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THE NONARITHMETICITY OF THE PREDICATE LOGIC OF
STRICTLY PRIMITIVE RECURSIVE REALIZABILITY
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Moscow State University

Abstract. A notion of strictly primitive recursive realizability is introduced by Damnjanovic in
1994. It is a kind of constructive semantics of the arithmetical sentences using primitive recursive
functions. It is of interest to study the corresponding predicate logic. It was argued by Park in
2003 that the predicate logic of strictly primitive recursive realizability is not arithmetical. Park’s
argument is essentially based on a claim of Damnjanovic that intuitionistic logic is sound with
respect to strictly primitive recursive realizability, but that claim was disproved by the author of
this article in 2006. The aim of this paper is to present a correct proof of the result of Park.

§1. Introduction. Recursive realizability introduced by Kleene [4] can be considered
as an interpretation of the informal intuitionistic meaning of arithmetical sentences on
the basis of the theory of recursive functions. The main idea of recursive realizability
is to replace the vague intuitionistic concept of an effective operation by the exact
notion of a partial recursive function. On the other hand, many other more restrictive
classes of computable functions are studied in mathematics. It is of interest to consider
variants of realizability based on subrecursive classes of functions. One of them is the
class of primitive recursive functions.

Damnjanovic [2] introduced the notion of strictly primitive recursive realizability
for the language of formal arithmetic. This kind of realizability combines the ideas
of recursive realizability and Kripke models. Strictly primitive recursive realizability
can be considered as a kind of constructive semantics of arithmetical sentences. For
any semantics, it is of interest to study the corresponding logic. The predicate logic of
Kleene’s recursive realizability was considered by the author. It was proved that the set
of recursively realizable predicate formulas is not arithmetical [11].

A similar result for the strictly primitive recursive realizability was obtained by Park
[7]. His proof of the nonarithmeticity of the predicate logic of strictly primitive recursive
realizability is essentially based on the claim [2] that every predicate formula deducible
in the intuitionistic predicate calculus is strictly primitive recursively realizable (Lemma
4.3 and Theorem 5.1). Later this claim was disproved by the author [8, 10]. Nevertheless
the result of Park remains valid. The aim of this paper is to present a correct proof of
this result.

Another primitive recursive realizability was introduced by Salehi [12], which was
compared with the strictly primitive recursive realizability of Damnjanovic in [8–10].
It was proved that there exists an arithmetical formula that is primitive recursively
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realizable, in the sense of [12], but not strictly primitive recursively realizable, in the
sense of [2]; while its negation is strictly primitive recursively realizable but not primitive
recursively realizable.

§2. Indexing of primitive recursive functions.

Definition 2.1. Primitive recursive functions are obtained by substitution and recursion
from the basic functions O(x) = 0, S(x) = x + 1, I mi (x1, ... , xm) = xi (m = 1, 2, ...;
1 ≤ i ≤ m).

Definition 2.2. The class of elementary functions is the least class containing the

functions x �→ 1, I mi , +, ÷, where x ÷ y =

{
0 if x < y,
x – y if x ≥ y,

and closed under

substitution, summation (x, y) �→
y∑
i=0
�(x, i), and multiplication (x, y) �→

y∏
i=0
�(x, i), x

being the list x1, ... , xm.

If a0, a1, ... , an are natural numbers, then 〈a0, a1, ... , an〉 denotes the number pa0
0 ·

p
a1
1 · ... · pann , where p0, p1, ... , pn are sequential prime numbers (p0 = 2, p1 = 3, p2 =

5, ...). The functions �(i) = pi and (x, y) �→ 〈x, y〉 are elementary. In what follows,
for a ≥ 1 and i ≥ 0, let [a]i denote the exponent of pi under decomposition of a into
prime factors. Therefore, [a]i = ai if a = 〈a0, ... , an〉. For definiteness, let [0]i = 0 for
every i. Note that the function (x, i) �→ [x]i is elementary.

Definition 2.3. An (m + 1)-ary function f is obtained by bounded recursion from an m-
ary function g, an (m + 2)-ary function h, and an (m + 1)-ary function j if the following
conditions are fulfilled for any x1, ... , xm, y:

f(0, x1, ... , xm) = g(x1, ... , xm),

f(y + 1, x1, ... , xm) = h(y,f(y, x1, ... , xm), x1, ... , xm),

f(y, x1, ... , xm) ≤ j(y, x1, ... , xm).

Thus f is obtained by bounded recursion from g, h, j if f is obtained by primitive
recursion from g, h and is bounded by j.

For given functions �1, ... , �k , let E[�1, ... , �k] be the least class containing �1, ... , �k ,
S, I mi , the constant functions and closed under substitution and bounded recursion.
Consider the following sequence of functions:

f0(x, y) = y + 1,

f1(x, y) = x + y,

f2(x, y) = (x + 1) · (y + 1),

fn+1(0, y) = fn(y + 1, y + 1),

fn+1(x + 1, y) = fn+1(x,fn+1(x, y)),
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for n ≥ 2. Grzegorczyk [3] introduced a hierarchy of classes En, where En = E[fn].
The class E3 contains all elementary functions. It was shown by Grzegorczyk [3] that
∞⋃
n=0

En is exactly the class of primitive recursive functions.

Axt [1] has shown that in the definition of the classes En for n ≥ 4, the usual bounded
recursion can be replaced by the following scheme applicable to every triple of functions
g, h, j of appropriate arities:{

f(0, x) = g(x),
f(y + 1, x) = h(y,f(y, x), x) · sg(j(y, x) ÷ f(y, x)) · sg(f(y, x)),

where sg(x) =

{
0 if x = 0,
1 if x > 0.

For any collection of functions Θ = {�1, ... , �m}, let E4[Θ] be the least class including
Θ, containing S, the constant functions, I mi , sg, ÷, f4 and closed under substitution
and Axt’s bounded recursion. A way of indexing the functions which are primitive
recursive relative to �1, ... , �m is proposed in [6]. It can be adapted to an indexing of
the class E4[Θ]. The functions in E4[Θ] get indexes according to their definition from
the initial functions by substitution and Axt’s bounded recursion. We list below the
possible defining schemes for a function ϕ and indicate on the right its index.

( ) ϕ(x1, ... , xki ) = �i(x1, ... , xki ) 〈0, ki , i〉,
(I) ϕ(x) = x + 1 〈1, 1〉,
(II) ϕ(x1, ... , xn) = q 〈2, n, q〉,
(III) ϕ(x1, ... , xn) = xi (where 1 ≤ i ≤ n) 〈3, n, i〉,
(IV) ϕ(x) = sg(x) 〈4, 1〉,
(V) ϕ(x, y) = x ÷ y 〈5, 2〉,
(VI) ϕ(x, y) = f4(x, y) 〈6, 2〉,
(VII) ϕ(x) = �(�1(x), ... , �k(x)) 〈7, m, g, h1, ... , hk〉,

(VIII)

⎧⎨⎩
ϕ(0, x) = �(x)
ϕ(y + 1, x) = �(y,f(y, x), x)·
·sg(�(y, x) ÷ ϕ(y, x)) · sg(ϕ(y, x))

〈8, m + 1, g, h, j〉.

Here x is the list x1, ... , xm and g, h1, ... , hk, h, j are indexes of the functions
�, �1, ... , �k, �, � respectively.

Let InΘ(b) mean that b is an index of a function in the class E4[Θ]. It is shown in
[1] that InΘ(b) is an elementary predicate. If InΘ(b) holds, then efΘ

b denotes a [b]1-ary
function in E4[Θ] indexed by b. Following [1], we set

efΘ(b, a) =

{
efΘ
b ([a]0, ... , [a][b]1÷1) if InΘ(b),

0 else.

The function efΘ is universal for the class E4[Θ] and is not in this class. Following
[1], a binary function en is defined inductively as follows:

e0(b, a) = 0, en+1(b, a) = ef [e0,...,en ](b, a).

Finally, the class En is defined as E4[e0, ... , en]. It is proved (see [1]) that for any n ≥ 0,
En = En+4.
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Let In(n, b) mean that b is an n-index, i.e., an index of a function in En. It is shown in
[1] that the predicate In(n, b) is elementary. It follows immediately from the definition
of the indexing that In(n, b) and m > n imply In(m, b). Note that if an n-index b of
a function ϕ(x) is given, then for any m, we can compute the value ϕ(m). Indeed,
computing the value ϕ(x) is reduced to computing the values of a finite number of
functions whose indexes are less than b. Thus the process of computing should be
terminated.

Notation. If n is a natural number, then Λx.n will denote the number 〈2, 1, n〉, ak will
denote the number Λj.Λx.k, and a will denote the number a0. Thus Λx.n is a 0-index
of the constant function x �→ n, ak is a 0-index of the function x �→ Λx.k, and a is a
0-index of the function x �→ Λx.0.

§3. Strictly primitive recursively realizable arithmetical formulas. We consider
arithmetical sentences in a purely predicate language. Namely, the language of formal
arithmetic Ar is a first-order language without any functional symbols and individual
constants consisting of a unary predicate symbol Z, binary predicate symbols E and S,
and ternary predicate symbols A and M. In the standard model of arithmetic N these
predicate symbols have the following meaning: Z(x) means x = 0, E(x, y) means
x = y, S(x, y) means x + 1 = y, A(x, y, z) means x + y = z, and M (x, y, z) means
x · y = z. Besides, we consider an extended arithmetical language Ar∗ obtained by
adding to Ar individual constants 0, 1, 2, ... for all natural numbers.
Ar-formulas and Ar∗-formulas are built from atomic ones by means of the

connectives &, ∨, →, ¬ and the quantifiers ∀, ∃. The expression Φ ≡ Ψ is an
abbreviation for the formula (Φ → Ψ) & (Ψ → Φ). If a formula A does not contain
any free variables except x1, ... , xn, we denote this formula A(x1, ... , xn). In this case,
A(k1, ... , kn) denotes the Ar∗-formula obtained from A by substituting the constants
k1, ... , kn for x1, ... , xn respectively. For brevity, we sometimes write ∀x instead of
∀x1 ...∀xn and ∃x instead of ∃x1 ...∃xn, where x is the list of variables x1, ... , xn.

We say that a closed Ar∗-formula Φ is true iff N |= Φ in the usual classical sense.
The notion of strictly primitive recursive realizability for arithmetical formulas is

introduced by Damnjanovic [2]. The relation “a natural number e strictly primitive
recursively realizes a closed Ar∗-formula A at level n” (e �n A) is defined by induction
on the number of logical symbols in A.

1) If A is an atomic formula, then e �n A means that e = 0 and A is true.
2) If A is B &C , then e �n A means that [e]0 �n B and [e]1 �n C .
3) If A is B ∨ C , then e �n Ameans that either [e]0 = 0 and [e]1 �n B or [e]0 �= 0

and [e]1 �n C .
4) If A is B → C , then e �n A means that In(n, e) holds and for any j ≥ n,
In(j, en+1(e, 〈j〉)) holds, and for any y, if y �j B , then ej+1(en+1(e, 〈j〉), 〈y〉) �j
C .

5) If A is ¬B , then e �n A means that e �n (B → E(0, 1)).
6) If A is ∃x B(x), then e �n A means that [e]1 � B([e]0).
7) If A is ∀x B(x), then e �n A means that In(n, e) holds and for any m,

en+1(e, 〈m〉) �n B(m).

A closed Ar∗-formula A is called strictly primitive recursively realizable (spr-
realizable) iff there are e and n such that e �n A. It is proved in [2] that e �m A if
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e �n A and m ≥ n. Since any closed Ar-formula is a closed Ar∗-formula, it follows
that the notion of strictly primitive recursive realizability is defined for closed Ar-
formulas too.

The following properties of spr-realizability immediately follow from the definition.

Proposition 3.4. For any closed Ar∗-formulas A and B,

1) A&B is spr-realizable iff A and B are both spr-realizable;
2) A ∨ B is spr-realizable iff at least one of A, B is spr-realizable;
3) if A is spr-realizable and B is not spr-realizable, then A→ B is not spr-realizable;
4) if k �n B , then ak �n (A→ B) (see Notation);
5) if A is not spr-realizable, then for any k, ak �0 (A→ B);
6) if ¬A is spr-realizable, then a �0 ¬A.

Proof. The statements 1)–3) are obvious.
4) Suppose k �n B . Then k �j B for any j ≥ n. We prove that ak �n (A→ B),

i.e., that (a) In(n, ak) holds, (b) In(j, en+1(ak, 〈j〉)) holds for any j ≥ n, and (c) for
any j ≥ n and any y, if y �j A, then ej+1(en+1(ak, 〈j〉), 〈y〉) �j B . Note, that Λx.k
is a 0-index of the constant function with the only value k and ak is a 0-index of
the constant function whose only value is 〈2, 1, k〉. Thus the conditions (a) and (b)
are fulfilled. The condition (c) is also obvious, because for any j and y, we have
ej+1(en+1(ak, 〈j〉), 〈y〉) = ej+1(Λx.k, 〈y〉) = k, and k �j B .

5) Assume that A is not spr-realizable. This means that for any y, j, the condition
y �j A does not hold. We have to prove that ak �0 (A→ E(0, 1)). It was shown above
that In(0, ak) holds and for any j, In(j, e1(ak, 〈j〉)) holds. Thus it is enough to prove
that for any y, y �j A⇒ ej+1(e1(ak, 〈j〉), 〈y〉) �j B , but this is obvious because the
premise is false.

The statement 6) follows from 5) because A is not spr-realizable if ¬A is spr-
realizable. �
Proposition 3.5. Suppose that an Ar∗-formula A(x, y) is such that for any m and n,
the Ar∗-formula ¬A(m, n) is spr-realizable. Then the formula ∀x∀y ¬A(x, y) is spr-
realizable at level 0.

Proof. For any m and n, if ¬A(m, n) is spr-realizable, then by Proposition
3.4, a �0 ¬A(m, n). We show that Λx.Λy.a �0 ∀x∀y ¬A(x, y), i.e., In(0,Λx.Λy.e)
holds (this is obvious) and for any m, e1(Λx.Λy.a, 〈m〉) �0 ∀y ¬A(m, y). Note that
e1(Λx.Λy.a, 〈 m〉) = Λy.a. Thus we have to prove that Λy.a �0 ∀y ¬A(m, y), i.e.,
In(0,Λy.a) holds (this is evident) and for any n, e1(Λy.a, 〈n〉 �0 ¬A(m, n). This is also
evident because e1(Λy.a, 〈n〉) = a. �
Definition 3.6. An Ar∗-formula Φ will be called completely negative iff it does not
contain logical symbols ∨ and ∃ and every atom Ψ occurs in Φ only in subformulas of the
form ¬Ψ.

An inductive definition of a completely negative Ar∗-formula is the following:

• if Φ is an atomic Ar∗-formula, then ¬Φ is completely negative;
• if Φ and Ψ are completely negative Ar∗-formulas, then ¬Φ, (Φ & Ψ), and

(Φ → Ψ) are completely negative;
• if Φ is a completely negative Ar∗-formula and x is an individual variable, then

∀xΦ is completely negative.
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Proposition 3.7. IfA(x1, ... , xn) is a completely negativeAr∗-formula, then there exists
a natural number nA such that for any natural numbers k1, ... , kn, the following conditions
are equivalent:

1) the formula A(k1, ... , kn) is true;
2) nA �0 A(k1, ... , kn);
3) the formula A(k1, ... , kn) is spr-realizable.

Proof. We construct the number nA inductively. Obviously, it is enough to verify two
conditions:

(i) nA �0 A(k1, ... , kn) iff the formula A(k1, ... , kn) is true;
(ii) if the formula A(k1, ... , kn) is spr-realizable, then nA �0 A(k1, ... , kn).

If A(x1, ... , xn) is of the form ¬Φ(x1, ... , xn) for an atomic formula Φ, let nA =
a. We now verify the item (i). Assume that a �0 ¬Φ(k1, ... , kn). Then the formula
Φ(k1, ... , kn) is not spr-realizable. It follows from the definition of spr-realizability
for atomic formulas that Φ(k1, ... , kn) is not true. Then the formula ¬Φ(k1, ... , kn) is
true. Conversely, assume that the formula ¬Φ(k1, ... , kn) is true. Then Φ(k1, ... , kn)
is not true. It follows from the definition of spr-realizability for atomic formulas that
Φ(k1, ... , kn) is not spr-realizable. Then by Proposition 3.4, a �0 ¬Φ(k1, ... , kn). The
item (ii) follows from Proposition 3.4

Suppose that for formulasB(x1, ... , xn) andC (x1, ... , xn) we have found the numbers
nB and nC such that for any k1, ... , kn, the following conditions hold:

(ib) nB �0 B(k1, ... , kn) iff the formula B(k1, ... , kn) is true;
(ic) nC �0 C (k1, ... , kn) iff the formula C (k1, ... , kn) is true;
(iib) if the formula B(k1, ... , kn) is spr-realizable, then nB �0 B(k1, ... , kn);
(iic) if the formula C (k1, ... , kn) is spr-realizable, then nC �0 C (k1, ... , kn).

If A(x1, ... , xn) is B(x1, ... , xn) &C (x1, ... , xn), let nA = 〈nB, nC 〉. We prove that
nA is a required number. Let us show the item (i). Assume that A(k1, ... , kn) is true.
Then B(k1, ... , kn) and C (k1, ... , kn) are both true. By (ib) and (ic), we have nB �0

B(k1, ... , kn) and nC �0 C (k1, ... , kn). Then nA �0 A(k1, ... , kn) by the definition of
spr-realizability because [nA]0 = nB , [nA]1 = nC . Conversely, if nA �0 A(k1, ... , kn),
then nB �0 B(k1, ... , kn) and nC �0 C (k1, ... , kn) by the definition of spr-realizability
for the conjunction. In this case, by the items (ib) and (ic), the formulas B(k1, ... , kn)
and C (k1, ... , kn) are both true; therefore, A(k1, ... , kn) is also true.

We now prove the item (ii). Assume that A(k1, ... , kn) is spr-realizable. Then
B(k1, ... , kn) and C (k1, ... , kn) are spr-realizable. It follows from (iib) and (iic) that
nB �0 B(k1, ... , kn) and nC �0 C (k1, ... , kn). This gives nA �0 A(k1, ... , kn) by the
definition of spr-realizability.

IfA(x1, ... , xn) isB(x1, ... , xn) → C (x1, ... , xn), then we set nA = anC and prove that
nA is a required number. Let us verify the item (i). Assume that the formulaA(k1, ... , kn)
is true. Then either the formula B(k1, ... , kn) is false or the formula C (k1, ... , kn) is
true. In the first case, B(k1, ... , kn) is not spr-realizable. Indeed, suppose the opposite;
then it should follow from (iib) that nB �0 B(k1, ... , kn) and by (ib), B(k1, ... , kn)
should be true. By Proposition 3.4, nA �0 A(k1, ... , kn). IfC (k1, ... , kn) is true, then by
(ic), nC �0 C (k1, ... , kn). By Proposition 3.4, nA �0 A(k1, ... , kn). Now assume that
nA �0 A(k1, ... , kn). We prove that A(k1, ... , kn) is true. Suppose the opposite. Then
the formula B(k1, ... , kn) is true and the formula C (k1, ... , kn) is false. By (ib), the
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formula B(k1, ... , kn) is spr-realizable. Therefore, the formula C (k1, ... , kn) should be
spr-realizable. But in this case, by the item (iic), nC �0 C (k1, ... , kn) and by (ic), the
formula C (k1, ... , kn) is true. This contradiction shows that the formula A(k1, ... , kn)
is true.

We now show the item (ii). Assume that A(k1, ... , kn) is spr-realizable. In this
case, if the formula B(k1, ... , kn) is not spr-realizable, then by Proposition 3.4,
nA �0 A(k1, ... , kn). If B(k1, ... , kn) is spr-realizable, then C (k1, ... , kn) is also spr-
realizable. It follows from (iic) that nC �0 C (k1, ... , kn). Then by Proposition 3.4,
nA �0 A(k1, ... , kn).

The case when the formula A(x1, ... , xn) is of the form ¬B(x1, ... , xn) is reduced to
the case of the implication B(x1, ... , xn) → E(0, 1). In this case we can set nA = a.

Finally, assume that A(x1, ... , xn) is of the form ∀y B(y, x1, ... , xn) and there is a
number nB such that for any natural numbers m, k1, ... , kn, the following conditions
are fulfilled:

(iB) nB �0 B(m, k1, ... , kn) iff the formula B(m, k1, ... , kn) is true;
(iiB) if B(m, k1, ... , kn) is spr-realizable, then nB �0 B(m, k1, ... , kn).

Let nA = Λx.nB . Obviously, In(0, nA) holds. We prove the item (i). Assume that
the formula A(k1, ... , kn) is true. Then for any m, the formula B(m, k1, ... , kn) is true
and by (iB), nB �0 B(m, k1, ... , kn). Since e1(nA, 〈m〉) = nB , it follows that for any m,
e1(nA, 〈m〉) �0 B(m, k1, ... , kn). This means that nA �0 A(k1, ... , kn).

Conversely, suppose nA �0 A(k1, ... , kn). Thus e1(nA, 〈m〉) �0 B(m, k1, ... , kn), i.e.,
nB �0 B(m, k1, ... , kn), for any m. By (iB), the formula B(m, k1, ... , kn) is true for any
m; therefore, the formula A(k1, ... , kn) is true.

We now show the item (ii). Assume that A(k1, ... , kn) is spr-realizable. Then for
any m, the formula B(m, k1, ... , kn) is spr-realizable and by the condition (iiB), nB �0

B(m, k1, ... , kn). It follows that for any m, e1(nA, 〈m〉) �0 B(m, k1, ... , kn). This means
that nA �0 A(y, k1, ... , kn) what we wanted to prove. �

Proposition 3.8. Suppose that A(x) is an Ar∗-formula of the form ∃y Ψ(x, y), where
x is the list of variables x1, ... , xn, y is the list of variables y1, ... , ym, and Ψ(x, y) is a
completely negative quantifier-free Ar∗-formula. Then for any list of natural numbers
k = k1, ... , kn, the formula A(k) is spr-realizable iff it is true.

Proof. Assume that the formula A(k) is spr-realizable. This means that there is the
list of natural numbers l = l1, ... , lm such that the formula Ψ(k, l) is spr-realizable. By
Proposition 3.7, this formula is true. It follows that the formula A(k) is also true.
Conversely, if the formula A(k) is true, then there exists the list of natural numbers l
such that the formula Ψ(k, l) is true. By Proposition 3.7, this formula is spr-realizable.
It follows that the formula A(k) is also realizable. �

§4. An arithmetical theory sound with respect to spr-realizability. Let � be Gödel’s
Beta Function (see [5]). This ternary function has the following property: for any
list of natural numbers k0, k1, ... , kn, there exist natural numbers a and b such that
�(a, b, i) = ki for all i ≤ n. The predicate �([x]0, [x]1, y) = 0 is recursively enumerable.
By Matiyasevich Theorem, it can be defined in N by an arithmetical formula B(x, y)
of the form ∃z Φ(x, y, z), where Φ(x, y, z) is an atomic arithmetical formula. It follows
easily that the predicate �([x]0, [x]1, y) = 0 can be defined inN by anAr-formula of the
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form ∃z Φ(x, y, z), where Φ(x, y, z) is a completely negative quantifier-freeAr-formula.
Thus for any natural numbers a and i,

�([a]0, [a]1, i) = 0 ⇒ N |= B(a, i);

�([a]0, [a]1, i) �= 0 ⇒ N |= ¬B(a, i).

Let a be a natural number. Then {a} will denote a unary primitive recursive function
g defined as follows: g(n) = e[a]0+1([a]1, 〈n〉). Since the predicate {x1}(x2) = x3 is
recursively enumerable, it follows that it can be defined in N by an Ar-formula
G(x1, x2, x3) of the form ∃y Ψ(y, x1, x2, x3), where Ψ(y, x1, x2, x3) is a completely
negative quantifier-free Ar-formula.

Definition 4.9. Let H (x1, x2) be the formula ∃z (¬¬Z(z) &G(x1, x2, z)).

Obviously, this formulaH (x1, x2) defines in N the predicate {x1}(x2) = 0.

Definition 4.10. Let Q be the conjunction of the following formulas:

A1. ∀x ¬¬E(x, x);
A2. ∀x∀y (¬¬E(x, y) → ¬¬E(y, x));
A3. ∀x∀y∀z (¬¬E(x, y) &¬¬E(y, z) → ¬¬E(x, z));
A4. ∃x ¬¬Z(x);
A5. ∀x∀y (¬¬Z(x) &¬¬Z(y) → ¬¬E(x, y));
A6. ∀x∀y (¬¬E(x, y) &¬¬Z(x) → ¬¬Z(y));
A7. ∀x∃y ¬¬S(x, y);
A8. ∀x∀y∀z (¬¬S(x, y) &¬¬S(x, z) → ¬¬E(y, z));
A9. ∀x1∀x2∀y1∀y2 (¬¬E(x1, x2) &¬¬E(y1, y2) &¬¬S(x1, y1) → ¬¬S(x2, y2));
A10. ∀x∀y∀z (¬¬S(x, z) &¬¬S(y, z) → ¬¬E(x, y));
A11. ∀x∀y (¬¬S(x, y) → ¬Z(y));
A12. ∀x (¬¬Z(x) ∨ ∃y ¬¬S(y, x));
A13. ∀x∀y∃z ¬¬A(x, y, z);
A14. ∀x∀y∀z1∀z2 (¬¬A(x, y, z1) &¬¬A(x, y, z2) → ¬¬E(z1, z2));
A15. ∀x1∀x2∀y1∀y2∀z1∀z2 (¬¬E(x1, x2) &¬¬E(y1, y2) &¬¬E(z1, z2)

&¬¬A(x1, y1, z1) → ¬¬A(x2, y2, z2));
A16. ∀x∀y (¬¬Z(y) → ¬¬A(x, y, x));
A17. ∀x∀y∀z∀u∀v (¬¬S(y, z) &¬¬A(x, y, u) &¬¬S(u, v) → ¬¬A(x, z, v));
A18. ∀x∀y∃z ¬¬M (x, y, z);
A19. ∀x∀y∀z1∀z2 (¬¬M (x, y, z1) &¬¬M (x, y, z2) → ¬¬E(z1, z2));
A20. ∀x1∀x2∀y1∀y2∀z1∀z2 (¬¬E(x1, x2) &¬¬E(y1, y2) &¬¬E(z1, z2)

&¬¬M (x1, y1, z1) → ¬¬M (x2, y2, z2));
A21. ∀x∀y (¬¬Z(y) → ¬¬M (x, y, y));
A22. ∀x∀y∀z∀u∀v(¬¬S(y, z)&¬¬M (x, y, u)&¬¬A(u, x, v) → ¬¬M (x, z, v));
A23. ∀x∀y∀z1∀z2 (G(x, y, z1) &G(x, y, z2) → ¬¬E(z1, z2));
A24. ∀y∀z ¬¬∃v∀x (x ≤ z → (¬¬B(v, x) ≡ ¬¬H (y, x)));
A25. ∀x∀y (¬B(x, y) ∨ ¬¬B(x, y)).

Theorem 4.11. The Ar-formula Q is spr-realizable.

Proof. We prove that everyone of the formulas A1–A25 is spr-realizable. All these
formulas are evidently true. All of them exceptA4,A7,A12,A13,A18,A23,A24, andA25

are completely negative. Therefore they are spr-realizable at level 0 by Proposition 3.7
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Recall that a is a 0-index of the function x �→ Λx.0 (see Notation in Section 2).
Consider the formula A4. Let a = 3a. Obviously, a �0 ∃x ¬¬Z(x).
Consider the formula A7. The function f(x) = 2x+1 · 3a is in the class E0. Let a be

its 0-index. We prove that a �0 ∀x∃y ¬¬S(x, y), i.e., In(0, a) holds (this condition is
obviously fulfilled) and for any k, [f(k)]1 �0 ¬¬S(k, [f(k)]0), i.e., a �0 ¬¬S(k, k +
1), but this easily follows from Proposition 3.4 Thus the formula A7 is spr-realizable.

Consider the formula A12. The function f(x) = 2sg(x) · 3sg(x)·a+sg(x)·2x÷1·3a is in
the class E0. Let a be its 0-index. We prove that a �0 ∀x (¬¬Z(x) ∨ ∃y ¬¬S(y, x)),
i.e., In(0, a) holds (this condition is fulfilled) and for any k, either [f(k)]0 = 0 and
[f(k)]1 �0 ¬¬Z(k) or [f(k)]0 �= 0 and [f(k)]1 �0 ∃y ¬¬S(y, k). Note, that

f(k) =

{
3a if k = 0,

2 · 32k–1·3a if k > 0.

Ifk = 0, then [f(k)]0 = 0, [f(k)]1 = a. In this case, [f(0)]1 �0 ¬¬Z(0) by Proposition
3.4 becauseZ(0) is true and spr-realizable. If k > 0, then [f(k)]0 = 1, [f(k)]1 = 2k–1 ·
3a. Since the formula S(k – 1, k) is true and spr-realizable, it follows by Proposition
3.4, that a �0 ¬¬S(k – 1, k). Therefore [f(k)]1 �0 ∃y ¬¬S(y, k) what we wanted to
prove. Thus the formula A12 is spr-realizable.

Consider the formula A13. The function f(x, y) = 2x+y · 3a is in the class E0. Let a
be its 0-index and g(x) = 〈7, 1, a, 〈2, 1, x〉, 〈3, 1, 1〉〉. Obviously, g ∈ E0. Let b be a 0-
index of g. We prove that b �0 ∀x∀y∃z ¬¬A(x, y, z), i.e., In(0, b) holds (this condition
is fulfilled) and for any k,

e1(b, 〈k〉) �0 ∀y∃z ¬¬A(k, y, z). (1)

Note that e1(b, 〈k〉) = g(k) = 〈7, 1, a, 〈2, 1, k〉, 〈3, 1, 1〉〉. Thus g(k) is a 0-index of the
function h obtained by substituting the unary constant function with the only value
k and the identity function to the function f, i.e., for any 	, h(	) = f(k, 	). Thus (1)
means that f(k, 	) �0 ∃z ¬¬A(k, 	, z), i.e., [f(k, 	)]1 �0 ¬¬A(k, 	, [f(k, 	)]0). Note
that [f(k, 	)]0 = k + 	, [f(k, 	)]1 = a. We have to prove that a �0 ¬¬A(k, 	, k + 	),
but this easily follows from Proposition 3.4 Thus the formula A13 is spr-realizable.

The case of the formulaA18 is considered in the same way with the functionf(x, y) =
2x·y · 3a.

Consider the formula A23. Let natural numbers k, 	,m1, m2 be fixed. Suppose that
the formula G(k, 	,m1) &G(k, 	,m2) is realizable. It follows that G(k, 	,m1) and
G(k, 	,m2) are both spr-realizable. By Proposition 3.8, they are true. This means
that {k}(	) = m1 and {k}(	) = m2. Then m1 = m2 and by Proposition 3.4, a �0

¬¬E(m1, m2), Λw.a �0 G(k, 	,m1) &G(k, 	,m2) → ¬¬E(m1, m2). Then the number
Λx.Λy.Λz1.Λz2.Λw.a spr-realizes the formula A23 at level 0.

Consider the formula A24. By Proposition 3.5, it is enough to prove that for any
fixed natural numbers m and n, the formula

¬∃v∀x (x ≤ n → (¬¬B(v, x) ≡ ¬¬H (m,x)))

is not spr-realizable. We prove that the formula

∃v∀x (x ≤ n → (¬¬B(v, x) ≡ ¬¬H (m,x))) (2)

is spr-realizable. Consider the list of natural numbers k0, k1, ... , kn, where ki = 0 iff
¬¬H (m, i) is spr-realizable, i.e., {m}(i) = 0. By the property of the function � , there
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exists a natural number a such that �([a]0, [a]1, i) = ki for all i ≤ n. Assume that
i ≤ n. If ki = 0, then both formulas ¬¬B(a, i) and ¬¬H (m, i) are spr-realizable by a
at level 0. By Proposition 3.4, we have

aa �0 (¬¬B(a, i) → ¬¬H (m, i)) (3)

and

aa �0 (¬¬H (m, i) → ¬¬B(a, i)). (4)

If ki �= 0, then ¬¬B(a, i) and ¬¬H (m, i) are not spr-realizable. In this case, (3) and
(4) hold by Proposition 3.4. It follows that b �0 (¬¬B(a, i) ≡ ¬¬H (m, i)), where
b = 〈aa, aa〉. Then by Proposition 3.4, ab �0 (i ≤ n → (¬¬B(a, i) ≡ ¬¬H (m, i))) for
any i. It follows that Λx.ab �0 ∀x (x ≤ n → ((¬¬B(a, x) ≡ ¬¬H (m,x))).This means
that the formula (2) is spr-realizable, what we wanted to prove.

Consider the formula A25. Let

φ(x, y) = sg(�([x]0, [x]1, y)) · 3a + sg(�([x]0, [x]1, y)) · 2 · 3a.

The function φ is primitive recursive. Thus there is n such that φ ∈ En. Let a be an
n-index of φ and g(x) = 〈7, 1, a, 〈2, 1, x〉, 〈3, 1, 1〉〉. Obviously, g ∈ E0. Let b be a 0-
index of g. We prove that b �n ∀x∀y (¬B(x, y) ∨ ¬¬B(x, y)), i.e., In(n, b) holds (this
condition is fulfilled) and for any k,

en+1(b, 〈k〉) �n ∀y (¬B(k, y) ∨ ¬¬B(k, y)). (5)

Note that en+1(b, 〈k〉) = g(k) = 〈7, 1, a, 〈2, 1, k〉, 〈3, 1, 1〉〉. Thus g(k) is an n-index
of the unary function h obtained by substituting the unary constant function with
the only value k and the identity function to the function φ, i.e., for any 	, h(	) =
φ(k, 	). Thus (5) means that φ(k, 	) �n (¬B(k, 	) ∨ ¬¬B(k, 	)), i.e., if [φ(k, 	)]0 =
0, then [φ(k, 	)]1 �n ¬B(k, 	), and [φ(k, 	)]1 �n ¬¬B(k, 	) if [φ(k, 	)]0 �= 0. Note

that [φ(k, 	)]0 =

{
0 if �([k]0, [k]1, 	) �= 0,
1 if �([k]0, [k]1, 	) = 0;

[φ(k, 	)]1 = a. Therefore, if [φ(k, 	)]0 = 0,

then �([k]0, [k]1, 	) �= 0. In this case, ¬B(k, 	) is spr-realizable. By Proposition 3.4,
a �0 ¬B(k, 	), i.e., [φ(k, 	)]1 �n ¬B(k, 	). If [φ(k, 	)]0 �= 0, then �([k]0, [k]1, 	) = 0.
In this case, ¬¬B(k, 	) is spr-realizable. By Proposition 3.4, a �0 ¬¬B(k, 	), i.e.,
[φ(k, 	)]1 �n ¬¬B(k, 	). Thus the formula A25 is realizable. �

§5. Strictly primitive recursively realizable predicate formulas. The language of
predicate logic consists of individual variables x0, x1, x2, ..., predicate symbols Pnii
(i, ni ∈ N) (Pnii is called an ni -ary predicate symbol), logical symbols ¬,&,∨,→,∀,∃,
and auxiliary symbols ,, (,). Predicate symbols are also called predicate variables and
individual variables are called terms.

Atomic formulas have the form P(t1, ... , tn), where P is an n-ary predicate symbol,
and t1, ... , tn are terms.

Sometimes we use a notation x for the list of individual variables x1, ... , xn.

Definition 5.12. Predicate formulas are defined inductively as follows:

1) atomic formulas are formulas;
2) if A is a formula, then ¬A is a formula;
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3) if A and B are formulas, then (A&B), (A ∨ B), and (A→ B) are formulas;
4) if A is a formula, x is an individual variable, then ∀x A and ∃x A are formulas.

Free and bound occurrences of a variable in a formula are defined as usual. A formula
A is closed if no variable is free in A. If A(x1, ... , xn) is a formula, then A(t1, ... , tn)
denotes the result of substituting terms t1, ... , tn for free occurrences of the variables
x1, ... , xn in A. An expression (A ≡ B) is an abbreviation for (A→ B) & (B → A).

A predicate formula A will be referred as A(P1, ... , Pn, y1, ... , ym) if it does not
contain any predicate variables except P1, ... , Pn and any free individual variables
except y1, ... , ym.

Let A(P1, ... , Pn) be a predicate formula. We say that the list of Ar∗-formulas
Φ1, ... ,Φn is admissible for substituting in A, if for any i = 1, ... , n, the formula Φi
does not contain free variables except x1, ... , xm, where m is arity of the predicate
variablePi . In this case,A(Φ1, ... ,Φn) will denote the result of substituting the formulas
Φ1, ... ,Φn for the predicate variablesP1, ... , Pn in A (bound individual variables should
be renamed in order to avoid any collision). The formulaA(Φ1, ... ,Φn) will be referred
as an arithmetical instance of a predicate formula A(P1, ... , Pn).

A closed predicate formula A(P1, ... , Pn) is called strictly primitive recursively
realizable (spr-realizable) if for any list of Ar∗-formulas Φ1, ... ,Φk admissible for
substituting in A, the closed Ar∗-formula A(Φ1 ...Φk) is spr-realizable.

A predicate formula A(P1, ... , Pn) will be called completely negative if it does not
contain logical symbols ∨ and ∃ and each predicate variable Pi occurs in A only in
subformulas of the form ¬Pi(y1, ... , yk), i.e., an inductive definition of a completely
negative predicate formula is the following:

• if A is an atomic formula, then ¬A is a completely negative predicate formula;
• if A and B are completely negative predicate formulas, then ¬A, (A&B), and

(A→ B) are completely negative predicate formulas;
• if A is a completely negative predicate formula, x is an individual variable, then

∀x A is a completely negative predicate formula.

Proposition 5.13. If F (P1, ... , Pn, y1, ... , ym) is a completely negative predicate
formula, then there exists a natural number aF such that for any list of Ar∗-formulas
Φ1, ... ,Φn admissible for substituting in F and any natural k1, ... , km, the following
conditions are equivalent:

1) the formula F (Φ1, ... ,Φn, k1, ... , km) is spr-realizable;
2) aF �0 F (Φ1, ... ,Φn, k1, ... , km).

Proof. Induction on the complexity of a completely negative predicate formula F. Let
F be of the form ¬P(y1, ... , ym), where P is an m-ary predicate variable, Φ(x1, ... , xm)
is an Ar∗-formula admissible for substituting in F, and k1, ... , km are natural numbers.
Then F (Φ1, ... ,Φn, k1, ... , km) is ¬Φ(k1, ... , km). By Proposition 3.4, in this case we
can define aF as a.

Let F (P1, ... , Pn, y1, ... , ym) be of the form

G(P1, ... , Pn, y1, ... , ym) &H (P1, ... , Pn, y1, ... , ym),

and for the formulas G are H the corresponding numbers aG and aH are defined. Then
one can define aF as 〈aG, aH 〉.
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If F (P1, ... , Pn, y1, ... , ym) is of the form

G(P1, ... , Pn, y1, ... , ym) → H (P1, ... , Pn, y1, ... , ym),

we can define aF as aaH . Let Φ1, ... ,Φn be the list of Ar∗-formulas admissible
for substituting in F and k1, ... , km be natural numbers. Assume that the formula
F (Φ1, ... ,Φn, k1, ... , km) is spr-realizable. We prove that

aF �0 F (Φ1, ... ,Φn, k1, ... , km).

If G(Φ1, ... ,Φn, k1, ... , km) is not spr-realizable, then by Proposition 3.4,

aF �0 G(Φ1, ... ,Φn, k1, ... , km) → H (Φ1, ... ,Φn, k1, ... , km). (6)

If G(Φ1, ... ,Φn, k1, ... , km) is spr-realizable, then H (Φ1, ... ,Φn, k1, ... , km) is spr-
realizable. By the inductive hypothesis, aH �0 H (Φ1, ... ,Φn, k1, ... , km). Then, by
Proposition 3.4, (6) holds.

If F is ¬G(P1, ... , Pn, y1, ... , ym), then for any list of Ar∗-formulas Φ1, ... ,Φn
admissible for substituting in F and any k1, ... , km, ¬G(Φ1, ... ,Φn, k1, ... , km) can
be replaced by G(Φ1, ... ,Φn, k1, ... , km) → E(0, 1). Thus this case is reduced to the
case of implication and we can define aF as a.

If F is ∀y G(P1, ... , Pn, y, y1, ... , ym) and the number aG is defined for the formula
G(P1, ... , Pn, y, y1, ... , ym), then we define aF as Λy.aG . The fact that this number
satisfies the conclusion of the theorem is proved by the same argument as in the proof
of Proposition 3.7 �

§6. Simulating arithmetic in the predicate language. Let A be anAr-formula. Then
A can be considered as a predicate formula if we treat the predicate symbols as predicate
variables. In this case, we refer to A as a predicate Ar-formula.

The predicate Ar-formula Q defined in Section 4 does not contain any predicate
variables except Z,S,A,M,E; thus it will be denoted Q(Z,S,A,M,E). The list of Ar-
formulas Υ = Z(x1),S(x1, x2),A(x1, x2, x3),M(x1, x2, x3), E(x1, x2) admissible for
substituting inQ(Z,S,A,M,E) will be called an interpretation of Q iff the Ar-formula
Q(Z,S,A,M, E) is spr-realizable.

Assume that an interpretation Υ of the formula Q is fixed. If F (Z,S,A,M,E) is a
predicate formula, then the Ar-formula F (Z,S,A,M, E) will be denoted F̃ . This is
the meaning we attach to the expression Q̃.

Proposition 6.14. If Υ is an interpretation of Q, then for any completely negative Ar-
formula Ψ(x1, ... , xn), the Ar-formula

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) & Ψ̃(x) → Ψ̃(y)), (7)

where x is the list x1, ... , xn and y is y1, ... , yn is spr-realizable.

Proof. See Appendix A. �

For a natural number n, a predicate Ar-formula [n](x) is defined inductively:

• [0](x) is ¬¬Z(x);
• [n + 1](x) is ¬Z(x) &∀y (¬¬S(y, x) → [n](y)).

Note that for any n, the formula [n](x) is completely negative.

https://doi.org/10.1017/S1755020321000174 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020321000174


NONARITHMETICITY OF PREDICATE LOGIC 705

Proposition 6.15. If Υ is an interpretation of Q, then for any n, the Ar-formula

∀x∀y ([̃n](x) & [̃n](y) → ¬¬E(x, y)) (8)

is spr-realizable.

Proof. We prove spr-realizability of (8) by induction on n. If n = 0, then [n](x)
is ¬¬Z(x). Thus we have to prove that ∀x∀y (¬¬Z(x) &¬¬Z(y) → ¬¬E(x, y)) is
spr-realizable. But this is the formula Ã5, which is spr-realizable because Υ is an
interpretation of Q. Now assume that the formula (8) is spr-realizable for a given n.
We verify that the formula

∀x∀y ( ˜[n + 1](x) & ˜[n + 1](y) → ¬¬E(x, y)) (9)

is spr-realizable. First we prove that for any k, 	, the formula

˜[n + 1](k) & ˜[n + 1](	) → ¬¬E(k, 	) (10)

is spr-realizable. Assume that the premise of the formula (10) is spr-realizable.
Then ¬Z(k) &∀y (¬¬S(y, k) → [̃n](y)) and ¬Z(	) &∀y (¬¬S(y, 	) → [̃n](y)) are
spr-realizable. We prove that the formula ¬¬E(k, 	) is spr-realizable. Since the formula
Ã12 is spr-realizable, it follows that the formula ∃y ¬¬S(y, k) is spr-realizable. This
means that there exists a natural number p such that ¬¬S(p, k) is realizable. It
follows that the formula [̃n](p) is spr-realizable. By the same reason, there exists a
natural number q such that the formulas ¬¬S(q, 	) and [̃n](q) are spr-realizable. By
the inductive hypothesis, the formula ¬¬E(p, q) is spr-realizable. Since the formulas
¬¬E(k, k) and Ã9 are spr-realizable, it follows that the formula ¬¬S(q, k) is realizable.
Since the formula Ã8 is spr-realizable, it follows that the formula ¬¬E(k, 	) is spr-
realizable. By Proposition 3.4, a �0 ¬¬E(k, 	) and aa spr-realizes the formula (10) at
level 0. If the premise of the formula (10) is not spr-realizable, then by Proposition 3.4,
aa spr-realizes the formula (10). Thus we have proved that for anyk, 	 the number aa spr-
realizes the formula (10). Now it is evident that the number Λx.Λy.aa spr-realizes the
formula (9). �
Proposition 6.16. If Υ is an interpretation of Q and e �m Q̃, then for any natural num-
bers k and n we can effectively determine whether theAr∗-formula [̃n](k) is spr-realizable.

Proof. The proof is by induction on n. If n = 0, then [̃n](k) is the formula ¬¬Z(k).
Let a natural number k be given. We can extract an spr-realization of the formula Ã12

from e. Thus we can determine which of the formulas ¬¬Z(k) and ∃y ¬¬S(y, k) is spr-
realizable. If the first one is spr-realizable, then the formula [̃0](k) is spr-realizable. If the
formula ∃y ¬¬S(y, k) is spr-realizable, then there exists a natural number 	 such that
the formula¬¬S(	, k) is spr-realizable. Since the formula Ã11 is spr-realizable, it follows
that ¬Z(k) is spr-realizable. This means that the formula [̃0](k) is not spr-realizable.
Now suppose that for a given n and any 	 we can effectively determine whether the
formula [̃n](	) is spr-realizable. Let a natural number k be given and we want to
determine whether the formula ˜[n + 1](k), i.e., ¬Z(k) &∀y (¬¬S(y, k) → [̃n](y)), is
realizable. Using an spr-realization of the formula Ã12 we determine which of the
formulas ¬¬Z(k) and ∃y ¬¬S(y, k) is spr-realizable. If the formula ¬¬Z(k) is spr-
realizable, then the formula ˜[n + 1](k) is not spr-realizable. Assume that the formula
∃y ¬¬S(y, k) is spr-realizable. Then we have a natural number 	 such that the formula
¬¬S(	, k) is spr-realizable. We determine whether the formula [̃n](	) is spr-realizable. If
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this formula is not realizable, then obviously the formula ˜[n + 1](k) is not spr-realizable.
Assume that the formula [̃n](	) is spr-realizable. We show that the formula ˜[n + 1](k)
is spr-realizable. It is enough to prove that the formula ∀y (¬¬S(y, k) → [̃n](y)) is
spr-realizable. First we prove that for any p the formula ¬¬S(p, k) → [̃n](p) is spr-
realizable. First consider the case when the formula ¬¬S(p, k) is spr-realizable. Recall
that the formula ¬¬S(	, k) is spr-realizable as well. Since the formula Ã10 is spr-
realizable, it follows that the formula¬¬E(	, p) is spr-realizable. Recall that the formula
[̃n](	) is spr-realizable. Since the formula [n](x) is completely negative, it follows from
Proposition 6.14 that the formula [̃n](p) is spr-realizable. By Proposition 5.13, a[n](x) �0

[̃n](p). By Proposition 3.4,

aa[n](x)
�0 ¬¬S(p, k) → [̃n](p). (11)

If the formula ¬¬S(p, k) is not spr-realizable, then (11) holds by Proposition 3.4 Thus
(11) holds for any p. Then Λy.aa[n](x)

�0 ∀y (¬¬S(y, k) → [̃n](y)). This means that the

formula ˜[n + 1](k) is spr-realizable. �

Proposition 6.17. If Υ is an interpretation of Q, then there exists a primitive recursive
function f such that for any natural number n, theAr∗-formula [̃n](f(n)) is spr-realizable.

Proof. Let Υ be an interpretation of the formula Q. So, there exist natural numbers
e and m such that e �m Q̃. It follows from the definition of spr-realizability, that the
formula Ã4 is realizable at level m. Thus, there exists a natural number a4 such that
a4 �m ∃x ¬¬Z(x). Then

[a4]1 �m ¬¬Z([a4]0). (12)

Let f(0) = [a4]0. Note that by Proposition 3.4, we have a �0 [̃0](f(0)).
Suppose that the value f(n) is defined for a given n. Since Ã7 is spr-realizable, it

follows that there exists a natural number a7 such that a7 �m ∀x∃y ¬¬S(x, y). Then
em+1(a7, 〈f(n)〉) �m ∃y ¬¬S(f(n), y). Therefore,

[em+1(a7, 〈f(n)〉)]1 �m ¬¬S(f(n), [em+1(a7, 〈f(n)〉)]0).

Let f(n + 1) = [em+1(a7, 〈f(n)〉)]0. Note that the formula

¬¬S(f(n), f(n + 1)) (13)

is spr-realizable. Thus we have the following definition of the function f:{
f(0) = [a4]0;
f(n + 1) = [em+1(a7, 〈f(n)〉)]0,

where the numbers a4, a7, and m depend only on the formula Q̃. The function em+1 is
primitive recursive. Obviously, the function f is primitive recursive.

Let us prove that for any n, the formula [̃n](f(n)) is spr-realizable. The proof is by
induction on n. If n = 0, this condition follows from (12) because ¬¬Z(x) is [̃0](x)
and f(0) = [a4]0. Now suppose that for a given n, the formula [̃n](f(n)) is spr-realizable.
Then by Proposition 5.13, aF �0 [̃n](f(n)), where F is [n](x). We prove that the formula
˜[n + 1](f(n + 1)) is spr-realizable. This means that the formulas

¬Z(f(n + 1)) (14)
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and

∀y (¬¬S(y, f(n + 1)) → [̃n](y)) (15)

are spr-realizable. Since the formulas (13) and Ã11 are spr-realizable, it follows that the
formula (14) is spr-realizable. Now we prove that the formula (15) is spr-realizable.
First we prove that for any k, the formula

¬¬S(k, f(n + 1)) → [̃n](k) (16)

is spr-realizable. Assume that the premise of the formula (16), i.e., ¬¬S(k, f(n + 1)),
is spr-realizable. Since the formulas (13) and Ã10 are spr-realizable, it follows that
the formula ¬¬E(f(n), k) is spr-realizable. By the inductive hypothesis, [̃n](f(n)) is
spr-realizable. By Proposition 6.14, [̃n](k) is spr-realizable and by Proposition 5.13,
aF �0 [̃n](k). By Proposition 3.4, the number aaF spr-realizes the formula (16) at level
0. If the premise of the formula (16) is not spr-realizable, then by Proposition 3.4, the
number aaF spr-realizes the formula (16) at level 0. Thus we have proved that for any
k, the number aaF spr-realizes the formula (16) at level 0. Now it is evident that Λx.aaF
spr-realizes the formula (15) at level 0. �
Proposition 6.18. If Υ is an interpretation of Q, then for any natural numbers n, m, and
a, if the Ar∗-formulas [̃n](a) and [̃m](a) are spr-realizable, then m = n.

Proof. Assume that [̃n](a) and [̃m](a) are spr-realizable. We prove that n < m is
impossible by induction on n. Let n = 0, m = k + 1. Thus we have that the formulas

[̃0](a), i.e., ¬¬Z(a), and ˜[k + 1](a), i.e., ¬Z(a) &∀y (¬¬S(y, a) → [̃k](y)), are spr-
realizable. This is obviously impossible. Now let m = k + 1 > n + 1, and assume that

the formulas ˜[n + 1](a), i.e., ¬Z(a) &∀y (¬¬S(y, a) → [̃n](y)), and ˜[k + 1](a), i.e.,
¬Z(a) &∀y (¬¬S(y, a) → [̃k](y)), are spr-realizable. Since the formulas ¬Z(a) and
Ã12 are spr-realizable, it follows that there exists a number b such that the formula
¬¬S(b, a) is spr-realizable. Then the formulas [̃n](b) and [̃k](b) are spr-realizable. This
is impossible by the inductive hypothesis. �

For any n, let ñ denote the number f(n).

Proposition 6.19. Let Υ be an interpretation of Q. Then for any quantifier-free
completely negativeAr-formula Ψ(y1, ... , ym) without any free variables excepty1, ... , ym
and any natural numbers k1, ... , km, the Ar∗-formula Ψ(k1, ... , km) is true iff the Ar∗-
formula Ψ̃(k̃1, ... , k̃m) is spr-realizable.

Proof. See Appendix B. �
Recall that {a} denotes the function g(n) = e[a]0+1([a]1, 〈n〉) and the Ar-formula

G(x1, x2, x3) of the form ∃y Ψ(y, x1, x2, x3), where Ψ(y, x1, x2, x3) is a completely
negative quantifier-free Ar-formula, defines in N the predicate {x1}(x2) = x3.

Proposition 6.20. If Υ is an interpretation of Q, then for any natural numbers e, n, and
k, the Ar∗-formula G̃(ẽ, ñ, k̃) is spr-realizable iff {e}(n) = k.

Proof. Assume that {e}(n) = k. Then the formula G(e, n, k) is true. This means
that there exists the list of natural numbers b = b1, ... , bm such that the quantifier-free
Ar∗-formula Ψ(b, e, n, k) is true. By Proposition 6.19, the formula Ψ̃(̃b, ẽ, ñ, k̃), where
b̃ = b̃1, ... , b̃m, is spr-realizable. Then the formula ∃y Ψ̃(y, ẽ, ñ, k̃), i.e., G̃(ẽ, ñ, k̃), is
spr-realizable.
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Conversely, assume that the formula G̃(ẽ, ñ, k̃) is spr-realizable. Obviously, there
exists a natural number 	 such that {e}(n) = 	. Then the formula G(e, n, 	) is true.
Arguing as above, we conclude that the formula G̃(ẽ, ñ, 	̃) is realizable. Since the
formula Ã23 is spr-realizable, it follows that the formula ¬¬E(	̃, k̃) is realizable. By
Proposition 6.17, the formula [̃k](k̃) is spr-realizable. It follows from Proposition 6.14
that the formula [̃k](	̃) is spr-realizable. On the other hand, the formula [̃	](	̃) is spr-
realizable. Then, by Proposition 6.18, k = 	. Thus we have proved that {e}(n) = k. �

Recall that H (x1, x2) is the formula ∃z (¬¬Z(z) &G(x1, x2, z)).

Proposition 6.21. If Υ is an interpretation of Q, then for any natural numbers e and n,
the Ar∗-formula H̃ (ẽ, ñ) is spr-realizable iff {e}(n) = 0.

Proof. Assume that {e}(n) = 0. Then by Proposition 6.21, G̃(ẽ, ñ, 0̃) is spr-
realizable. On the other hand, ¬¬Z(0̃) is also spr-realizable. Then the formula
¬¬Z(0̃) & G̃(ẽ, ñ, 0̃) is spr-realizable. It follows that ∃z (¬¬Z(z) & G̃(ẽ, ñ, z)), i.e.,
H̃ (ẽ, ñ), is realizable. Conversely, assume that the formula H̃ (ẽ, ñ) is spr-realizable.
Then there is a natural number k such that the formulas ¬¬Z(k), i.e., [̃0](k), and
G̃(ẽ, ñ, k) are spr-realizable. Since the formula [̃0](0̃) is also spr-realizable, it follows
from Proposition 6.15 that the formula ¬¬E(k, 0̃) is spr-realizable. Then it follows
from Proposition 6.14 that the formula G̃(ẽ, ñ, 0̃) is spr-realizable. By Proposition 6.21,
{e}(n) = 0. �
Definition 6.22. Assume that an interpretation Υ of the formula Q is fixed. A natural
number a will be called Υ-standard if there exists a natural number n such that the formula
[̃n](a) is spr-realizable.

Note that the numbers 0̃, 1̃, 2̃, ... are Υ-standard.

Proposition 6.23. If a natural number a is Υ-standard and b is a natural number such
that the Ar∗-formula ¬¬S(a, b) is spr-realizable, then the number b is Υ-standard.

Proof. Assume that the formula [̃n](a) is spr-realizable. Since the predicate Ar-
formula [n](x) is completely negative, it follows from Proposition 5.13 that there
exists a number d, namely a[n](x), such that d �0 [̃n](a). Assume that b is a natural
number such that the formula ¬¬S(a, b) is spr-realizable. We prove that the formula
˜[n + 1](b), i.e., ¬Z(b) &∀y (¬¬S(y, b) → [̃n](y)), is spr-realizable. Since the formula
Ã11 is spr-realizable, it follows that the formula ¬Z(b) is spr-realizable. We prove that
the formula ∀y (¬¬S(y, b) → [̃n](y)) is spr-realizable at level 0. Let c be an arbitrary
natural number. We prove that

ad �0 ¬¬S(c, b) → [̃n](c). (17)

If the formula ¬¬S(c, b) is not spr-realizable, then (17) holds by Proposition 3.4
Assume that the formula ¬¬S(c, b) is spr-realizable. Since the formulas ¬¬S(a, b),
¬¬S(c, b), and Ã10 are spr-realizable, it follows that the formula ¬¬E(a, c) is spr-
realizable. Since the formula [̃n](a) is realizable, it follows from Proposition 6.14 that
the formula [̃n](c) is spr-realizable. By Proposition 5.13, d �0 [̃n](c). Now (17) follows
from Proposition 3.4 Then Λy.ad �0 ∀y (¬¬S(y, b) → [̃n](y)). �
Definition 6.24. Let x ≤ y be the formula ∃z ¬¬A(z, x, y).

Proposition 6.25. Suppose that Υ is an interpretation of the formula Q. For any natural
numbers n and b, if b is not Υ-standard, then the Ar∗-formula ñ≤̃b is spr-realizable.
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Proof. Induction on n. Let n = 0. Since the formula Ã16 is spr-realizable, it follows
that the formula ¬¬Z(0̃) → ¬¬A(b, 0̃, b) is spr-realizable. Since the formula ¬¬Z(0̃)
is realizable, it follows that the formula ¬¬A(b, 0̃, b) is spr-realizable. Therefore the
formula ∃z ¬¬A(z, 0̃, b), i.e., 0̃≤̃b, is spr-realizable.

Now suppose that for any natural number b which is not Υ-standard, the formula
ñ≤̃b is spr-realizable. We have to prove that for any such number b, the formula ñ + 1≤̃b
is spr-realizable. Since the number b is not Υ-standard, it follows that the formula
¬¬Z(b) is not spr-realizable. Since the formula Ã12 is realizable, it follows that the
formula ∃y ¬¬S(y, b) is spr-realizable. This means that there exists a natural number
a such that the formula ¬¬S(a, b) is spr-realizable. By Proposition 6.23, the number
a cannot be Υ-standard. By the inductive hypothesis, the formula ∃z ¬¬A(z, ñ, a) is
spr-realizable. This means that there exists a natural number c such that the formula
¬¬A(c, ñ, a) is spr-realizable. Since the formula ¬¬S(n, n + 1) is true, it follows from
Proposition 6.19 that the formula ¬¬S(ñ, ñ + 1) is realizable. Since the formula Ã17 is
spr-realizable, it follows that the formula ¬¬A(c, ñ + 1, b) is spr-realizable. Therefore
the formula ∃z ¬¬A(z, ñ + 1, b), i.e., ñ + 1≤̃b, is spr-realizable. �

§7. Non-arithmeticity of the spr-realizability.

Theorem 7.26. If Υ is an interpretation of the formula Q, then every natural number is
Υ-standard.

Proof. Let an interpretation Υ of Q be given. Then Ã25 is spr-realizable. This means
that there are natural numbers q and p such that q �p ∀x∀y (¬B̃(x, y) ∨ ¬¬B̃(x, y)).
Then for any k, 	, we have ep+1(ep+1(q, 〈k〉)), (〈	〉) �p ¬B̃(k, 	) ∨ ¬¬B̃(k, 	)), i.e., if
[ep+1(ep+1(q, 〈k〉)), (〈	〉)]0 = 0, then the formula ¬B̃(k, 	) is spr-realizable, else the
formula ¬¬B̃(k, 	) is spr-realizable. Let a unary function g be defined as follows:

g(n) =

{
0 if the formula ¬B̃(n, ñ) is spr-realizable,
1 otherwise.

By Proposition 6.17, the number ñ can be found from n by means of a primitive
recursive function f. Thus we can represent the function g in the following form:

g(n) = sg((ep+1([ep+1(q, 〈n〉), 〈f(n)〉]0).

It is obvious that the function g is primitive recursive. Therefore, there exists a natural
number e such that for all n, g(n) = e[e]0+1(〈[e]1, n〉).

Since Υ is an interpretation of the formula Q, it follows that the formula Ã24, i.e.,

∀y∀z ¬¬∃v∀x (x≤̃z → (¬¬B̃(v, x) ≡ ¬¬H̃ (y, x))), (18)

is spr-realizable. Suppose that there exists a natural number b which is not Υ-standard.
Since the formula (18) is spr-realizable, it follows that the formula

¬¬∃v∀x (x≤̃b → (¬¬B̃(v, x) ≡ ¬¬H̃ (ẽ, x))) (19)

is spr-realizable. Now suppose that the formula

∃v∀x (x≤̃b → (¬¬B̃(v, x) ≡ ¬¬H̃ (ẽ, x))) (20)
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is spr-realizable. Then there exists a natural number a such that the formula

∀x (x≤̃b → (¬¬B̃(a, x) ≡ ¬¬H̃ (ẽ, x)))

is spr-realizable. It follows that for any n, the formula

ñ≤̃b → (¬¬B̃(a, ñ) ≡ ¬¬H̃ (ẽ, ñ))

is spr-realizable. By Proposition 6.25, the formula ñ≤̃b is spr-realizable. Then for any
n, the formula ¬¬B̃(a, ñ) ≡ ¬¬H̃ (ẽ, ñ)) is spr-realizable. Thus we have that for any n,

(a) the formula ¬¬B̃(a, ñ) is spr-realizable iff the formula ¬¬H̃ (ẽ, ñ) is realizable.
On the other hand, by Proposition 6.21, for any n,
(b) the formula ¬¬H̃ (ẽ, ñ) is spr-realizable iff g(n) = 0.
Further, by the definition of the function g, we have
(c) g(n) = 0 iff the formula ¬B̃(n, ñ) is spr-realizable.
It follows from the statements (a), (b), and (c) that for a given natural number a

and any natural number n, the following equivalence holds: the formula ¬¬B̃(a, ñ) is
spr-realizable iff the formula ¬B̃(n, ñ) is spr-realizable, and we have a contradiction if
n = a. This contradiction means that the formula (20) is not spr-realizable. Then its
negation is spr-realizable contrary to the fact that the formula (19) is spr-realizable.
Thus we have proved that there exists no natural number which is not Υ-standard. �
Proposition 7.27. If Υ is an interpretation of Q and e �m Q̃, then for any natural number
k, we can effectively find a natural number n such that the formula [̃n](k) is spr-realizable.

Proof. Assume that Υ is an interpretation of Q and numbers e and m such that
e �m Q̃ are given. Let a natural number k be given. By Proposition 6.16, for any
natural number n we can effectively determine whether the formula [̃n](k) is spr-
realizable. Sequentially iterating over natural numbers starting from 0, we find n such
that the formula [̃k](n) is spr-realizable because otherwise the number k should be not
Υ-standard in contradiction with Theorem 7.26. �
Proposition 7.28. Suppose that Υ is an interpretation of the formula Q. Then for any
completely negativeAr-formula Ψ(y1, ... , yn) without any free variables except y1, ... , yn
and any natural numbers k1, ... , kn, the Ar∗-formula Ψ(k1, ... , kn) is true iff the Ar∗-
formula Ψ̃(k̃1, ... , k̃n) is spr-realizable.

Proof. Induction on the logical complexity of a completely negative Ar-formula
Ψ(y1, ... , yn).

The case of an atomic formula Ψ(y1, ... , yn) is considered in Proposition 6.19 The
proof of Proposition 6.19 contains also a consideration of the cases when the formula
Ψ is of the form Ψ1 & Ψ2, Ψ1 → Ψ2 or ¬Ψ1 and the statement is true for the formulas
Ψ1 and Ψ2.

Assume that Ψ(y1, ... , yn) is of the form ∀yΨ0(y, y1, ... , yn). Then Ψ̃(y1, ... , yn)
is the formula ∀y Ψ̃0(y, y1, ... , yn). The inductive hypothesis states that for any
natural numbers k, k1, ... , kn, the Ar∗-formula Ψ0(k, k1, ... , kn) is true iff the Ar∗-
formula Ψ̃0(k̃, k̃1, ... , k̃n) is realizable. Assume that Ψ(k1, ... , kn) is true. It follows
that for any natural number k, the formula Ψ0(k, k1, ... , kn) is true and by the
inductive hypothesis, the formula Ψ̃0(k̃, k̃1, ... , k̃n) is spr-realizable. We prove that
∀y Ψ̃0(y, k̃1, ... , k̃n) is spr-realizable. Let 	 be an arbitrary natural number. By Theorem
7.26, the number 	 is Υ-standard. This means that there exists a natural number k such
that [̃k](	) is spr-realizable. (Moreover, by Proposition 7.27, we can find k effectively.) It
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follows from Proposition 6.15 that E(k̃, 	) is spr-realizable. By Proposition 6.14,
E(k̃, 	) & Ψ̃0(k̃, k̃1, ... , k̃n) → Ψ̃0(	, k̃1, ... , k̃n) is spr-realizable. Since the premise of this
formula is spr-realizable, it follows that its conclusion Ψ̃0(	, k̃1, ... , k̃n) is spr-realizable.
Note that Ψ0 is completely negative. By Proposition 5.13, there exists a numberaΨ0 such
that aΨ0 �0 Ψ̃0(	, k̃1, ... , k̃n) for any number 	. Then Λy.aΨ0 �0 ∀yΨ̃0(y, k̃1, ... , k̃n),
i.e., the formula Ψ̃(k̃1, ... , k̃n) is spr-realizable, what we wanted to prove.

Conversely, assume that Ψ̃(k̃1, ... , k̃n) is spr-realizable. This implies that for any
natural number k, the formula Ψ̃0(k̃, k̃1, ... , k̃n) is spr-realizable. By the inductive
hypothesis, for any k, the formula Ψ0(k, k1, ... , kn) is true. This means that the formula
Ψ(k1, ... , kn) is true. �

Theorem 7.29. For any closed completely negative Ar-formula Ψ one can effectively
construct a closed predicate formula Ψ∗ such that Ψ∗ is spr-realizable iff Ψ is true.

Proof. If Ψ is a closed completely negative Ar-formula, let Ψ∗ be the predicate
Ar-formula Q → Ψ. We show that Ψ∗ is the required predicate formula.

Claim I. If the predicate formula Ψ∗ is spr-realizable, then the Ar-formula Ψ is true.

Proof. Assume that Ψ∗ is spr-realizable. This means that for any list of Ar-formulas
Υ admissible for substituting in Ψ∗, the formula Ψ̃∗ is spr-realizable. In particular,
this holds if Υ is the list of the formulas Z(x), S(x, y), A(x, y, z), M (x, y, z), and
E(x, y). In this case, Ψ̃∗ is just the formula Q → Ψ. By Theorem 4.11, the formula
Q is spr-realizable. Thus the formula Ψ is also spr-realizable. Since Ψ is a completely
negative formula, it follows from Proposition 3.7 that Ψ is true, what we wanted to
prove. �I

Claim II. If a closed completely negative Ar-formula Ψ is true, then the predicate
formula Ψ∗ is spr-realizable.

Proof. Assume that a closed completely negative Ar-formula Ψ is true. We prove
that the predicate Ar-formula Ψ∗ is spr-realizable. Assume that the list of Ar-formulas
Υ is admissible for substituting in Ψ∗. Since Ψ is completely negative, it follows from
Proposition 5.13 that there exists a number aΨ such that the formula Ψ̃ is spr-realizable
iff aΨ �0 Ψ̃. We prove that Λn.Λy.aΨ �0 Ψ̃∗. By the definition of spr-realizability, it is
enough to prove that for any n and any b such that b �n Q̃, we have aΨ �n Ψ̃. Assume
that b �n Q̃. This means that Υ is an interpretation of the formula Q. By Proposition
7.28, the formula Ψ̃ is spr-realizable because the formula Ψ is true. As it was remarked
above, in this case aΨ �0 Ψ̃. It follows that aΨ �n Ψ̃, what we wanted to prove. �II

Claims I and II yield the statement of Theorem 7.29.

Theorem 7.30. The set of spr-realizable predicate formulas is not arithmetical.

Proof. It is obvious that the set of true completely negative closed Ar-formulas is
recursively isomorphic to the set of true closed Ar-formulas which is not arithmetical
by Tarski’s Undefinability Theorem. It follows that the set of true completely
negative closed Ar-formulas is not arithmetical too. By Theorem 7.29, the set of
true completely negative closedAr-formulas is 1-1-reducible to the set of spr-realizable
predicate formulas. It follows that the set of spr-realizable predicate formulas is not
arithmetical. �
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§A. Appendix: Proof of Proposition 6.14. Let

Υ = Z(x1),S(x1, x2),A(x1, x2, x3),M(x1, x2, x3), E(x1, x2)

be an interpretation of the formula Q. Note that the formula Ψ̃(x1, ... , xn) is built
from the formulas¬E(xi , xj),¬Z(xi),¬S(xi , xj),¬A(xi , xj, xk), and¬M(xi , xj, xk),
where 1 ≤ i, j, k ≤ n, using the logical symbols ¬, &, →, and ∀. Note that (7) is an
arithmetical instance of the completely negative predicate Ar-formula

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) & Ψ(x) → Ψ(y)). (A.1)

By Proposition 5.13, there exists a number that spr-realizes at level 0 every spr-realizable
arithmetical instance of (A.1). Thus it is enough to prove that the formula (7) is spr-
realizable at level 0 without paying any attention to the construction of a concrete
spr-realization.

We prove that the formula (7) is spr-realizable by induction on the complexity of
Ψ(x1, ... , xn).

1) If Φ(x1, ... , xn) is ¬E(xi , xj), where 1 ≤ i, j ≤ n, then Ψ̃(x1, ... , xn) is ¬E(xi , xj)
and in this case the formula (7) is

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) &¬E(xi , xj) → ¬E(yi , yj)). (A.2)

First we prove that for any k1, ... , kn, 	1, ... , 	n, the Ar∗-formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) &¬E(ki , kj) → ¬E(	i , 	j) (A.3)

is spr-realizable.
Suppose i = j. Since the formula Ã1 is spr-realizable, it follows that ¬¬E(ki , kj) is

spr-realizable. In this case, the premise of the formula (A.3) is not spr-realizable, and
by Proposition 3.4, the number aa spr-realizes the formula (A.3) at level 0.

Now suppose i �= j. If the premise of the formula (A.3) is not spr-realizable, then
by Proposition 3.4, the number aa spr-realizes the formula (A.3) at level 0. Suppose
that the premise of the formula (A.3) is spr-realizable. Then the formulas ¬¬E(ki , 	i),
¬¬E(kj, 	j), and ¬E(ki , kj) are spr-realizable. We prove that the conclusion of the
formula (A.3), i.e., ¬E(	i , 	j), is spr-realizable as well. By Proposition 3.4, it is
enough to prove that the formula ¬¬E(	i , 	j) is not spr-realizable. Suppose that this
formula is spr-realizable. Thus we have that the formulas ¬¬E(ki , 	i), ¬¬E(kj, 	j),
and ¬¬E(	i , 	j) are spr-realizable. Since the formula Ã3 is spr-realizable, it follows
that the formula ¬¬E(ki , 	j) is also spr-realizable. Since the formula Ã2 is spr-
realizable, it follows that the formula ¬¬E(	j , kj) is spr-realizable. Since the formula
Ã3 is spr-realizable, it follows that the formula ¬¬E(ki , kj) is also spr-realizable
in contradiction with the assumption that the formula ¬E(ki , kj) is spr-realizable.
Thus ¬E(	i , 	j) is spr-realizable. By Proposition 3.4, a �0 ¬E(	i , 	j) and the number
aa spr-realizes the formula (A.3) at level 0. Thus we have proved that for any
k1, ... , kn, 	1, ... , 	n, the number aa spr-realizes (A.3) at level 0. Evidently, the number
Λx1. ...Λxn.Λy1. ...Λyn.aa spr-realizes the formula (A.2) at level 0.

2) If Ψ(x1, ... , xn) is ¬Z(xi), where 1 ≤ i ≤ n, then Ψ̃(x1, ... , xn) is ¬Z(xi) and in
this case the formula (7) is

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) &¬Z(xi ) → ¬Z(yi)). (A.4)
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First we prove that for any k1, ... , kn, 	1, ... , 	n, the Ar∗-formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) &¬Z(ki ) → ¬Z(	i) (A.5)

is spr-realizable.
If the premise of the formula (A.5) is not spr-realizable, then by Proposition 3.4,

the number aa spr-realizes the formula (A.5) at level 0. Suppose that the premise
of the formula (A.5) is spr-realizable. Then the formulas ¬¬E(ki , 	i) and ¬Z(ki)
are spr-realizable. We prove that the conclusion of the formula (A.5), i.e., ¬Z(	i),
is spr-realizable as well. By Proposition 3.4, it is enough to prove that the formula
¬¬Z(	i) is not spr-realizable. Suppose that this formula is spr-realizable. Thus we have
that the formulas ¬¬E(ki , 	i) and ¬¬Z(	i) are spr-realizable. Since the formula Ã2 is
spr-realizable, it follows that the formula ¬¬E(	i , ki) is also spr-realizable. Note that
the formula Ã6 is spr-realizable. It follows that ¬¬E(	i , ki) &¬¬Z(	i ) → ¬¬Z(ki)
is realizable. Since the premise of this implication is spr-realizable, it follows that
its conclusion ¬¬Z(ki) is realizable in contradiction with the assumption that the
formula ¬Z(ki) is spr-realizable. Thus ¬Z(	i) is spr-realizable. By Proposition 3.4,
a �0 ¬Z(	i) and the number aa spr-realizes (A.5) at level 0. We have proved that
for any k1, ... , kn, 	1, ... , 	n, the number aa spr-realizes (A.5) at level 0. Evidently, the
number Λx1. ...Λxn.Λy1. ...Λyn.aa spr-realizes the formula (A.4) at level 0.

3) If Ψ(x1, ... , xnx) is¬S(xi , xj), where 1 ≤ i, j ≤ n, then Ψ̃(x1, ... , xn) is¬S(xi , xj)
and in this case the formula (7) is

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) &¬S(xi , xj) → ¬S(yi , yj)). (A.6)

First we prove that for any k1, ... , kn, 	1, ... , 	n, the formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) &¬S(ki , kj) → ¬S(	i , 	j) (A.7)

is spr-realizable.
If the premise of the formula (A.7) is not spr-realizable, then by Proposition 3.4,

the number aa spr-realizes the formula (A.7) at level 0. Suppose that the premise
of the formula (A.7) is spr-realizable. Then the formulas ¬¬E(ki , 	i), ¬¬E(kj, 	j),
and ¬S(ki , kj) are spr-realizable. We prove that the conclusion of the formula (A.7),
i.e., ¬S(	i , 	j), is spr-realizable as well. By Proposition 3.4, it is enough to prove
that the formula ¬¬S(	i , 	j) is not spr-realizable. Suppose that this formula is spr-
realizable. Thus we have that the formulas ¬¬E(ki , 	i), ¬¬E(kj, 	j), and ¬¬S(	i , 	j)
are spr-realizable. Since the formula Ã2 is spr-realizable, it follows that the formulas
¬¬E(	i , ki) and ¬¬E(	j , kj) are also spr-realizable. Note that the formula Ã9 is
spr-realizable. It follows that ¬¬E(	i , ki) &¬¬E(	j , kj) &¬¬S(	i , 	j) → ¬¬S(ki , kj)
is spr- realizable. Since the premise of this implication is spr-realizable, it follows
that its conclusion ¬¬S(ki , kj) is spr-realizable in contradiction with the assumption
that ¬S(ki , kj) is spr-realizable. Thus ¬S(	i , 	j) is spr-realizable. By Proposition 3.4,
a �0 ¬S(	i , 	j) and the number aa spr-realizes (A.7) at level 0. We have proved that
for any k1, ... , kn, 	1, ... , 	n, the number aa spr-realizes (A.7) at level 0. Evidently, the
number Λx1. ...Λxn.Λy1. ...Λyn.aa spr-realizes the formula (A.6) at level 0.

4) If Ψ(x1, ... , xn) is the formula ¬A(xi , xj, xm), where 1 ≤ i, j,m ≤ n, then
Ψ̃(x1, ... , xn) is ¬A(xi , xj, xm) and in this case the formula (7) is

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) &¬A(xi , xj, xm) → ¬A(yi , yj, ym)). (A.8)
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First we prove that for any k1, ... , kn, 	1, ... , 	n the formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) &¬A(ki , kj, km) → ¬A(	i , 	j , 	m) (A.9)

is spr-realizable.
If the premise of the formula (A.9) is not spr-realizable, then by Proposition 3.4,

the number aa spr-realizes the formula (A.9) at level 0. Suppose that the premise
of the formula (A.9) is spr-realizable. Then the formulas ¬¬E(ki , 	i), ¬¬E(kj, 	j),
¬¬E(km, 	m), and ¬A(ki , kj, km) are realizable. We prove that the conclusion of the
formula (A.9), i.e., ¬A(	i , 	j , 	m), is realizable as well. By Proposition 3.4, it is enough
to prove that the formula ¬¬A(	i , 	j , 	m) is not realizable. Suppose that this formula is
spr-realizable. Thus we have that the formulas ¬¬E(ki , 	i), ¬¬E(kj, 	j), ¬¬E(km, 	m),
and ¬¬A(	i , 	j , 	m) are spr-realizable. Since the formula Ã2 is spr-realizable, it follows
that the formulas ¬¬E(	i , ki), ¬¬E(	j , kj), and ¬¬E(	m, km) are also spr-realizable.
Note that the formula Ã15 is spr-realizable. It follows that the formula

¬¬E(	i , ki) &¬¬E(	j , kj) &¬¬E(	m, km) &¬¬A(	i , 	j , 	m) → ¬¬A(ki , kj, km)

is spr-realizable. Since the premise of this implication is spr-realizable, it follows that its
conclusion ¬¬A(ki , kj, km) is spr-realizable in contradiction with the assumption that
¬A(ki , kj, km) is spr-realizable. Thus ¬A(	i , 	j , 	m) is spr-realizable. By Proposition
3.4, we have a �0 ¬A(	i , 	j , 	m) and the number aa spr-realizes (A.9) at level 0. We
have proved that for any k1, ... , kn, 	1, ... , 	n, the number aa spr-realizes (A.9) at level
0. Evidently, the number Λx1. ...Λxn.Λy1. ...Λyn.aa spr-realizes the formula (A.8) at
level 0.

5) If Ψ(x1, ... , xn) is the formula ¬M (xi , xj, xm), where 1 ≤ i, j,m ≤ n, then
Ψ̃(x1, ... , xn) is ¬M(xi , xj, xm) and in this case the formula (7) is

∀x, y(¬¬E(x1, y1)& ···&¬¬E(xn, yn)&¬M(xi , xj, xm) → ¬M(yi , yj, ym)). (A.10)

spr-realizability of the formula (A.10) is proved by the same argument as in the case of
the formula (A.8); only one should replace A by M and use the formula Ã20 instead
of Ã15.

6) If Ψ(x1, ... , xn) is ¬Ψ0(x1, ... , xn), then Ψ̃(x1, ... , xn) is ¬Ψ̃0(x1, ... , xn). By the
inductive hypothesis, the formula

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) & Ψ̃0(x) → Ψ̃0(y)) (A.11)

is spr-realizable. We have to prove that the formula

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) &¬Ψ̃0(x) → ¬Ψ̃0(y)) (A.12)

is spr-realizable.
First we prove that for any k1, ... , kn, 	1, ... , 	n the formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) &¬Ψ̃0(k) → ¬Ψ̃0(l)), (A.13)

where k is the list k1, ... , kn and l is the list 	1, ... , 	n, is spr-realizable.
If the premise of (A.13) is not spr-realizable, then by Proposition 3.4, the number

aa spr-realizes the formula (A.13) at level 0. Suppose that the premise of the formula
(A.13) is spr-realizable. Then the formulas ¬¬E(ki , 	i)(i = 1, ... , n) and ¬Ψ̃0(k) are
spr-realizable. We prove that the conclusion of the formula (A.13), i.e., ¬Ψ̃0(l), is spr-
realizable as well. By Proposition 3.4, it is enough to prove that the formula Ψ̃0(l) is not
spr-realizable. Suppose the opposite. Thus we have that the formulas ¬¬E(ki , 	i)(i =
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1, ... , n) and Ψ̃0(l) are spr-realizable. Since Ã2 is spr-realizable, it follows that the for-
mulas ¬¬E(	i , ki)(i = 1, ... , n) are also spr-realizable. Since the formula (A.11) is spr-
realizable, then it follows that the formula ¬¬E(	1, k1) & ···&¬¬E(	n, kn) & Ψ̃0(l) →
Ψ̃0(k) is spr-realizable. Since the premise of this implication is spr-realizable, it follows
that its conclusion Ψ̃0(k) is spr-realizable in contradiction with the assumption that
the formula ¬Ψ̃0(k) is spr-realizable. Thus ¬Ψ̃0(l) is spr-realizable. By Proposition 3.4,
a �0 ¬Ψ̃0(l) and the number aa spr-realizes (A.13) at level 0. We have proved that
for any k1, ... , kn, 	1, ... , 	n, the number aa spr-realizes (A.13) at level 0. Evidently, the
number Λx1. ...Λxn.Λy1. ...Λyn.a spr-realizes the formula (A.12) at level 0.

7) If Ψ(x1, ... , xn) is Ψ1(x1, ... , xn) & Ψ2(x1, ... , xn), then Ψ̃(x1, ... , xn) is the formula
Ψ̃1(x1, ... , xn) & Ψ̃2(x1, ... , xn). By the inductive hypothesis, the formulas

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) & Ψ̃1(x) → Ψ̃1(y)) (A.14)

and

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) & Ψ̃2(x) → Ψ̃2(y)) (A.15)

are spr-realizable. We have to prove that the formula

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) & Ψ̃1(x) & Ψ̃2(x) → Ψ̃1(y) & Ψ̃2(y)) (A.16)

is spr-realizable.
First we prove that for any k1, ... , kn, 	1, ... , 	n the formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) & Ψ̃1(k) & Ψ̃2(k) → Ψ̃1(l) & Ψ̃2(l) (A.17)

is spr-realizable. Suppose that the premise of (A.17) is spr-realizable. Then the formulas
¬¬E(ki , 	i)(i = 1, ... , n) and Ψ̃1(k) & Ψ̃2(k) are spr-realizable. By Proposition 3.4,
the formulas Ψ̃1(k) and Ψ̃2(k) are spr-realizable. We prove that the conclusion of
(A.17), i.e., Ψ̃1(l) & Ψ̃2(l), is spr-realizable. By Proposition 3.4, it is enough to prove
that Ψ̃1(l) and Ψ̃2(l) are realizable. But this follows from spr-realizability of (A.14)
and (A.15). By Proposition 5.13, aΨi �0 Ψi(	1, ... , 	n) for i = 1, 2. It follows that
〈aΨ1 , aΨ2〉 �0 Ψ1(	1, ... , 	n) & Ψ2(	1, ... , 	n) and a〈aΨ1

,aΨ2
〉 spr-realizes (A.17) at level

0. If the premise of (A.17) is not spr-realizable, then by Proposition 3.4, the number
a〈aΨ1

,aΨ2
〉 spr-realizes (A.17) at level 0. We see that for any k1, ... , kn, 	1, ... , 	n, the

number a〈aΨ1
,aΨ2

〉 spr-realizes the formula (A.17) at level 0. Evidently, the number

Λx1. ...Λxn.Λy1. ...Λyn.a〈aΨ1
,aΨ2

〉 spr-realizes the formula (A.16) at level 0.

8) Assume that Ψ(x1, ... , xn) is the formula Ψ1(x1, ... , xn) → Ψ2(x1, ... , xn) and the
formulas (A.14) and (A.15) are spr-realizable. We have to prove that the formula

∀x, y(¬¬E(x1, y1)& ···&¬¬E(xn, yn)&(Ψ̃1(x) → Ψ̃2(x)) → (Ψ̃1(y) → Ψ̃2(y)) (A.18)

is spr-realizable.
First we prove that for any k1, ... , kn, 	1, ... , 	n, the formula

¬¬E(k1, 	1) & ···&¬¬E(kn, ln) & (Ψ̃1(k) → Ψ̃2(k)) → (Ψ̃1(l) → Ψ̃2(l)) (A.19)

is spr-realizable. Suppose that the premise of the formula (A.19) is spr-realizable.
This means that the formulas ¬¬E(ki , 	i) (i = 1, ... , n) and Ψ̃1(k) → Ψ̃2(k) are spr-
realizable. Since Ã2 is spr-realizable, it follows that the formulas ¬¬E(	i , ki)(i =
1, ... , n) are also spr-realizable. We prove that the conclusion of (A.19), i.e., Ψ̃1(l) →
Ψ̃2(l), is spr-realizable. If the formula Ψ̃1(l) is spr-realizable, then it follows from
spr-realizability of the formula (A.14) that the formula Ψ̃1(k) is spr-realizable.
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Therefore, the formula Ψ̃2(k) is also spr-realizable. Now spr-realizability of Ψ̃2(l)
follows from spr-realizability of the formula (A.15). Since the predicateAr-formula Ψ2

is completely negative, it follows from Proposition 5.13 that aΨ2 �0 Ψ2(l). Therefore,
by Proposition 3.4,

aaΨ2
�0 Ψ1(l) → Ψ2(l). (A.20)

If the formula Ψ̃1(l) is not spr-realizable, then (A.20) holds by Proposition 3.4. Let
b = aaΨ2

. By Proposition 3.4, the number ab spr-realizes the formula (A.19) at level 0.
If the premise of the formula (A.19) is not realizable, then the number ab spr-realizes
the formula (A.19) at level 0. Thus we have proved that for any k1, ... , kn, 	1, ... , 	n, the
number ab spr-realizes the formula (A.19) at level 0. Now it is evident that the number
Λx1. ...Λxn.Λy1. ...Λyn.ab spr-realizes the formula (A.18) at level 0.

9) Assume that Ψ(x1, ... , xn) is the formula ∀xΨ0(x, x1, ... , xn). The inductive
hypothesis states that the formula

∀x∀x∀y∀y (¬¬E(x, y) &¬¬E(x1, y1) &¬¬E(xn, yn) & Ψ̃0(x, x) → Ψ̃0(y, y)) (A.21)

is spr-realizable. We have to prove that the formula

∀x, y (¬¬E(x1, y1) & ···&¬¬E(xn, yn) &∀x Ψ̃0(x, x) → ∀x Ψ̃0(x, y)) (A.22)

is spr-realizable. First we prove that for any k1, ... , kn, 	1, ... , 	n, the formula

¬¬E(k1, 	1) & ···&¬¬E(kn, 	n) &∀x Ψ̃0(x, k) → ∀x Ψ̃0(x, l) (A.23)

is spr-realizable. Assume that the premise of the formula (A.23) is spr-realizable. This
means that the formulas¬¬E(ki , 	i) (i = 1, ... , n) and ∀x Ψ̃(x, k) are spr-realizable. We
prove that the conclusion of the formula (A.23), i.e., ∀x Ψ̃0(x, l) is spr-realizable. First
we prove that for any 	, the formula Ψ̃0(	, l) is spr-realizable. Note that the formula
Ψ̃0(	, k) is spr-realizable. Since the formula Ã1 is spr-realizable, it follows that the
formula ¬¬E(	, 	) is spr-realizable. Now it follows from spr-realizability of the formula
(A.21) that Ψ̃0(	, l) is spr-realizable. Since Ψ0 is a completely negative formula, it follows
from Proposition 5.13 that aΨ0 �0 Ψ̃0(	, l). It is evident that Λx.aΨ0 �0 ∀x Ψ̃0(x, l).
By Proposition 3.4, the number aΛx.aΨ0

spr-realizes the formula (A.23) at level 0. If
the premise of the formula (A.23) is not spr-realizable, then by Proposition 3.4, the
number aΛx.aΨ0

spr-realizes the formula (A.23) at level 0. Thus we have proved that
for any k1, ... , kn, 	1, ... , 	n, the number aΛx.aΨ0

spr-realizes the formula (A.23) at level
0. Now it is evident that the number Λx1. ...Λxn.Λy1. ...Λyn.aΛx.aΨ spr-realizes the
formula (A.22) at level 0.

§B. Appendix: Proof of Proposition 6.19. Assume that

Υ = Z(x1),S(x1, x2),A(x1, x2, x3),M(x1, x2, x3), E(x1, x2)

is an interpretation of the formula Q. The formula Ψ̃(x1, ... , xn) is built from the
formulas ¬Z(xi), ¬S(xi , xj), ¬A(xi , xj, xk), ¬M(xi , xj, xk), and ¬E(xi , xj), where
1 ≤ i, j, k ≤ n, using the logical symbols ¬, &, and →. We prove the proposition by
induction on the complexity of Ψ(x1, ... , xn).

1) If Ψ(x1, ... , xn) is ¬E(xi , xj), where 1 ≤ i, j ≤ n, then Ψ̃(x1, ... , xn) is ¬E(xi , xj).
If i = j, then the formula ¬E(ki , kj) is not true. On the other hand, since the formula
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Ã1 is spr-realizable, it follows that the formula ¬¬E(k̃i , k̃j) is spr-realizable and the
formula ¬E(k̃i , k̃j) is not spr-realizable. Thus ¬E(ki , kj) is true iff ¬E(k̃i , k̃j) is spr-
realizable. Now assume that i �= j. Suppose that the formula ¬E(ki , kj) is true.
This means that ki �= kj . We prove that the formula ¬E(k̃i , k̃j) is spr-realizable. By
Proposition 3.4, it is enough to prove that the formula ¬¬E(k̃i , k̃j) is not spr-realizable.
Assume the opposite. By Proposition 6.17, we have that the formula [̃ki ](k̃i) is spr-
realizable. Then by Proposition 6.14, the formula [̃ki ](k̃j) is spr-realizable as well. On
the other hand, the formula [̃kj ](k̃j) is spr-realizable. By Proposition 6.18, ki = kj
in contradiction with the assumption that the formula ¬E(ki , kj) is true. Thus the
formula ¬E(k̃i , k̃j) is realizable. Conversely, assume that the formula ¬E(k̃i , k̃j) is
spr-realizable. We prove that the formula ¬E(ki , kj) is true, i.e., ki �= kj . Suppose
the opposite. Then k̃i = k̃j . Since the formula Ã1 is spr-realizable, it follows that the
formula ¬¬E(k̃i , k̃j) is spr-realizable in contradiction with the assumption that the
formula ¬E(k̃i , k̃j) is spr-realizable. Thus ki �= kj and the formula ¬E(ki , kj) is true.

2) If Ψ(x1, ... , xn) is ¬Z(xi), where 1 ≤ i ≤ n, then Ψ̃(x1, ... , xn) is ¬Z(xi). Assume
that the formula ¬Z(ki) is true. This means that ki �= 0. We prove that the formula
¬Z(k̃i) is spr-realizable. Suppose the opposite. Then the formula ¬¬Z(k̃i), i.e., [̃0](k̃i)
is spr-realizable. On the other hand, the formula [̃ki ](k̃i) is spr-realizable as well. By
Proposition 6.18, ki = 0 in contradiction with the assumption that the formula ¬Z(ki)
is true. Conversely, assume that the formula ¬Z(k̃i) is spr-realizable. Then the formula
¬¬Z(k̃i), i.e., [̃0](k̃i), is not spr-realizable. We prove that the formula ¬Z(ki) is true,
i.e., ki �= 0. Suppose the opposite. Then the formula [̃0](k̃i) is spr-realizable. This
contradiction proves that the formula ¬Z(ki) is true.

3) If Ψ(x1, ... , xn) is¬S(xi , xj), where 1 ≤ i, j ≤ n, then Ψ̃(x1, ... , xn) is the formula
¬S(xi , xj). Assume that the formula ¬S(ki , kj) is true. This means that kj �= ki + 1.
We prove that the formula ¬S(k̃i , k̃j) is spr-realizable. Suppose the opposite. Then the

formula ¬¬S(k̃i , k̃j) is spr-realizable. Let us prove that the formula ˜[ki + 1](k̃j), i.e.,

¬Z(k̃j) &∀y (¬¬S(y, k̃j) → [̃ki ](y)), (B.1)

is spr-realizable. Since the formulas ¬¬S(k̃i , k̃j) and Ã11 are spr-realizable, it follows
that the formula ¬Z(k̃j) is spr-realizable. Let 	 be an arbitrary natural number. We
prove that the formula

¬¬S(	, k̃j) → [̃ki ](	) (B.2)

is spr-realizable. Assume that the premise of the formula (B.2), i.e., ¬¬S(	, k̃j), is
spr-realizable. Thus we have that the formulas ¬¬S(k̃i , k̃j) and ¬¬S(	, k̃j) are spr-
realizable. Since the formula Ã10 is spr-realizable, it follows that the formula ¬¬E(k̃i , 	)
is spr-realizable. It follows from Proposition 6.14 that the formula [̃ki ](	) is spr-
realizable. By Proposition 5.13, a[ki ](x) �0 [̃ki ](	) and by Proposition 3.4, the number
aa[ki ](x)

spr-realizes the formula (B.2) at level 0. If the premise of the formula (B.2) is not

spr-realizable, then by Proposition 3.4, the number aa[ki ](x)
spr-realizes the formula (B.2)

at level 0. Thus, for any 	, the number aa[ki ](x)
spr-realizes (B.2) at level 0. Now it is evi-

dent that Λy.aa[ki ](x)
�0 ∀y (¬¬S(y, k̃j) → [̃ki ](y)). Thus it is proved that the formula

˜[ki + 1](k̃j) is spr-realizable. Since the formula [̃kj ](k̃j) is also spr-realizable, it follows
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from Proposition 6.18 that ki + 1 = kj in contradiction with the assumption that the
formula ¬S(ki , kj) is true. Thus the formula ¬S(k̃i , k̃j) is spr-realizable. Conversely,
assume that the formula ¬S(k̃i , k̃j) is realizable. We prove that the formula ¬S(ki , kj)

is true, i.e., kj �= ki + 1. Suppose the opposite. Then the formula ˜[ki + 1](k̃j), i.e.,
(B.1), is spr-realizable. It follows that the formula ¬Z(kj) is spr-realizable. Since the
formula Ã12 is spr-realizable, it follows that there exists a natural number 	 such that
the formula ¬¬S(	, k̃j) is spr-realizable. On the other hand, since the formula (B.1) is
spr-realizable, it follows that ¬¬S(	, k̃j) → [̃ki ](	) is spr-realizable, thus the formula
[̃ki ](	) is realizable. Since the formula [̃ki ](k̃i) is also spr-realizable, it follows from
Proposition 6.15 that the formula ¬¬E(	, k̃i) is spr-realizable. By Proposition 6.14,
the formula ¬¬S(k̃i , k̃j) is spr-realizable in contradiction with the assumption that the
formula¬S(k̃i , k̃j) is spr-realizable. Thus it is proved that the formula¬S(ki , kj) is true.

4) If Ψ(x1, ... , xn) is the formula ¬A(xi , xj, xm), where 1 ≤ i, j,m ≤ n, then
Ψ̃(x1, ... , xn) is ¬A(xi , xj, xm). We prove the proposition by induction on kj . Let
kj = 0. Then k̃j = 0̃ and the formula [̃0](k̃j), i.e., ¬¬Z(k̃j), is spr-realizable. Assume
that the formula ¬A(ki , kj, km) is true. This means that km �= ki . We prove that the
formula ¬A(k̃i , k̃j , k̃m) is spr-realizable. Suppose the opposite. Then the formula
¬¬A(k̃i , k̃j , k̃m) is spr-realizable. Since the formula Ã16 is realizable, it follows that
the formula ¬¬A(k̃i , k̃j , k̃i) is spr-realizable. Since the formula Ã14 is spr-realizable, it
follows that the formula¬¬E(k̃m, k̃i) is spr-realizable. As it was proved above in the case
1), the formulaE(km, ki) is true, i.e., km = ki in contradiction with the assumption that
the formula¬A(ki , kj, km) is true. Thus we have proved that the formula¬A(k̃i , k̃j , k̃m)
is spr-realizable. Conversely, assume that the formula ¬A(k̃i , k̃j , k̃m) is spr-realizable.
We prove that the formula ¬A(ki , kj, km) is true, i.e., km �= ki . Suppose the opposite.
Then k̃m = k̃i . Since the formula Ã16 is spr-realizable, it follows that the formula
¬¬A(k̃i , k̃j , k̃m) is spr-realizable in contradiction with the assumption that the formula
¬A(k̃i , k̃j , k̃m) is spr-realizable. Thus we have proved that the formula ¬A(ki , kj, km) is
true. Now suppose thatkj = 	j + 1 and for anyki , 	m, the formula¬A(ki , 	j , 	m) is true
iff the formula ¬A(k̃i , 	̃j , 	̃m) is spr-realizable. Note that the formula ¬S(	j , kj) is not
true. As it was proved in the case 3) above, the formula ¬S(	̃j , k̃j) is not spr-realizable.
Then the formula¬¬S(	̃j , k̃j) is spr-realizable. Assume that the formula¬A(ki , kj, km)
is true. This means that km �= ki + kj . We prove that the formula ¬A(k̃i , k̃j , k̃m) is spr-
realizable. Suppose the opposite. Then the formula ¬¬A(k̃i , k̃j , k̃m) is spr-realizable.
On the other hand, since the formula ¬A(ki , 	j , ki + 	j) is not true, then by the

inductive hypothesis, the formula ¬A(k̃i , 	̃j , k̃i + 	j) is not spr-realizable. Then the

formula ¬¬A(k̃i , 	̃j , k̃i + 	j) is spr-realizable. Let 	m = ki + 	j + 1. Then the formula
S(ki + 	j , 	m) is true and the formula ¬S(ki + 	j , 	m) is not true. As it was proved

above in the case 3), the formula ¬S(k̃i + 	j , 	̃m) is not spr-realizable. Then the

formula ¬¬S(k̃i + 	j , 	̃m) is spr-realizable. Since the formula Ã17 is spr-realizable, it
follows that the formula ¬¬A(k̃i , k̃j , 	̃m) is spr-realizable. Since the formula Ã14 is spr-
realizable, it follows that the formula ¬¬E(km, 	m) is spr-realizable. As it was proved
above, the formulaE(km, 	m) is true, i.e.,km = 	m = ki + 	j + 1 = ki + kj . This means
that the formula A(ki , kj, km) is true in contradiction with the assumption that the
formula ¬A(ki , kj, km) is true. Thus we have proved that the formula ¬A(k̃i , k̃j , k̃m)
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is spr-realizable. Conversely, assume that the formula ¬A(k̃i , k̃j , k̃m) is spr-realizable.
We prove that the formula ¬A(ki , kj, km) is true. Suppose the opposite. Then the
formula A(ki , kj, km) is true. This means that km = ki + kj . Let 	m = ki + 	j . Then
km = 	m + 1 and the formula ¬A(ki , 	j , 	m) is not true. By the inductive hypothesis,
the formula ¬A(k̃i , 	̃j , 	̃m) is not spr-realizable. Then the formula ¬¬A(k̃i , 	̃j , 	̃m) is
spr-realizable. On the other hand, since the formulas S(	j , kj) and S(	m, km) are true,
it follows that the formulas ¬S(	j , kj) and ¬S(	m, km) are not true. It follows from
the case 3) above that the formulas ¬S(	̃j , k̃j) and ¬S(	̃m, k̃m) are not spr-realizable.
Then the formulas ¬¬S(	̃j , k̃j) and ¬¬S(	̃m, k̃m) are spr-realizable. Since the formula
Ã17 is spr-realizable, it follows that the formula ¬¬A(k̃i , k̃j , k̃m) is spr-realizable in
contradiction with the assumption that the formula ¬A(k̃i , k̃j , k̃m) is spr-realizable.
Thus we have proved that the formula ¬A(ki , kj, km) is true.

5) If Ψ(x1, ... , xn) is the formula ¬M (xi , xj, xm), where 1 ≤ i, j,m ≤ n, then
Ψ̃(x1, ... , xn) is ¬M(xi , xj, xm). We prove the proposition by induction on kj . Let
kj = 0. Then the formula [̃0](k̃j), i.e., ¬¬Z(k̃j), is spr-realizable. Assume that the
formula ¬M (ki , kj, km) is true. We prove that the formula ¬M(k̃i , k̃j , k̃m) is spr-
realizable. Suppose the opposite. Then the formula ¬¬M(k̃i , k̃j , k̃m) is spr-realizable.
Since the formula Ã21 is spr-realizable, it follows that ¬¬M(k̃i , k̃j , k̃j) is spr-realizable.
Since the formula Ã19 is realizable, it follows that the formula ¬¬E(k̃m, k̃j) is spr-
realizable. As it was proved above in the case 1), the formula E(km, kj) is true, i.e.,
km = kj . Then the formulaM (ki , kj, km) is true in contradiction with the assumption
that the formula ¬M (ki , kj, km) is true. Thus we have proved that the formula
¬M(k̃i , k̃j , k̃m) is spr-realizable. Conversely, assume that the formula¬M(k̃i , k̃j , k̃m) is
spr-realizable. We prove that the formula ¬M (ki , kj, km) is true. Suppose the opposite.
Then km = kj and k̃m = k̃j . Since the formula Ã21 is realizable, it follows that the
formula ¬¬M(k̃i , k̃j , k̃m) is spr-realizable in contradiction with the assumption that
the formula ¬M(k̃i , k̃j , k̃m) is spr-realizable. Thus we have proved that the formula
¬M (ki , kj, km) is true. Now suppose that kj = 	j + 1 and for any ki , 	m, the formula
¬M (ki , 	j , 	m) is true iff the formula¬M(k̃i , 	̃j , 	̃m) is spr-realizable. As it was shown in
the case 3) above, the formula ¬¬S(	̃j , k̃j) is spr-realizable. Assume that the formula
¬M (ki , kj, km) is true. We prove that the formula ¬M(k̃i , k̃j , k̃m) is spr-realizable.
Suppose the opposite. Then the formula ¬¬M(k̃i , k̃j , k̃m) is spr-realizable. Since the
formula M (ki , 	j , ki · 	j) is true, then the formula ¬M (ki , 	j , ki · 	j) is not true. By

the inductive hypothesis, the formula ¬M(k̃i , 	̃j , k̃i · 	j) is not spr-realizable. Then the

formula ¬¬M(k̃i , 	̃j , k̃i · 	j) is spr-realizable. Let 	m = ki · 	j + ki . Then the formula
A(ki · 	j , ki , 	m) is true and the formula ¬A(ki · 	j, ki , 	m) is not true. As it was proved

in the case 5) above, the formula ¬A(k̃i · 	j , k̃i , 	̃m) is not spr-realizable. Then the

formula ¬¬A(k̃i · 	j , k̃i , 	̃m) is spr-realizable. Since the formula Ã22 is spr-realizable,
it follows that the formula ¬¬M(k̃i , k̃j , 	̃m) is realizable. Since the formula Ã19 is
spr-realizable, it follows that ¬¬E(km, 	m) is spr-realizable. As it was proved in the
case 1) above, E(km, 	m) is true, i.e., km = 	m = ki + ki · 	j = ki · kj . This means
that the formula M (ki , kj, km) is true in contradiction with the assumption that the
formula¬M (ki , kj, km) is true. Thus we have proved that the formula¬M(k̃i , k̃j , k̃m) is
spr-realizable. Conversely, assume that the formula¬M(k̃i , k̃j , k̃m) is spr-realizable. We
prove that the formula¬M (ki , kj, km) is true. Suppose the opposite. Then km = ki · kj .
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Let 	m = ki · 	j . Then the formula M (ki , 	j , 	m) is true and km = 	m + ki . This
means that the formula A(	m, ki , km) is true. Then the formulas ¬M (ki , 	j , 	m) and
¬A(	m, ki , km) are not true. By the inductive hypothesis, the formula ¬M(k̃i , 	̃j , 	̃m)
is not spr-realizable. Then the formula ¬¬M(k̃i , 	̃j , 	̃m) is spr-realizable. Since the
formula ¬A(	m, ki , km) is not true, it follows from the case 4) above that the formula
¬A(	̃m, k̃i , k̃m) is not spr-realizable. Then the formula¬¬A(	̃m, k̃i , k̃m) is spr-realizable.
Since the formula Ã22 is realizable, it follows that the formula ¬¬M(k̃i , k̃j , k̃m) is spr-
realizable in contradiction with the assumption that the formula ¬M(k̃i , k̃j , k̃m) is
spr-realizable. Thus we have proved that the formula ¬M (ki , kj, km) is true.

6) If Ψ(x1, ... , xn) is ¬Ψ0(x1, ... , xn), then Ψ̃(x1, ... , xn) is ¬Ψ̃0(x1, ... , xn). By
the inductive hypothesis, for any natural k1, ... , km, the formula Ψ0(k1, ... , km)
is true iff the formula Ψ̃0(k̃1, ... , k̃m) is spr-realizable. Assume that the formula
¬Ψ0(k1, ... , km) is true. Then the formula Ψ0(k1, ... , km) is not true. By the inductive
hypothesis, the formula Ψ̃0(k̃1, ... , k̃m) it is not spr-realizable. By Proposition 3.4,
¬Ψ̃0(k̃1, ... , k̃m) is spr-realizable. Conversely, if ¬Ψ̃0(k̃1, ... , k̃m) is spr-realizable, then
the formula Ψ̃0(k̃1, ... , k̃m) is not spr-realizable. By the inductive hypothesis, the
formula Ψ0(k1, ... , km) it is not true and ¬Ψ0(k1, ... , km) is true.

7) If Ψ(x1, ... , xn) is Ψ1(x1, ... , xn) & Ψ2(x1, ... , xn), then Ψ̃(x1, ... , xn) is the
formula Ψ̃1(x1, ... , xn) & Ψ̃2(x1, ... , xn). By the inductive hypothesis, for i = 1, 2 and
any natural numbers k1, ... , km, the formula Ψi(k1, ... , km) is true iff the formula
Ψ̃i(k̃1, ... , k̃m) is realizable. The formula Ψ(k1, ... , km) is true iff the formulas
Ψ1(k1, ... , km) and Ψ2(k1, ... , km) are both true. By the inductive hypothesis, this is
possible iff the formulas Ψ̃1(k̃1, ... , k̃m) and Ψ̃2(k̃1, ... , k̃m) are both spr-realizable and,
by Proposition 3.4, the formula Ψ̃(k̃1, ... , k̃m) is spr-realizable.

8) If Ψ(x1, ... , xn) is Ψ1(x1, ... , xn) → Ψ2(x1, ... , xn), then Ψ̃(x1, ... , xn) is the
formula Ψ̃1(x1, ... , xn) → Ψ̃2(x1, ... , xn). The inductive hypothesis is the same as in
the previous case. Assume that the formula Ψ(k1, ... , km) is true. This means that the
formula Ψ1(k1, ... , km) is false or the formula Ψ2(k1, ... , km) is true. In the first case,
by the inductive hypothesis, the formula Ψ̃1(k̃1, ... , k̃m) is not spr-realizable and, by
Proposition 3.4, the formula Ψ̃(k̃1, ... , k̃m) is spr-realizable. In the second case, by the
inductive hypothesis, the formula Ψ̃2(k̃1, ... , k̃m) is spr-realizable and, by Proposition
3.4, the formula Ψ̃(k̃1, ... , k̃m) is spr-realizable. Conversely, assume that the formula
Ψ̃(k̃1, ... , k̃m) is spr-realizable. Then the formula Ψ(k1, ... , km) should be true because
otherwise the formula Ψ1(k1, ... , km) is true and the formula Ψ2(k1, ... , km) is false. By
the inductive hypothesis, the formula Ψ̃1(k̃1, ... , k̃m) is spr-realizable and the formula
Ψ̃2(k̃1, ... , k̃m) is not realizable. But this is impossible if the formula Ψ̃(k̃1, ... , k̃m) is
spr-realizable.
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