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value of  we use the relation  to write
for some integer . Considering the inequality , we obtain the

validity of  for any prime  other than 2 or 5. This fact,

together with , implies that . Thus we have
 with . Now, if  then the conditions
 and  imply that , and consequently

.  A similar argument implies (1) for the other values of .

a 10a ≡ −1 (mod p) 10a + 1 = pk
k 0 < a < p

1
p

< k < 10 +
1
p

p

k ≠ 10 0 < k < 10
pk ≡ 1 (mod 10) 0 < k < 10 u = 1
pk ≡ 1 (mod 10) 0 < k < 10 k = 1

a =
p − 1

10
u

This completes the proof.
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103.31 Factorising numbers with oracles

A useful classroom game
A teacher asks the students to determine the values of two positive

integers ,  from the given values of the product , and the sum .
The students try to factorise the product, and see if the sum of the factors is
the same as that for the given sum. If we set ,  to be primes of modest
size, the game becomes more of a challenge, because factorisation is no
longer easy.

a b ab a + b

a b

The aim of the exercise is, of course, the introduction of the quadratic
equation. The identity  reveals that
the game amounts to finding the roots of the equation obtained by setting the
right-hand side to be zero. There is now a good incentive for the derivation
of the formula for the solutions of a quadratic equation, and the game is over
with the values for ,  being given by

(x − a) (x − b) = x2 − (a + b) x + ab

a b

a, b =
(a + b) ± (a + b)2 − 4ab

2
. (1)

However, a well-informed teacher may remind the students of the salient
point concerning the game:

The factors of a product can be recovered from the values of the
product and the sum of the factors, without resorting to a brute
force factorisation scheme.
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A generalisation
Generalising the game we let

N = p1p2 … pk, (2)
where  are distinct primes; we suppose that the value of  is
given, but not any of the primes . Consider the accompanying polynomial

p1, p2,  … , pk N
ph

f (x) = (x − p1)(x − p2)… (x − pk) = xk − e1x
k −1 + e2x

k −2 −  …  + (−1)kek  (3)
where  is the  elementary symmetric polynomial of , that iseh h th p1, p2,  … , pk

eh = ∑
1 ≤ j1 < j2 <…< jh ≤ k

pj1pj2… pjk,  h = 1,  2, … , k; (4)

in particular,  is known. If we are supplied with the values for all the
other coefficients , then we can recover the individual values of the primes

. More specifically, for any input , we can now compute , so that the
interval bisection method for the evaluation of the roots of  can be
used to deliver .

ek = N
eh

ph x f (x)
f (x) = 0

ph

Using Horner's method to evaluate an individual , the number of
multiplications involved is only , and . The number of bisections
required for a single root  is of order , so that the complete
factorisation of  can be done ‘efficiently’, in the sense that the total
number of basic arithmetic operations involved is bounded by a fixed power
of ; in common parlance, the procedure is ‘polynomial-time in ’.
We remark, en passant, that a similar process for the determination of
whether a number is a perfect power of an integer is also efficient.

f (x)
k 2k < N

ph log N
N

log N log N

The arithmetic functions  and φ (n) σ (n)
Euler's totient function  counts the numbers  in  which

are coprime with ; it is a multiplicative arithmetic function in the sense that
 when ,  are coprime. The arithmetic function

is the sum of the divisors of , and it is also multiplicative. It then follows
from (2) that

φ (n) k 1 ≤ k ≤ n
n

φ (mn) = φ (m) φ (n) m n σ (n)
n

φ(N) = (p1 − 1)(p2 − 1)… (pk − 1), σ(N) = (p1 + 1)(p2 + 1)… (pk + 1),   (5)
so that, by (3),

φ (N) = (−1)k f (1) ,  σ (N) = (−1)k f (−1) .
In general, the factorisation of a large number  is difficult, and indeed so is
the determination of the values for either  or . If we know the
prime factorisation of , then  and  can be computed from their
respective formulae; at least in this sense, one suspects that the factorisation
of  is ‘more difficult’ than the determination of  and . There is
now the interesting problem of considering the converse:

N
φ (N) σ (N)

N φ (N) σ (N)

N φ (N) σ (N)

Can the values of and be used to deliver the
factorisation of  efficiently?

φ (N) σ (N)
N
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The -oracle and the -oracle.Φ Σ
By an oracle, we mean a ‘black box’ that will deliver answers to

specific questions involving computations; it will deliver only the sought-
after answer, and not the procedure on how it is found. The notion of an
oracle was first introduced by Alan Turing in his PhD thesis, and it is now a
useful abstract concept in the study of computability and complexity theory.

Suppose then that there is a -oracle which, from any input , will
deliver the value of ; similarly a -oracle will deliver the value of

. Our factorisation problem then amounts to:

Φ N
φ (N) Σ

σ (N)
Armed with such oracles, can we devise an efficient scheme
to factorise  ?N

For  in (2), we have  , and we already know that  can
be factorised with the use of either the -oracle, or the -oracle. Indeed, by
(1), we have

k = 2 e1 = p1 + p2 N
Φ Σ

p1, p2 =
e1 ± e2

1 − 4N
2

, where  e1 = N − φ(N) + 1, or e1 = σ(N) − N − 1;   (6)

the two formulae for  follow frome1

φ (N) = f (1) = 1 − (p + q) + pq = 1 − e1 + N,
σ (N) = f (−1) = 1 + (p + q) + N = 1 + e1 + N.

For , the polynomial  in (3) is a cubic with coefficients ,
satisfying

k = 3 f (x) e1 e2

φ (N) = −f (1) = −1 + e1 − e2 + N,
σ (N) = −f (−1) = 1 + e1 + e2 + N.

The oracles can thus be used to deliver

2e1 = φ (N) + σ (N) − 2N,  2e2 = σ (N) − φ (N) − 2, (7)
and the primes , ,  can now be recovered from , either using
the formula for the solutions to the cubic equation, or from the interval
bisection method.

p1 p2 p3 f (x) = 0

The case N = p2q
The argument does not apply when the primes  are not distinct,

because (5) is no longer valid.  Consider the case when , where ,
are distinct primes to be found. We now have , so that

ph
N = p2q p q

φ (p2) = p2 − p

φ (N) = (p2 − p) (q − 1) = N − p2 − pq + p.
The term  here can be eliminated by replacing it with , delivering the
cubic equation for :

pq N / p
p

x3 − x2 − (N − φ (N)) x + N = 0. (8)
Taking  from the oracle, the integer solution  is then the required
prime, and .

φ (N) x = p
q = N / p2
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An example
Note that, in the previous two sections, the -oracle is invoked only for

the case when  is a product of three distinct primes. We state our results as
a theorem and illustrate it with an example.

Σ
N

Theorem: Let  be a number with at most three not necessarily distinct
prime divisors. If there are only two distinct prime divisors of  then, given
the value of , the factorisation of  can be delivered in polynomial-
time in . If there are three distinct prime divisors of  then, given also
the value of , the factorisation of  can still be delivered in
polynomial-time in .

N
N

φ (N) N
log N N

σ (N) N
log N

Let us take

N = 148859337163,
which is not a perfect power of an integer, as can be checked easily. For our
purpose, we do not require a primality test for . (The AKS test is efficient;
see, for example, [1].) Instead, we ask the oracles to deliver for us

N

σ (N) = 148805922960,  σ (N) = 148912769012,
and from , we deduce that  has at least two distinct prime
divisors.

φ (N) < N − 1 N

Suppose first that , with . This can be ruled out easily,
without even considering the quadratic concerned. For example, by (6), we
should have , which is false.

N = pq p < q

φ (N) + σ (N) = 2N + 2
Suppose next that , with . This can also be

disposed of without considering the cubic concerned. Thus, by (7),
, which is too small because

, so that the arithmetic-geometric means inequality for ,
,  is violated.

N = pqr p < q < r

p + q + r = e1 = 8823 < 9000
N = pqr > 1011 p
q r

Thus, if N satisfies the hypothesis of the theorem, then  with ,
 being distinct primes, and the cubic in (8) is 

N = p2q p
q

x3 − x2 − 53414203x + 148859337163 = 0.
The integer root is , and .x = p = 3881 q = N / p2 = 9883

Summary
Because of the use of oracles, some readers may consider our theorem

to be a somewhat vacuous statement, or perhaps a pointless exercise at best.
However, integer factorisation is an active area of research and, as we
already remarked, the use of oracles to study the complexity of a
computational task is no idle pursuit. Indeed, the following theorem [2] is
one of the current results related to our problem stated in the third section
above.
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Theorem (Morain–Renault–Smith, 2018): Let  be a product of distinct
primes, with the value of  also given. Suppose that there is a prime
divisor  of  satisfying . Then  can be recovered in polynomial-
time in .

N
φ (N)

p N p > N p
log N

References
1. A. Granville, It is easy to determine whether a given number is prime,

Bull. Amer. Math. Soc., 42 (2005) pp. 3-38.
2. F. Morain, G. Renault, B. Smith, Deterministic factoring with oracles,

https://hal.inria.fr/hal-01715832
10.1017/mag.2019.113 PETER SHIU

353 Fulwood Road, Sheffield S10 3BQ
e-mail: p.shiu@yahoo.co.uk

103.32 More on the gaps between sums of two squares 

Introduction
In the Note [1], Peter Shiu presented some interesting results about the

possible length of gaps between integers that are sums of two squares. Here
we develop this investigation a little further. There are two main theorems in
[1]. We will present a minor strengthening (apparently not previously
known) of one of these theorems, and a greatly simplified (albeit weaker)
version of the other.

Denote by  the set of positive integers that are expressible as a sum of
two squares.  We allow one of the squares to be zero, so ordinary squares
are included in .

Σ2

Σ2

Our topic is the possible size of gaps between successive elements of
. A trivial starting observation is that gaps of length 1 occur infinitely

often, since for each , the numbers  and  are in .
Σ2

n n2 n2 + 1 Σ2

We review a few well-known facts about .Σ2

(E1) No element of  is congruent to 3 mod 4, since squares are congruent
to 0 or 1 mod 4.

Σ2

(E2)  if, and only if, . We give the proof, since it is quick
and easy. If , then .
Conversely, if , then  is
even, so  and  are even, and we can express  as

.

2n ∈ Σ2 n ∈ Σ2
n = a2 + b2 2n = (a + b)2 + (a − b)2

2n = a2 + b2 (a + b)2 = a2 + b2 + 2ab
a + b a − b n

[ 1
2 (a + b)]2 + [ 1

2 (a − b)]2

(E3) Prime numbers that are congruent to 1 mod 4 are in . There are
many ways to prove this. My favourite one was described in the
Gazette Note [2].

Σ2

(E4)  if, and only if, all primes that are congruent to 3 mod 4 occur
to an even power in the factorisation of . This builds on (E3), and is
the standard characterisation of sums of two squares, e.g. see [3,
Theorem 366].

n ∈ Σ2
n
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