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NONPARAMETRIC ESTIMATION OF THE SERVICE
TIME DISTRIBUTION IN THE M/G/∞ QUEUE
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Abstract

The subject of this paper is the problem of estimating the service time distribution of
the M/G/∞ queue from incomplete data on the queue. The goal is to estimate G from
observations of the queue-length process at the points of the regular grid on a fixed time
interval. We propose an estimator and analyze its accuracy over a family of target service
time distributions. An upper bound on the maximal risk is derived. The problem of
estimating the arrival rate is considered as well.

Keywords: M/G/∞ queue; nonparametric estimation; minimax risk; stationary process;
covariance function; rates of convergence

2010 Mathematics Subject Classification: Primary 62G05
Secondary 60K25, 62M09

1. Introduction

Suppose that customers enter a system at time instances {τj , j ∈ Z}, obtain service upon
arrival, and leave the system at time instances {yj , j ∈ Z} after the service is completed.
A j th customer arriving at τj requires service time σj , so that its departure epoch is yj =
τj + σj . If {τj , j ∈ Z} is a realization of a stationary Poisson process on R, and {σj , j ∈ Z}
are nonnegative independent random variables with common distribution G, independent of
{τj , j ∈ Z}, then the above description corresponds to the stationary M/G/∞ queueing system.
The subject of this paper is estimating the service time distributionG from incomplete data on
the queue.

The M/G/∞ system is perhaps one of the most widely studied models in queueing theory;
its probabilistic properties are fairly well understood. However, statistical inference in such
models has attracted little attention.

The problem of estimating the service time distribution G in the M/G/∞ queue has been
studied under different assumptions on the available data. In particular, the following three
observation schemes have been considered in the literature:

(i) observation of arrival {τj , j ∈ Z} and departure {yj , j ∈ Z} epochs without their
matchings;

(ii) observation of the queue-length (number-of-busy-servers) process {X(t)};
(iii) observation of the busy-period process {1(X(t) > 0)}, where 1 is the indicator function.

We note that observation schemes (i) and (ii) are equivalent up to initial conditions on the
queue length. In particular, arrival and departure epochs are uniquely determined by the queue-
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1118 A. GOLDENSHLUGER

length process, while the queue length can be reconstructed from the input–output data provided
that the initial state of the queue is known.

In setting (i), Brown (1970) proposed an estimator ofGwhich is based on the idea of pairing
every departure epoch with the closest arrival epoch to the left. Differences between these
epochs constitute an ergodic stationary random sequence whose marginal distribution is related
to the service time distribution G by a simple formula. Then estimation of G can be achieved
by inverting the formula and substituting the empirical marginal distribution of the differences.
Brown (1970) proved consistency of the proposed estimator. Recently, Blanghaps et al. (2013)
extended the work of Brown; they showed that pairing of a departure epoch with the r-closest
arrival epoch to the left can be worthwhile.

Nonparametric estimation of service time distributionG under observation schemes (ii) and
(iii) was considered in Bingham and Pitts (1999). It is well known that in the steady-state the
queue-length process {X(t)} is stationary with the Poisson marginal distribution and correlation
function

H(t) = 1 −G∗(t), G∗(t) :=
[∫ ∞

0
[1 −G(x)] dx

]−1 ∫ t

0
[1 −G(x)] dx; (1)

see, e.g. Beneš (1957) and Reynolds (1975). This fact suggests that function G∗ can be
reconstructed by estimating the correlation function of the queue-length process. The work of
Bingham and Pitts (1999) discusses this approach and provides standard results from the time
series literature for estimators of G∗. The idea of reconstructing the service time distribution
from correlation structure of the queue-length process was also exploited by Pickands and
Stine (1997). The model considered in that paper assumes that a Poisson number of customers
arrives at discrete times 1, 2, . . . , T , and the service times are independent and identically
distributed random variables taking values in the set of nonnegative integer numbers. In this
discrete setting, estimation of the service time distribution is equivalent to estimating a linear
form of the correlation function of the queue-length process. For the latter problem, standard
results from the time series literature are applicable. Other related work is reported in Brillinger
(1974), Bingham and Dunham (1997), Hall and Park (2004), Moulines et al. (2007), Grübel and
Wegener (2011), Schweer and Wichelhaus (2015); see Blanghaps et al. (2013) for additional
references.

Although estimation of G under different observation schemes was considered in the liter-
ature, the most interesting and important statistical questions remain open. In particular, it is
not clear what is the achievable estimation accuracy in such problems, and how to construct
optimal estimators. The goal of this paper is to shed light on some of these issues.

In this work we adopt the minimax approach for measuring estimation accuracy. It is
assumed that the estimated distribution G belongs to a given functional class, and accuracy of
any estimator is measured by its worst case mean-squared error on the class. The functional
class is defined in terms of restrictions on the smoothness and tail behavior of G (for precise
definitions, see Section 4). We concentrate on the observation scheme (ii) when the queue-
length process is observed on a fixed interval at the points of the regular grid. The goal is to
estimate G at a fixed point from such observations. From now on we will refer to this setting
as the M/G/∞ estimation problem.

We develop an estimator ofGwhich is based on the relationship between distributionG and
the covariance function of the queue-length process, as discussed in Bingham and Pitts (1999)
and Pickands and Stine (1997) (see (1)). In particular, estimating G at a fixed point is reduced
to estimating the first derivative of the covariance function of the queue-length process at this
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point. We analyze the accuracy of our estimator over a suitable class of target distributions
and derive an upper bound on the maximal risk. The upper bound is expressed in terms of the
functional class parameters and the observation horizon. The problem of estimating the arrival
rate is discussed as well.

The rest of this paper is structured as follows. Section 2 contains formal statement of the
M/G/∞ estimation problem. In Section 3 we present some results on properties of the queue-
length process; these results are instrumental for subsequent developments in the paper. In
Section 4 we consider the M/G/∞ estimation problem, define our estimator, and establish
upper bounds on its maximal risk. In Section 5, we deal with the problem of estimating the
arrival rate. Section 6 contains discussion; proofs and technical statements are presented in
Section 7.

2. Problem formulation

Let {τj , j ∈ Z} be arrival epochs constituting a realization of the stationary Poisson process
point process of intensity λ on the real line. The service times {σj , j ∈ Z} are positive
independent random variables with common distribution G, independent of {τj , j ∈ Z}.
Assume that the system is in the steady-state; then the queue-length process {X(t), t ∈ R}
is given by

X(t) =
∑
j∈Z

1(τj ≤ t, σj > t − τj ), t ∈ R. (2)

Suppose that X(t) is observed on the time interval [0, T ] at the points of the regular grid
ti = iδ, i = 1, . . . , n, where δ > 0 is the sampling interval, and T = nδ. Denote Xn =
(X(t1), . . . , X(tn)) ∈ R

n+. Our goal is to estimate the distribution function G at a single given
point x0 ∈ R+ using observation Xn. In Section 5 we also discuss the problem of estimating
the arrival rate λ from observation Xn.

Distribution of the observation Xn is fully characterized by the service time distribution G
and by the arrival rate λ. From now on PG,λ stands for the probability measure generated
by {τj , j ∈ Z} and {σj , j ∈ Z} when the σj are distributed G, and the arrival rate is λ.
Correspondingly, EG,λ is the expectation with respect to PG,λ. In the problem of estimatingG
when the arrival rate λ is known, we use notation PG and EG for the probability measure and
expectation, respectively.

By estimator Ĝ(x0) = Ĝ(Xn; x0) ofG(x0) we mean any measurable function of the obser-
vationXn. We adopt the minimax approach for measuring estimation accuracy. Let G be a class
of distribution functions; then accuracy of Ĝ(x0) is measured by the maximal mean-squared
risk over the class, i.e.

Rx0 [Ĝ; G] = sup
G∈G

[EG|Ĝ(x0)−G(x0)|2]1/2.

The minimax risk is defined by

R∗
x0

[G] = inf
Ĝ

Rx0 [Ĝ; G],

where inf is taken over all possible estimators. We want to develop a rate-optimal (optimal in
order) estimator G̃(x0) such that

Rx0 [G̃; G] ≤ CR∗
x0

[G],
where C is a constant independent of the observation horizon T and the sampling interval δ.
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In the problem of estimating the arrival rate λ from observation Xn the estimation accuracy
is measured similarly. If λ̂ = λ̂(Xn) is an estimator of λ (a measurable function of Xn) then
the maximal risk of λ̂ is defined by

R[λ̂; G] = sup
G∈G

[EG,λ|λ̂− λ|2]1/2.

We will consider functional classes G which impose restrictions on smoothness and tail behavior
of the distribution functions. The corresponding definitions are given in Section 4.

3. Properties of the queue-length process

Let
1

μ
:= EG[σ ] =

∫ ∞

0
[1 −G(t)] dt < ∞

with μ being the service rate, and let ρ := λ/μ be the traffic intensity. Define

H(t) := μ

∫ ∞

t

[1−G(x)] dx =
[∫ ∞

0
[1−G(x)] dx

]−1 ∫ ∞

t

[1−G(x)] dx, t ∈ R+. (3)

The function G∗ := 1 − H is often called the stationary-excess cumulative distribution
function (see, e.g. Whitt (1985)). IfG is a distribution function of an interval between points in
a renewal process, then G∗ represents a distribution function of the interval between arbitrary
time and the next renewal point. In our context, the important role of H stems from the fact
that it is the correlation function of the queue-length process {X(t), t ∈ R}; see Proposition 1
below.

Observe thatH(0) = 1, andH is nonnegative and monotone decreasing on the positive real
line. Although function H is defined on R+ only, it will be convenient to extend its definition
to the whole real line R by settingH(t) = H(−t) for t < 0. For the sake of brevity, from now
on we use the suffix notation Xi = X(ti) = X(iδ), Hi = H(ti) = H(iδ), i = 1, . . . , n, and
so on.

Proposition 1. The following statements hold.

(i) For any t ∈ R the distribution of X(t) is Poisson with parameter ρ.

(ii) For any t, s ∈ R, EG[X(t)X(s)] = ρ2 + ρH(t − s).

(iii) For any θ = (θ1, . . . , θn), n ≥ 1, we have

log EG

[
exp

{ n∑
i=1

θiXi

}]
= ρSn(θ), (4)

Sn(θ) :=
n∑

m=1

(exp{θm} − 1)

+
n−1∑
k=1

Hk

n−1∑
m=k

(exp{θm−k+1} − 1) exp

{ m∑
i=m−k+2

θi

}
(exp{θm+1} − 1). (5)

In particular, if θ∗ := (ϑ, . . . , ϑ) for some ϑ ∈ R then

Sn(θ
∗) = n(exp{ϑ} − 1)+ n(exp{ϑ} − 1)2

n−1∑
k=1

(
1 − k

n

)
exp{(k − 1)ϑ}Hk.
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Remark 1. (i) The statements in (i) and (ii) are well known; in fact, they are immediate
consequences of (iii). The first statement can be found in many textbooks (see, e.g. Parzen
(1962, p. 147) and Ross (1970, p. 19)), while the second one appears, e.g. in Beneš (1957) and
Reynolds (1975). As for part (iii), Lindley (1956) considered the special case of n = 3 and
discussed heuristically a derivation for general n. However, we could not find (4) and (5) in
the literature, and, to the best of our knowledge, they are new. Equations (4) and (5) play an
important role in subsequent derivations.

(ii) The joint distribution ofXn is the so-called multivariate Poisson; for details see, e.g. Lindley
(1956, Section 2) and Milne (1970). The statements in (i) and (ii) show thatH is the correlation
function of the process {X(t), t ∈ R}.

It is instructive to realize the form of (4) and (5) in the special case n = 4. Let 1 ≤ i ≤ j ≤
k ≤ m ≤ n; then

1

ρ
log EG[exp{θ1Xi + θ2Xj + θ3Xk + θ4Xm}]

=
4∑
l=1

(exp{θl} − 1)+Hj−i (exp{θ1} − 1)(exp{θ2} − 1)

+Hk−i (exp{θ1} − 1) exp{θ2}(exp{θ3} − 1)

+Hm−i (exp{θ1} − 1) exp{θ2 + θ3}(exp{θ4} − 1)+Hk−j (exp{θ2} − 1)(exp{θ3} − 1)

+Hm−j (exp{θ2} − 1) exp{θ3}(exp{θ4} − 1)+Hm−k(exp{θ3} − 1)(exp{θ4} − 1).
(6)

As is seen from the above equation, the first term on the right-hand side of (6) coincides with the
cumulant generating function of independent Poisson random variables. The other terms are
associated with all possible pairs of random variables. For every pair of random variables the
corresponding term contains the correlation between the variables, and the factors (1− exp{θ})
and exp{θ}, where the (1 − exp{θ})-factors correspond to the pair, and the exp{θ}-factors
correspond to the random variables ‘sandwiched’ by the pair.

As a by-product of Proposition 1(iii), we can easily obtain the following Gaussian approxi-
mation to the finite-dimensional distributions of the queue-length process {X(t), 0 ≤ t ≤ T }.
Proposition 2. Consider a sequence of the M/G/∞ queueing systems, {Ml/G/∞, l = 1,
2, . . . }, with the fixed service time distribution G, and with the lth system characterized by the
arrival rate λl = lλ, λ > 0. Let Xnl = (Xl,1, . . . , Xl,n) = (Xl(t1), . . . , Xl(tn)) be the vector
of observations of the queue-length process (2) in the lth system; then

Xnl − lρen√
lρ

d−→ Nn(0, 	(H)), l → ∞,

where ρ = λ/μ, en = (1, . . . , 1) ∈ R
n, 	(H) := {H((i − j)δ)}i,j=1,...,n, and ‘

d−→’ denotes
convergence in distribution.

The result of Proposition 2 is well known; it is in line with more general weak convergence
results for queues in Borovkov (1967), Iglehart (1973), and Whitt (1974). The proof of
Proposition 2 follows immediately from Proposition 1(iii), and it is omitted.
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4. Estimation of service time distribution

According to Proposition 1(ii) the covariance function of the queue-length process is

R(t) := covG{X(s), X(s + t)} = ρH(t).

Therefore, differentiation yields

1 −G(t) = −1

λ
R′(t), t ∈ R+. (7)

This relationship is the basis for construction of our estimator of G(x0).

4.1. Estimator construction

Let

ρ̂k = 1

n− k

n−k∑
i=1

Xi, k = 0, 1, . . . , n− 1,

and define

R̂k = 1

n− k

n−k∑
i=1

(Xi − ρ̂k)(Xi+k − ρ̂k), k = 0, 1, . . . , n− 1. (8)

Note that R̂k is the empirical estimator of the covariance Rk = R(kδ) = ρH(kδ), k =
0, 1, . . . , n − 1. For technical reasons, we use estimator ρ̂k based on n − k observations and
not on n.

Let h > 0, and for every x ∈ [0, T − δ] define the segment

Dx :=

⎧⎪⎨
⎪⎩

[x − h, x + h], h < x ≤ T − δ − h,

[0, 2h], 0 ≤ x ≤ h,

[T − δ − 2h, T − δ], T − δ − h < x ≤ T − δ.

Let MDx be the set of indexes k ∈ {1, . . . , n} such that kδ ∈ Dx , MDx := {k : kδ ∈ Dx}, and
let NDx be the cardinality of this set, NDx := #{MDx }.

Fix positive integer 
, and assume that

h ≥ 1
2 (
+ 2)δ. (9)

For x ∈ [0, T − δ] let {ak(x), k ∈ MDx } denote the weights obtained as the solution to the
following optimization problem (Px):

min
∑
k∈MDx

a2
k (x)

subject to
∑
k∈MDx

ak(x) = 0,
∑
k∈MDx

ak(x)(kδ)
j = jxj−1, j = 1, . . . , 
.

(10)

We use the convention that if x = 0 and j = 1 then the right-hand side of the last constraint in
(10) is equal to 1.
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By definition, if (9) holds then the linear filter associated with the weights {ak(x), k ∈ MDx }
has the following property: it reproduces without error the first derivative of any polynomial p
of deg(p) ≤ 
 at point x,∑

k∈MDx

ak(x)p(kδ) = p′(x) for all p : deg(p) ≤ 
. (11)

Now we are in a position to define our estimator of G(x0): it is given by

Ĝh(x0) = 1 + 1

λ

∑
k∈MDx0

ak(x0)R̂k, (12)

where R̂k = R̂(kδ), k = 0, . . . , n− 1, are defined in (8).
The expression under the summation sign on the right-hand side of (12) can be viewed as

a local polynomial estimator of the derivative R′(x0) when the empirical covariances R̂k are
regarded as noisy observations of Rk = R(kδ). We refer the reader to Goldenshluger and
Nemirovski (1997) for a similar construction of the local polynomial estimators of derivatives
in the context of the nonparametric regression model.

The estimator Ĝh(x0) depends on two design parameters, the window width h and the degree
of polynomial 
; these parameters are specified in the sequel.

4.2. Upper bound on the maximal risk

Our current goal is to study the accuracy of Ĝh(x0). For this purpose, we introduce the
functional class of distributions G over which accuracy of estimator Ĝh(x0) is assessed.

Definition 1. (i) Let β > 0 andL > 0 be real numbers, and let I ⊂ (0,∞) be a closed interval
such that x0 ∈ I . We define Hβ(L, I ) to be the class of all distribution functions G on R+
such that G is �β� times continuously differentiable on I , and

|G(�β�)(x)−G(�β�)(y)| ≤ L|x − y|β−�β� for all x, y ∈ I ;
here �β� stands for the maximal integer number strictly less than β.

(ii) We say that the distribution function G on R+ belongs to the class Mp(K), p ≥ 1, K > 0
if

EG[σp] =
∫ ∞

0
pxp−1[1 −G(x)] dx ≤ K < ∞.

(iii) Finally, we set
Gβ(L, I,K) := Hβ(L, I ) ∩ M2(K).

Remark 2. (i) The class Gβ(L, I,K) imposes restrictions on the smoothness in the vicinity
of x0. In all what follows the point x0 is assumed to be fixed. If x0 is separated away from 0
then we always consider a symmetric interval I centered at x0: I = [x0 − d, x0 + d] for some
0 < d < x0. In the x0 = 0 case we set I = [0, 2d].
(ii) The definition of Gβ(L, I,K) requires the boundedness of the second moment of the service
time distribution. This condition implies that the correlation sequence {H(kδ), k ∈ Z} is
summable, which corresponds to the short–term dependence between the values of the sampled
discrete-time queue-length process (see, e.g. Brockwell and Davis (1991, Section 13.2)). This
assumption can be relaxed. However, we do not pursue the case of the long-term dependence
in this paper.

Now we are in a position to state an upper bound on the maximal risk of our estimator.
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Theorem 1. Let x0 be fixed, I := [x0 − d, x0 + d] ⊂ [0, (1 − κ)T ] for some κ ∈ (0, 1), and
suppose that G ∈ Gβ(L, I,K). Let Ĝ∗(x0) be the estimator defined in (12) and associated
with the degree 
 ≥ �β� + 1 and the window width

h = h∗ :=
[
K(

√
K ∨ 1)

L2κT

(
1 + 1

λ

)]1/(2β+2)

. (13)

If

K(
√
K ∨ 1)

L2κ

(
1 + 1

λ

)
d−2β−2 ≤ T ≤ K(

√
K ∨ 1)

L2κ

(
1 + 1

λ

)[
2

(
+ 2)δ

]2β+2

(14)

then we have

Rx0 [Ĝ∗; Gβ(L, I,K)] ≤ CL1/(β+1)
[
K(

√
K ∨ 1)

κT

(
1 + 1

λ

)]β/(2β+2)

, (15)

where C = C(
) depends on 
 only.

Remark 3. (i) The upper bound in (14) originates in the requirement that the segment Dx0

contains at least 
 + 1 grid points. This inequality is fulfilled if sampling is fast enough,
δ ≤ O((κT )−1/(2β+2)). Thus, if the asymptotics as T → ∞ is considered then δ should tend
to 0 so that (14) is fulfilled. The lower bound in (14) ensures that Dx0 ⊆ I .

(ii) The bound in (15) is nonuniform in x0; it is established for fixed x0 ≤ (1−κ)T . The bound
increases as κ gets closer to 0 (x0 approaches T ). This fact is not surprising: the empirical
covariance estimator is not accurate for large lags. However, if x0 is large in comparison with T
then it is advantageous to use the trivial estimator G̃(x0) = 1. The risk of G̃(x0) admits the
following upper bound:

Rx0 [G̃; Gβ(L, I,K)] ≤ Kx−2
0 for all x0 ∈ R+. (16)

Indeed, it follows from G ∈ M2(K) that, for any x,

1 −G(x) =
∫ ∞

x

dG(t) ≤ x−2
∫ ∞

x

t2 dG(t) ≤ Kx−2.

Thus, G(x) ≥ 1 − Kx−2, which implies (16). Comparing (15) and (16), we see that for
x0 ≤ O(T β/(4β+4)) it is advantageous to use the estimator Ĝ∗(x0); otherwise G̃(x0) is better.
If more stringent conditions on the tail of G are imposed (e.g. G ∈ Mp(K) with p > 2) then
the zone where Ĝ∗(x0) is preferable becomes smaller.

5. Estimation of the arrival rate

The construction in Section 4.1 that led to Ĝh(x0) can be used in order to estimate the arrival
rate λ from discrete observations of the queue-length process.

Let I = [0, 2d] and assume that G ∈ Gβ(L, I,K). Under this condition, we can use (7) in
order to construct an estimator of λ. Indeed, setting t = 0 in (7) and taking into account that
G(0) = 0, we obtain λ = −R′(0), where R′(0) is understood here as the right-side derivative
of R at 0. Therefore, we define the estimator for λ by

λ̂ = −
∑
k∈MD0

ak(0)R̂k, (17)
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where D0 := [0, 2h], {ak(0), k ∈ MD0} is the solution to (P0) (i.e. (10) with x = 0), and R̂k ,
k ∈ MD0 , are defined in (8).

The next statement provides an upper bound on the risk of λ̂.

Theorem 2. Let I = [0, 2d] and suppose that G ∈ Gβ(L, I,K). Let λ̂∗ denote the estimator
defined in (17) and associated with degree 
 ≥ �β� + 1 and window width

h = h∗ :=
[
K(

√
K ∨ 1)

L2T

]1/(2β+2)

. (18)

If

K(
√
K ∨ 1)L−2d−2β−2 ≤ T ≤ K(

√
K ∨ 1)L−2

[
2

(
+ 2)δ

]2β+2

(19)

then we have

sup
G∈Gβ(L,I,K)

[EG,λ|λ̂∗ − λ|2]1/2 ≤ CL1/(β+1)(λ2 + λ)1/2
[
K(

√
K ∨ 1)

T

]β/(2β+2)

, (20)

where C = C(
) depends on 
 only.

Remark 4. (i) The meaning of condition (19) is similar to that of (14); see Remark 3(i).

(ii) If the sampling interval δ is very small then one can build an estimator which is better
than λ̂∗. In particular, if the continuous-time observation {X(t), 0 ≤ t ≤ T } is available then
alternative estimators of λ can be constructed as follows:

λ̂↑ = 1

T
#{t ∈ (0, T ] : X(t)−X(t−) = 1}, λ̂↓ = 1

T
#{t ∈ (0, T ] : X(t)−X(t−) = −1}.

Since arrivals and departures constitute the Poisson process with intensity λ, the mean-squared
errors of λ̂↑ and λ̂↓ are given by

EG,λ|λ̂↑ − λ|2 = EG,λ|λ̂↓ − λ|2 = λT −1 for all λ, for all G.

Thus, in terms of dependence on the observation horizon T , the risks of λ̂↑ and λ̂↓ tend to 0 at
the parametric rate O(1/T ). This rate is faster than the one in (20). However, if the estimator
λ̂↑ (or λ̂↓) is applied with discrete observations Xn, its accuracy deteriorates very rapidly with
the growth of δ.

6. Discussion

Theorem 1 indicates that under suitable relations between the observation horizon T and the
sampling interval δ the service time distribution G can be estimated with the risk of the order
T −β/(2β+2). In particular, for our estimator Ĝ∗(x0), we have

Rx0 [Ĝ∗; Gβ(L, I,K)] � O(T −β/(2β+2)), T → ∞,

provided that (14) holds. A natural question is if this rate of convergence is optimal in the
minimax sense. This calls for a lower bound on the minimax risk R∗

x0
[Gβ(L, I,K)].
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Although statement Proposition 1(iii) provides complete probabilistic characterization of
finite-dimensional distributions of the queue-length process {X(t), t ∈ R}, there is no explicit
formula available for the distribution of Xn. Since all existing techniques for the derivation of
lower bounds on minimax risks rely upon sensitivity analysis of the family of target distributions,
such a derivation for the M/G/∞ estimation problem seems to be intractable. However, some
understanding of accuracy limitations in estimating the service time distribution can be gained
from consideration of a Gaussian approximating model.

In particular, in Proposition 2 we show that if the arrival rate λ is large, the finite-dimensional
distributions of {X(t), 0 ≤ t ≤ T } are close to Gaussian. Thus, for large arrival rates
(heavy-traffic regime) we can regard the properly centered and scaled queue-length process
as a zero mean stationary Gaussian process. Furthermore, from (7) we see that the service time
distribution G is proportional to the first derivative of the covariance function of the queue-
length process. This characterization suggests that in the heavy-traffic regime estimating G
is as difficult as estimating the first derivative of the covariance function of a continuous-time
stationary Gaussian process from discrete observations. Although we do not have a formal
proof for the equivalence of the corresponding statistical experiments, this assumption seems
plausible.

Goldenshluger (2015) discussed the relationship between the two settings, and studied the
problem of estimating covariance function derivatives of a stationary Gaussian process from
discrete observations. In particular, it was shown there that under conditions compatible with
those of the M/G/∞ estimation problem, the minimax risk in estimating the first derivative of
the covariance function cannot be less than O(T −β/(2β+2)). This fact strongly suggests that
the proposed estimator Ĝ∗ is rate optimal in the heavy-traffic regime. However, in general,
construction of rate optimal estimators in the original M/G/∞ estimation problem remains an
open problem.

7. Proofs and auxiliary results

7.1. Proof of Proposition 1

For any m > 1, we write

EG exp

{ m∑
i=1

θiXi

}
= EG

{
EG

[
exp

{ m∑
i=1

θiXi

} ∣∣∣∣ {τj , j ∈ Z}
]}
. (21)

By (2) and the independence of {τj , j ∈ Z} and {σj , j ∈ Z}, the conditional expectation in
(21) takes the form

EG

[
exp

{ m∑
i=1

θiXi

} ∣∣∣∣ {τj , j ∈ Z}
]

= EG

[
exp

{∑
j∈Z

m∑
i=1

θi 1(τj ≤ ti , σj > ti − τj )

} ∣∣∣∣ {τj , j ∈ Z}
]

=
∏
j∈Z

EG

[
exp

{ m∑
i=1

θi 1(τj ≤ ti , σj > ti − τj )

} ∣∣∣∣ {τj , j ∈ Z}
]
. (22)
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Given x ∈ R, consider partition of the real line by the intervals I0(x) = (−∞, t1 − x],
Ik(x) = (tk − x, tk+1 − x], k = 1, . . . , m− 1, and Im(x) = (tm − x,∞). With this notation

EG

[
exp

{ m∑
i=1

θi 1(τj ≤ ti , σj > ti − τj )

} ∣∣∣∣ {τj , j ∈ Z}
]

= PG{σj ∈ I0(τj )} +
m∑
k=1

exp

{ k∑
i=1

θi 1(τj ≤ ti )

}
PG{σj ∈ Ik(τj )}

= 1 +
m∑
k=1

[
exp

{ k∑
i=1

θi 1(τj ≤ ti )

}
− 1

]
PG{σj ∈ Ik(τj )}.

If we let

f (x) = log

(
1 +

m∑
k=1

[
exp

{ k∑
i=1

θi 1(x ≤ ti )

}
− 1

]
PG{σj ∈ Ik(x)}

)
,

then in view of (21), (22), and Campbell’s theorem (see Kingman (1993, Section 3.2)), we obtain

EG exp

{ m∑
i=1

θiXi

}
= EG exp

{∑
j∈Z

f (τj )

}
= exp

{
λ

∫ ∞

−∞
[exp{f (x)} − 1] dx

}
.

Denote Sm(θ) = μ
∫ ∞
−∞[exp{f (x)} − 1] dx; our current goal is to compute this integral.

We have∫ ∞

−∞
[exp{f (x)} − 1] dx

=
m−1∑
k=1

∫ ∞

−∞

(
exp

{ k∑
i=1

θi 1(x ≤ ti )

}
− 1

)
[Ḡ(tk − x)− Ḡ(tk+1 − x)] dx

+
∫ ∞

−∞

(
exp

{ m∑
i=1

θi 1(x ≤ ti )

}
− 1

)
Ḡ(tm − x) dx

=:
m−1∑
k=1

Jk + Lm,

where we denoted, for brevity, Ḡ = 1 −G. For k = 1, . . . , m− 1, we obtain

Jk =
(

exp

{ k∑
i=1

θi

}
− 1

) ∫ t1

−∞
[Ḡ(tk − x)− Ḡ(tk+1 − x)] dx

+
k−1∑
j=1

(
exp

{ k∑
i=j+1

θi

}
− 1

) ∫ tj+1

tj

[Ḡ(tk − x)− Ḡ(tk+1 − x)] dx
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= 1

μ

(
exp

{ k∑
i=1

θi

}
− 1

)
[H(tk − t1)−H(tk+1 − t1)]

+ 1

μ

k−1∑
j=1

(
exp

{ k∑
i=j+1

θi

}
− 1

)
[H(tk − tj+1)−H(tk − tj )−H(tk+1 − tj+1)

+H(tk+1 − tj )]

= 1

μ

(
exp

{ k∑
i=1

θi

}
− 1

)
[Hk−1 −Hk]

+ 1

μ

k−1∑
j=1

(
exp

{ k∑
i=j+1

θi

}
− 1

)
[Hk−j−1 − 2Hk−j +Hk−j+1]. (23)

Similarly,

Lm = 1

μ

(
exp

{ m∑
i=1

θi

}
− 1

)
H(tm − t1)

+ 1

μ

m−1∑
j=1

(
exp

{ m∑
i=j+1

θi

}
− 1

)
[H(tm − tj+1)−H(tm − tj )]

= 1

μ

(
exp

{ m∑
i=1

θi

}
− 1

)
Hm−1 + 1

μ

m−1∑
j=1

(
exp

{ m∑
i=j+1

θi

}
− 1

)
[Hm−j−1 −Hm−j ].

(24)

The usual convention
∑m
k=j = 0 if m < j is employed in (23) and (24) and from now on.

Note that, by definition, Sm(θ) = μ
∑m−1
k=1 Jk + μLm, and we have the following recursive

formula:

Sm+1(θ) = Sm(θ)+ μ(Jm − Lm + Lm+1). (25)

For any m > 1, using (23) and (24), after straightforward algebraic manipulations, we obtain

μ(Jm − Lm + Lm+1)

=
(

exp

{ n∑
i=1

θi

}
− 1

)
(Hm−1 −Hm)

+
m−1∑
j=1

(
exp

{ m∑
i=j+1

θi

}
− 1

)
(Hm−j−1 − 2Hm−j +Hm−j+1)

−
(

exp

{ m∑
i=1

θi

}
− 1

)
Hm−1 −

m−1∑
j=1

(
exp

{ m∑
i=j+1

θi

}
− 1

)
(Hm−j−1 −Hm−j )
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+
(

exp

{m+1∑
i=1

θi

}
− 1

)
Hm +

m∑
j=1

(
exp

{ m+1∑
i=j+1

θi

}
− 1

)
(Hm−j −Hm−j+1)

= (exp{θm+1} − 1)+
m∑
k=1

Hk(exp{θm−k+1} − 1) exp

{ m∑
i=m−k+2

θi

}
(exp{θm+1} − 1).

Taking into account the fact that S1(θ) = exp{θ1} − 1 and iterating (25), we obtain

Sn+1(θ) = (exp{θ1} − 1)+
n∑

m=1

(exp{θm+1} − 1)

+
n∑

m=1

m∑
k=1

Hk(exp{θm−k+1} − 1) exp

{ m∑
i=m−k+2

θi

}
(exp{θm+1} − 1)

=
n+1∑
m=1

(exp{θm} − 1)

+
n∑
k=1

Hk

n∑
m=k

(exp{θm−k+1} − 1) exp

{ m∑
i=m−k+2

θi

}
(exp{θm+1} − 1).

This completes the proof. �
7.2. Moments of the queue-length process

Equation (6) allows us to compute the fourth-order mixed moments of the queue-length
process.

Proposition 3. Let 1 ≤ i ≤ j ≤ k ≤ m ≤ n; then

EG[XiXjXkXm]
= ρ4 + ρ3(Hj−i +Hk−i +Hm−i +Hk−j +Hm−j +Hm−k)

+ ρ2(Hk−i +Hm−j + 2Hm−i +Hj−iHm−k +Hk−iHm−j +Hk−jHm−i )+ ρHm−i .

More generally, for any i, j, k,m ∈ {1, . . . , n} and any subset I of indexes I ⊆ {i, j, k,m}
define qI = maxi1,i2∈I |i1 − i2|. Then

EG[XiXjXk] = ρ3 + ρ2(H|i−j | +H|k−j | +H|k−i|)+ ρHq{i,j,k} ,

EG[XiXjXkXm]
= ρ4 + ρ3(H|j−i| +H|k−i| +H|m−i| +H|k−j | +H|m−j | +H|m−k|)+ ρHq{i,j,k,m}

+ρ2[Hq{i,j,k} +Hq{i,j,m} +Hq{j,k,m} +Hq{i,k,m}
+H|j−i|H|m−k| +H|k−i|H|m−j | +H|k−j |H|m−i|]. (26)

Proof. The proof involves straightforward though tedious differentiation of (6).
LetS(θ) denote the right-hand side of (6), where (θ1, θ2, θ3, θ4) is replaced by (θi, θj , θk, θm)

for convenience. Denote ψ(θ) = EG exp{θiXi + θjXj + θkXk + θmXm}. It is checked by
direct calculation that

∂4ψ(θ)

∂θi∂θj ∂θk∂θm
= exp{−ρS(θ)}[a1(θ)ρ + a2(θ)ρ

2 + a3(θ)ρ
3 + a4(θ)ρ

4],
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where a1(θ), a2(θ), a3(θ), and a4(θ) are given by the following expressions:

a1(θ) = Sθiθj θkθm,

a2(θ) = Sθiθj θkSθm + Sθiθj θmSθk + Sθj θkθmSθi + SθiθkθmSθj + Sθiθj Sθkθm + SθiθkSθj θm

+ Sθj θkSθiθm,

a3(θ) = Sθiθj SθkSθm + SθiθkSθj Sθm + SθiθmSθj Sθk + Sθj θkSθi Sθm + Sθj θmSθi Sθk

+ SθkθmSθi Sθj ,

a4(θ) = Sθi Sθj SθkSθm.

Here we set, for brevity, Sθj1 ...θjk = Sθj1 ...θjk
(θ) := ∂kS(θ)/∂θj1 · · · ∂θjk .

In order to complete the proof, it is sufficient to note that

S(0) = 1, Sθj (0) = 1 for all j, (27)

and, for any j1 ≤ j2 ≤ j3 ≤ j4,

Sθj1θj2
(0) = Hj2−j1 , Sθj1θj2 θj3

(0) = Hj3−j1 , Sθj1 ...θj4
(0) = Hj4−j1 . (28)

Although (28) is proved for 1 ≤ i ≤ j ≤ k ≤ m ≤ n, a similar result holds more generally.
With the introduced definition of qI , (27) and (28) imply that

a4(0) = 1,

a3(0) = H|i−j | +H|k−i| +H|m−i| +H|k−j | +H|m−j | +H|m−k|,
a2(0) = Hq{i,j,k} +Hq{i,j,m} +Hq{j,k,m} +Hq{i,k,m} +H|i−j |H|k−m| +H|k−i|h|m−j |

+H|k−j |H|m−i|,
a1(0) = Hq{i,j,k,m} .

This completes the proof. �
7.3. Proof of Theorems 1 and 2

Throughout the proof Ci, ci , i = 1, 2, . . . , stand for constants depending on 
 only, unless
it is mentioned explicitly. The proofs of both theorems are almost identical. We first prove
Theorem 1 and then indicate modifications needed for the proof of Theorem 2.

It follows from (7) and (12) that

Ĝh(x0)−G(x0) = 1

λ

[ ∑
k∈MDx0

ak(x0)R̂k − R′(x0)

]

= 1

λ

[ ∑
k∈MDx0

ak(x0)(R̂k − Rk)+
∑

k∈MDx0

ak(x0)Rk − R′(x0)

]
.

Therefore,

[EG|Ĝh(x0)−G(x0)|2]1/2

≤ 1

λ

{
EG

[ ∑
k∈MDx0

ak(x0)(R̂k − Rk)

]2}1/2

+ 1

λ

∣∣∣∣
∑

k∈MDx0

ak(x0)Rk − R′(x0)

∣∣∣∣. (29)

https://doi.org/10.1017/apr.2016.67 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2016.67


Nonparametric estimation in the M/G/∞ queue 1131

In the subsequent proof, we bound the expression on the right-hand side of (29). The result of
the theorem will follow from the series of lemmas given below.

We begin with a well-known result on the properties of the local polynomial estimators; see,
e.g. Nemirovski (2000, Lemma 1.3.1) and Tsybakov (2009, Section 1.6).

Lemma 1. Let {ak(x0), k ∈ MDx0
} be the solution to (10), and let (9) hold; then

[ ∑
k∈MDx0

|ak(x0)|2
]1/2

≤ C1

h
√
NDx0

,
∑

k∈MDx0

|ak(x0)| ≤ C2

h
, (30)

where C1 = C1(
) and C2 = C2(
) are constants depending on 
 only.

The next result establishes an upper bound on the accuracy of the empirical covariance
estimator.

Lemma 2. For any k = 0, . . . , n− 1, we have

EG|R̂k − Rk|2 ≤ C3

n− k
(ρ2 + ρ)

n∑
i=1

Hi,

where C3 is an absolute constant.

Proof. Let R̃k := (1/(n− k))
∑n−k
i=1 (Xi − ρ)(Xi+k − ρ); then EGR̃k = Rk , and, by the

definition of ρ̂k ,

R̂k = 1

n− k

n−k∑
i=1

(Xi − ρ̂k)(Xi+k − ρ̂k) = R̃k − (ρ̂k − ρ)2.

Therefore,

EG|R̂k − Rk|2 = EG|R̃k − Rk|2 − 2EG[R̃k(ρ̂k − ρ)2] + EG|ρ̂k − ρ|4
=: J1 − 2J2 + J3. (31)

Now we proceed with the computation of the terms on the right-hand side of (31).
Computation of J1. Let rk := EG[XiXi+k] = Rk + ρ2 = ρHk + ρ2 and r̃k := (1/(n −

k))
∑n−k
i=1 XiXi+k; then

R̃k − Rk = r̃k − rk + 2ρ2 − ρ

n− k

n−k∑
i=1

(Xi +Xi+k).

Thus,
J1 = EG|R̃k − Rk|2

= EG|r̃k − rk|2 − 2EG

[
(r̃k − rk)

ρ

n− k

n−k∑
i=1

(Xi +Xi+k)
]

+ EG

[
2ρ2 − ρ

n− k

n−k∑
t=1

(Xi +Xi+k)
]2

=: J (1)1 − J
(2)
1 + J

(3)
1 . (32)
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Equation (26) implies that, for any k = 0, . . . , n and i, j = 1, . . . , n− k, we have

EG[XiXi+kXjXj+k]
= ρ4 + ρ3[Hk +H|j−i| +H|j−i+k| +H|j−i−k| +H|j−i| +Hk]

+ ρ2[2Hk∨|j−i|∨|j−i−k| + 2Hk∨|j−i|∨|j−i+k| +H 2
k +H 2|j−i| +H|j−i+k|H|j−i−k|]

+ ρHk∨|j−i|∨|j−i+k|∨|j−i−k|.

Since r2
k = ρ4 + 2ρ3Hk + ρ2H 2

k , we have

J
(1)
1 = EG|r̃k − rk|2 = 1

(n− k)2

n−k∑
i,j=1

EG[XiXi+kXjXj+k] − r2
k

= 1

(n− k)2

n−k∑
i,j=1

{ρ3[2H|j−i| +H|j−i−k| +H|j−i+k|] + ρHk∨|j−i|∨|j−i−k|∨|j−i+k|

+ ρ2[2Hk∨|j−i|∨|j−i−k| + 2Hk∨|j−i|∨|j−i+k| +H 2|j−i|
+H|j−i−k|H|j−i+k|]}. (33)

Furthermore,

J
(3)
1 = 4ρ2 − 4ρ3

n− k
EG

n−k∑
i=1

(Xi +Xi+k)+ EG
ρ2

(n− k)2

n−k∑
i,j=1

(Xi +Xi+k)(Xj +Xj+k)

= −4ρ4 + ρ2

(n− k)2

n−k∑
i,j=1

[2r|j−i| + r|j−i+k| + r|j−i−k|]

= ρ3

(n− k)2

n−k∑
i,j=1

[2H|j−i| +H|j−i−k| +H|j−i+k|]. (34)

Now we proceed with J (2)1 , i.e.

J
(2)
1 = 2ρ

n− k

n−k∑
i=1

EG(r̃k − rk)(Xi +Xi+k)

= 2ρ

n− k

n−k∑
i=1

[EG(r̃kXi + r̃kXi+k)− 2ρ(ρ2 + ρHk)].
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We have

EG[r̃kXi] = 1

n− k

n−k∑
j=1

EG[XjXj+kXi]

= 1

n− k

n−k∑
j=1

[ρ3 + ρ2Hk + ρ2H|j−i| + ρ2H|j−i−k| + ρHk∨|j−i|∨|i−j−k|],

EG[r̃kXi+k] = 1

n− k

n−k∑
j=1

EG[XjXj+kXi+k]

= 1

n− k

n−k∑
j=1

[ρ3 + ρ2Hk + ρ2H|j−i| + ρ2H|j−i+k| + ρHk∨|j−i|∨|i−j+k|],

which yields

J
(2)
1 = 2

(n− k)2

n−k∑
i,j=1

[2ρ3H|j−i| + ρ3H|i−j+k| + ρ3H|i−j−k|

+ ρ2H|i−j |∨k∨|i−j−k| + ρ2H|i−j |∨k∨|i−j+k|]. (35)

Combining (32)–(35), we obtain

J1 = ρ2

(n− k)2

n−k∑
i,j=1

[H 2|i−j | +H|i−j+k|H|i−j−k|]

+ ρ

(n− k)2

n−k∑
i,j=1

Hk∨|i−j |∨|i−j−k|∨|i−j+k|.

Taking into account that H is a monotone decreasing function, and H(0) = 1, we obtain

J1 ≤ c1

n− k
(ρ2 + ρ)

n∑
i=1

Hi,

where c1 is an absolute constant.
Computation of J2. It follows from the definition of J2 that

J2 = ρ3Hk − 2ρEG[R̃kρ̂k] + EG[R̃kρ̂2
k ].

We have

EG[R̃kρ̂k] = 1

(n− k)2
EG

n−k∑
i,j=1

(Xi − ρ)(Xi+k − ρ)Xj

= EG
1

(n− k)2

n−k∑
i,j=1

[XiXi+kXj − ρXi+kXj − ρXiXj + ρ2Xj ]

= ρ2Hk + ρ

(n− k)2

n−k∑
i,j=1

Hk∨|i−j |∨|i−j+k| .
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Furthermore,

EG[R̃kρ̂2
k ] = 1

(n− k)3

n−k∑
i,j,l=1

EG[XiXi+kXjXl − ρXi+kXjXl − ρXiXjXl + ρ2XjXl]

= ρ2

(n− k)3

n−k∑
i,j,l=1

[Hk∨|i−j |∨|i−j+k| +H|i−l|∨|i−l+k|∨k +HkH|j−l|

+H|i−j |H|i−l+k| +H|i−l|H|i−j+k|]

+ ρ3Hk + ρ

(n− k)3

n−k∑
i,j,l=1

Hk∨|i−j |∨|i−l|∨|i+k−j |∨|i+k−l|∨|j−l|

= ρ3Hk + ρ2

(n− k)2

n−k∑
i,j=1

2Hk∨|i−j |∨|i−j+k|

+ 1

(n− k)3

n−k∑
i,j,l=1

[ρ2(HkH|j−l| +H|i−j |H|i−l+k| +H|i−l|H|i−j+k|)

+ ρHk∨|i−j |∨|i−l|∨|i+k−j |∨|i+k−l|∨|j−l|].
Combining these equalities, we obtain

J2 = 1

(n− k)3

n−k∑
i,j,l=1

[ρ2(HkH|j−l| +H|i−j |H|i−l+k| +H|i−l|H|i−j+k|)

+ ρHk∨|i−j |∨|i−l|∨|i+k−j |∨|i+k−l|∨|j−l|]

≤ c2

n− k
(ρ2 + ρ)

n∑
i=1

Hi,

where c2 is an absolute constant.
Computation of J3. By definition, J3 = EG|(1/(n− k))

∑n−k
i=1 (Xi − ρ)|4. Using Proposi-

tion 3 and after routine calculation, we obtain, for all i, j, l, m = 1, . . . , n− k,

EG[(Xi − ρ)(Xj − ρ)(Xl − ρ)(Xm − ρ)]
= ρ2[H|i−j |H|l−m| +H|i−l|H|j−m| +H|l−j |H|i−m|]

+ ρH|i−j |∨|j−l|∨|l−m|∨|l−m|∨|i−m|∨|i−l|,

so that

J3 = ρ2

(n− k)4

n−k∑
i,j,l,m=1

[H|i−j |H|l−m| +H|i−l|H|j−m| +H|l−j |H|i−m|]

+ ρ

(n− k)4

n−k∑
i,j,l,m=1

H|i−j |∨|j−l|∨|l−m|∨|l−m|∨|i−m|∨|i−l|

≤ c3

n− k
(ρ2 + ρ)

n∑
i=1

Hi,

where c3 is an absolute constant.
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Combining inequalities for J1, J2, and J3 with (31), we complete the proof. �

Lemma 3. For every x0 ∈ [0, T − δ], we have

EG

∣∣∣∣
∑

k∈MDx0

ak(x0)(R̂k − Rk)

∣∣∣∣
2

≤ C4δ

h2ψx0(T )
(ρ2 + ρ)

n∑
i=1

Hi,

where C4 = C4(
) is a constant depending on 
 only, and

ψx0(T ) = ψx0(T , h, δ) :=

⎧⎪⎨
⎪⎩
T − x0 − h, h ≤ x0 < T − δ − h,

T − 2h, 0 ≤ x0 ≤ h,

δ, T − δ − h ≤ x0 ≤ T − δ.

Proof. By Lemmas 1 and 2 and by the Cauchy–Schwarz inequality, we have

E

∣∣∣∣
∑

k∈MDx0

ak(x0)(R̂k − Rk)

∣∣∣∣
2

≤
∑

k∈MDx0

a2
k (x0)

∑
k∈MDx0

EG(R̂k − Rk)
2

≤ c2
1

h2NDx0

(ρ2 + ρ)

( n∑
i=1

Hi

) ∑
k∈MDx0

1

n− k
. (36)

Let k = min{k ∈ (1, . . . , n − 1) : k ∈ MDx0
} and k̄ = max{k ∈ (1, . . . , n − 1) : k ∈ MDx0

};
then

∑
k∈MDx0

1

n− k
=

k̄∑
k=k

1

n− k
≤ ln

(
n− k

n− k̄

)
= ln

(
1 + k̄ − k

n− k̄

)
≤ k̄ − k

n− k̄
.

First, assume that Dx0 = [x0 − h, x0 + h]. In this case, k = [(x0 − h)/δ] + 1 and
k̄ = [(x0 +h)/δ], where [·] is the integer part, and then

∑
k∈MDx0

1/(n−k) ≤ 2h/(T −x0 −h).
If Dx0 = [0, 2h] then k = 1 and k̄ = [2h/δ], which leads to

∑
k∈MDx0

1/(n− k) ≤ 2h/(T −
2h). Finally, if Dx0 = [T − 2h − δ, T − δ] then k̄ = n − 1, k = (n − 1) − [2h/δ], and∑
k∈MDx0

1/(n− k) ≤ 2h/δ.

Combining these bounds with (36) and taking into account that (2h/δ) − 1 ≤ NDx0
≤

(2h/δ)+ 1, we complete the proof. �

Lemma 4. Let G ∈ Hβ(L, I ), I = [x0 − d, x0 + d] ⊇ Dx0 , and {ak(x0), k ∈ MDx0
} be the

weights defined by (10) with 
 ≥ �β� + 1. Assume that (9) holds; then
∣∣∣∣

∑
k∈MDx0

ak(x0)Rk − R′(x0)

∣∣∣∣ ≤ C2λLh
β,

where C2 = C2(
) is the constant appearing in (30).

Proof. Recall that R(t) = ρ2 + ρh(t) = ρ2 + λ
∫ ∞
t

[1 −G(x)] dx; this implies that

R′(t) = −λ(1 −G(t)), R(j)(t) = λG(j−1)(t) for all j = 2, . . . , �β� + 1.
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Thus, if G ∈ Hβ(L, I ) then R ∈ Hβ+1(λL, I). Since Dx0 ⊆ I , function R can be expanded
in the Taylor series around x0. In particular, for any k ∈ MDx0

,

R(kδ) = R(x0)+
�β�∑
j=1

1

j !R
(j)(x0)(kδ− x0)

j + 1

(�β� + 1)!R
(�β�+1)(ξk)(kδ− x0)

�β�+1, (37)

where ξk = τkδ + (1 − τ)x0 for some τ ∈ [0, 1]. Denote

R̄x0(y) := R(x0)+
�β�+1∑
j=1

1

j !R
(j)(x0)(y − x0)

j , y ∈ Dx0 . (38)

Since R̄x0(·) is a polynomial of degree �β� + 1 and 
 ≥ �β� + 1, we have, by (11),
∑

k∈MDx0

ak(x0)R̄x0(kδ) = R̄′
x0
(x0) = R′(x0).

Therefore,∑
k∈MDx0

ak(x0)R(kδ)− R′(x0)

=
∑

k∈MDx0

ak(x0)[R(kδ)− R̄x0(kδ)]

=
∑

k∈MDx0

1

(�β� + 1)!ak(x0)[R(�β�+1)(ξk)− R(�β�+1)(x0)](kδ − x0)
�β�+1,

where we have used (37) and (38). This yields
∣∣∣∣

∑
k∈MDx0

ak(x0)R(kδ)− R′(x0)

∣∣∣∣ ≤ λLhβ+1

(�β� + 1)!
∑

k∈MDx0

|ak(x0)| ≤ C2λLh
β,

where the last inequality follows from (30). �
Now we complete the proof of Theorem 1. Since G ∈ M2(K),

n∑
i=1

Hi =
n∑
i=1

H(iδ)

≤ 1

δ

∫ T

0
H(t) dt

= μ

δ

∫ T

0

∫ ∞

t

[1 −G(x)] dx dt

≤ μ

δ

∫ ∞

0
x[1 −G(x)] dx

≤ μ

2δ
K. (39)

Moreover, G ∈ M2(K) also implies that 1/μ ≤ √
K .
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It can be easily verified that, under (14) and (13) for all large enoughT , we haveT−x0 ≥ κT ,
andDx0 contains at least 
+ 1 grid points. Therefore, by Lemmas 3 and 4 and (39), the chosen
window width h = h∗ balances the upper bounds on the two terms on the right-hand side
of (29). The result of Theorem 1 follows immediately by substitution of h∗ in the bounds of
Lemmas 3 and 4.

In order to prove Theorem 2, we note that the bias-variance decomposition in the problem
of estimating λ takes the form

[EG,λ|λ̂− λ|2]1/2

≤
{

EG,λ

[ ∑
k∈MDx0

ak(x0)(R̂k − Rk)

]2}1/2

+
∣∣∣∣

∑
k∈MDx0

ak(x0)Rk − R′(x0)

∣∣∣∣;

see (29). The same upper bounds on the bias (Lemma 4) and the variance (Lemma 3) hold.
The upper bound (20) follows by the special choice of the window width in (18). �
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