the mean concentration, while the other scalar exists
above the mean concentration (upper left and lower right quadrants). Positive
covariance contributions exist in regions where both scalars exist above the means
(upper right quadrant), or where both scalars exist below the means (lower left
quadrant). At x = 5, z = 0 the majority of the contributions to the scalar covariance
are negative and come from regions where one scalar exists without the other along
the axes. The majority of the positive contributions toward the scalar covariance
are events where neither scalar is present (i.e. ambient fluid). At this location, the
negative contributions outweigh the positive and ρ < 0. Farther downstream at x= 20,
z = 0.5 the majority of the contributions to 〈φ′Aφ′B〉 occur in the positive upper-right
and lower-left quadrants where the two scalars coalesce and ρ > 0.

3.2.4. Conditional diffusion
At a given instant, the diffusive flux of a scalar filament is governed by the

diffusion term D∇2Φ. The conditional diffusion γ is calculated by creating a
histogram of the scalar concentrations weighted by the diffusion of each of the
two scalars at the same point (Juneja & Pope 1996). The resulting vector function is
normalized by the unweighted histogram P(ΦA, ΦB) and has two vector components:
γA(ΦA, ΦB)= 〈DA∇2ΦA | (ΦA, ΦB)〉 and γB(ΦA, ΦB)= 〈DB∇2ΦB | (ΦA, ΦB)〉 (equation
(1.7)). The two vector components of γ define the transport of P(ΦA, ΦB), and γ
can be presented as a diffusion velocity displayed in scalar space as magnitudes and
streamlines. Probabilities given by P(ΦA, ΦB) will evolve along streamlines parallel
to γ at the speed |γ |. Figure 13 displays γA and γB for locations corresponding to
those in figure 8.

At x= 2.5 filaments of each scalar have been diluted with ambient fluid, but little
inter-scalar mixing has occurred. For very high or very low concentrations of ΦA and
ΦB, streamlines are parallel to the axes, indicating the dilution of each scalar with
ambient fluid (and ambient fluid with each scalar). At 0.1 . Φ . 0.3 streamlines
diverge from the axes and move along a diagonal before converging near the local
scalar means. This mixing path indicates local scalar filaments of concentration 0.1.
Φ . 0.3 are in close proximity to filaments of the opposing scalar, and diffusive flux
is driving mixing between the two. This leads to the population of scalar space across
the ΦA +ΦB ≈ 0.2 line in the subsequent plot of P(ΦA, ΦB) (compare with figure 8:
x= 5, z= 0).

The magnitudes of the diffusion velocity vary considerably across scalar space
(compare with Cai et al. 2011). Scalars that still exist in strong concentrations
(e.g. Φ > 0.4) have been stretched very thin, and gradients are sharp along their
edges, resulting in a strong diffusive flux. Along the mixing path between the two
scalars, diffusion velocities are slower. This highlights the two processes at play in
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FIGURE 13. Conditional diffusion γ displayed in scalar space as a diffusion velocity for
S̃ = 1.4 cm, Re= 1500 at z= 0, 0.5 and 1 (rows) and x= 2.5, 5, 10 and 20 (columns).
Diffusion velocity streamlines are shown in black and magnitudes are shown ranging from
white (low) to red (high).

bringing the scalars together: the fast process of turbulent stretching and folding
that brings the scalars into close proximity and the slow process of diffusion that
ultimately causes coalescence.

4. Summary

JPDFs are plotted for two parallel turbulent jets at multiple streamwise and
transverse locations. Initially filaments of ΦA and ΦB exist independently of one
another; however, filaments are rapidly brought close together in attracting regions
of the flow (e.g. Mathur et al. 2007). Once the ambient buffer between filaments
is small, diffusive flux brings scalars into coalescence across interfaces between the
filaments. This process is accelerated as neighbouring filaments are stretched in the
shared flow, sharpening gradients and increasing the diffusive flux (e.g. Crimaldi &
Kawakami 2013). This is seen most prominently in the high-Reynolds-number case,
where a bridge between ΦA and ΦB is seen in the interior region of P(ΦA, ΦB).
At low Reynolds numbers no bridge between filaments is seen and mixing occurs
primarily through dilution with ambient fluid. The JPDFs presented in this paper
highlight that the turbulent mixing between two initially distant scalars is both a
nonlinear process and has non-normal distribution. The shape of the JPDFs is highly
impacted by the position in the flow, as well as the initial flow conditions such as
Reynolds number and jet spacing.

The JPDF P(ΦA, ΦB) can be decomposed to show contributions to 〈ΦAΦB〉 and
〈φ′Aφ′B〉. Strong contributions to the mean scalar overlap occur in rare cases off
the axes and away from the origin in scalar space as well as more common
occurrences of coalescing scalars near the axes. Incursions from one jet into the
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other initially displace the opposing scalar and result in negative contributions to
the scalar covariance. Farther downstream, as diffusive flux brings filaments into
coalescence, overlapping scalar filaments result in positive contributions to the scalar
covariance.

The mixing path between the two scalars is of particular interest for reactive flows.
The mixing path can be observed using the conditional diffusion (1.7). As probabilities
evolve along the mixing path, the result is higher contributions to the mean scalar
overlap and increasingly positive contributions to the scalar covariance. The diffusive
path converges onto a manifold that falls along a line between neighbouring locally
normal filament concentrations. Because this convergence point falls in regions where
the two distant scalars have been brought together, it could be helpful in determining
attracting regions in the flow.

The shape of the mixing path is complex and largely dependent on the geometry of
the scalars. Similar to previous work by Cai et al. (2011), mixing of ΦA and ΦB can
only occur through the ambient fluid, which results in a detour of the mixing path
towards the origin in the present study. The magnitude of this detour is large in the
present study likely due to the amount of ambient fluid separating the scalars, when
compared with the small annulus of fluid separating scalars in Cai et al. (2011). The
size and shape of the mixing path remain an interesting topic for future research, as
it is a challenging test for mixing models.

Appendix A. Uncertainty analysis
In this appendix, individual sources of uncertainty associated with the two-channel

PLIF technique are identified, and are then combined to provide an estimate of
the total uncertainty in the resulting concentration measurements, ΦA and ΦB. This
combined total can be compared with error measured in validation experiments by
Soltys & Crimaldi (2011), where a range of known concentrations of mixtures of
the two dyes were recorded using the two-channel system. Fluorescence response for
each of the two PLIF channels was linear to within 0.5 % and cross-talk between the
two channels was less than 0.3 %.

A.1. Laser power
The experiments used an argon-ion laser and a krypton-ion laser. Both were Coherent
Innova 90C lasers operated in TEM00 mode with a closed-loop power supply. Root-
mean-square (RMS) noise in the laser output is specified by the manufacturer to be
no more than 0.2 %. Because the measured concentrations are directly proportional to
laser intensity, this noise will linearly affect the concentration measurements for both
scalars.

A.2. pH, temperature and background dye
Error in local concentration measurements can arise due to the sensitivity of the
dyes’ fluorescence to pH and temperature. Because the experiment runs over a long
period of time, error in instantaneous measurements can also arise from the buildup
of background dye in the flume over time. A robust post-processing algorithm,
introduced in (2.1) and (2.2), can correct for these errors using measurements of
the background fluorescence (Crimaldi 2008; Soltys & Crimaldi 2011). Because the
dyes are introduced at a constant rate throughout the experiment and mixed into the
background in the flume recirculation process, the background dye concentrations are

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

11
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.113


148 M. A. Soltys and J. P. Crimaldi

expected to increase linearly over time. Linear interpolation in time of background
concentration images taken before and after the experiment are used as estimates
for the background fluorescence at any given time during the experiment. Assuming
the pH and temperature also vary gradually, and with no local fluctuations, these
background images can also be used to directly correct for the change in fluorescence
with pH and temperature.

As a worst-case error estimate, the maximum measurement error resulting from
temperature fluctuations can be estimated using an exponential curve of the form F=
F0enT (Smart & Laidlaw 1977), where n is a constant on the order of 0.001 for the
dyes used in the present study. Temperature was monitored throughout the experiments
and varied no more than 1 ◦C, resulting in a maximum measurement error of 0.4 %.
Because no reactions occur, it is reasonable to assume that pH remains constant in
the neutral range over the course of the experiment.

A.3. Photobleaching
Photobleaching occurs when fluorescent dye molecules are exposed to high light
intensities for long periods of time and are irreversibly converted to colourless
leuco-compounds. While photobleaching can induce significant errors in laser-induced
fluorescence measurements made with single-point techniques, it has been shown
that the extent of photobleaching in planar configurations is minimal, especially in
turbulent flows and when using scanning mirrors. Using a model developed by Larsen
& Crimaldi (2006) we estimate the error due to photobleaching in the present system
to be <0.3 %. This is a worst-case estimate in that it assumes a parcel of dye remains
in the light sheet over the entire 20 cm imaging region, which is unlikely due to the
turbulent nature of the flow. The model also neglects the fact that the image area
is more prone to quenching, where dye molecules can recover between scans, rather
than irreversible photobleaching (Song et al. 1997).

A.4. Laser optics
Laser profiles used in the experiments have a Gaussian cross-section and are focused
in the test section using a series of lenses so that the beam diameter (0.5 mm) is
less than one pixel (1.5 mm). Although the beam diameter is not constant through
the test section, the focal length is long enough that the beam remains smaller than
one pixel across the entire image region and thus can be considered constant. The
laser was scanned across the image using a single mirror actuated by a galvanometer
(e.g. Catrakis & Dimotakis 1996; Crimaldi & Koseff 2001) controlled by an analogue
voltage signal from a signal generator. If the time resolution of the voltage signal
is too coarse, bands of high and low laser intensity forming along rays emanating
from the rotating mirror will be present in the unprocessed images. If the bands
occur at inconsistent positions throughout the experiment there will be variability
in concentration measurements. The signal generator used is capable of generating
voltage with an accuracy of 0.0044 % with a time resolution of 1 MS s−1. In the
present configuration, this results in an uncertainty in the beam position of 3 % when
compared with the width of a pixel. Considering the Gaussian nature of the beam and
integrating over the width of a pixel, this results in a concentration measurement error
of <0.3 %. It should be noted that the high sample rate from the signal generator in
combination with the rotational inertia of the mirror both serve to smooth the laser
path across the light sheet, which will considerably reduce this error in the present
study.
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FIGURE 14. The JPDF P(ΦA, ΦB) for Re = 1500 and S̃ = 1.4 cm at
x= 10, z±= 0.5, along with the average of the two locations: (a) z= 0.5; (b) z=−0.5;
(c) 〈P(ΦA, ΦB)〉. Probabilities are shown on a log scale with contours containing 80 %,
60 %, 40 %, and 20 % of the data.

A.5. Attenuation
Error in local concentration measurements can arise both from the attenuation of the
laser as it passes through filaments of dye and variations in the light sheet due to
imperfections in the laser optics. Laser attenuation from filament dye is avoided if
the system is optically thin (i.e. uses low dye concentrations and short path lengths)
(Melton & Lipp 2003). Attenuation from the background dye is directly corrected for
using (2.1) and (2.2) (Crimaldi 2008).

A.6. Cameras
Fluorescence was imaged using a pair of Imperx Bobcat ICL-B1410 cameras. The
RMS noise for these cameras is 0.1 %, which is directly propagated to error in
concentration measurements. The cameras both have identical lenses and are rectified
to the image plane using a calibration grid. A standard 2D spatial transformation
is applied to correct skew, lens distortion and translation errors (e.g. Brown 1992;
Heikkila & Silvén 1997; Zhang 1999).

A.7. Total error
Assuming all errors are independent and random, the total error should be equal to
the square root of the sum of the squares of the individual errors listed in the previous
sections (Lavertu, Mydlarski & Gaskin 2008), including the cross-talk error measured
in Soltys & Crimaldi (2011). This results in a total error of 0.7 % for both channels,
which is comparable to the experimentally measured error of 0.5 % from previous
studies. The calculated error is likely larger than the measured error due to the fact
that many of the errors calculated above are worst-case scenarios, and not all of the
errors listed above are independent and random.

As a representative illustration of the accuracy predicted by this error analysis,
figure 14 shows P(ΦA, ΦB) at z=±0.5 and x= 10. Due to experimental symmetry, it
is expected that data from a point above the centerline in scalar A should be identical
to the transpose of the data below the centreline in scalar B. Visual comparison shows
similar features with the majority of probabilities lying near the axis and a protrusion
forming along the line ΦA + ΦB = 0.2. The average of the two plots shows similar
features and suggests no significant consequence from averaging data from z< 0 with
the z> 0 data, and is consistent with the small predicted error in the present system.
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A.8. Differential diffusion

Some of the small differences in P(ΦA, ΦB) at z = ±0.5 may be attributed to
differential diffusion of the two dyes. Previous studies in low-Reynolds-number
aqueous flows determined that differential diffusion can be significant at Schmidt
number ratios as low as 4 (e.g. Saylor & Sreenivasan 1998; Brownell & Su 2008;
?). Effects ranged from blurring of filaments to changes in structures at scales
larger than the Batchelor scale, but smaller than the Kolmogorov micro-scales. In
low-Reynolds-number water jets it is estimated that the scales of anomalies caused by
differential diffusion (Saylor & Sreenivasan 1998) will be smaller than the resolution
of the two-channel system across the imaging region. It is expected that effects from
differential diffusion are small, but may still contribute some error when calculating
scalar overlap. The role of differential diffusion on co-occurring concentrations of
initially distant scalars remains an interesting area for further research.
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