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Abstract

We consider conjugacy classes in a locally compact group G that support finite G-invariant measures. If
G is a property (M) extension of an abelian group, in particular, if G is a metabelian group, then any
such conjugacy class is relatively compact. As an application, centralisers of lattices in such groups
have bounded conjugacy classes. We use the same techniques to obtain results in the case of totally
disconnected, locally compact groups.
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1. Introduction

Let G be a locally compact group. For x ∈ G, let Cx = {gxg−1 | g ∈ G} be the conjugacy
class containing x and let B(G) = {x ∈ G | Cx is compact}. It is easily seen that
B(G) is a characteristic subgroup containing the centre Z(G) = {x ∈ G | gx = xg for all
g ∈ G}. In general, B(G) is not closed. There are locally compact groups G with B(G)
as a proper dense subgroup (see [9, Proposition 3]), but if G is a totally disconnected,
locally compact (tdlc) group that is generated by a compact set, then [7, Theorem 2]
shows that B(G) is closed. The subgroup B(G) plays a crucial role in the location of
finite central (positive) measures. A measure is called central if it is invariant under
the conjugate action of the group G (see [4, Theorem 1.5]).

A conjugacy class supporting a central measure is in B(G) for connected Lie
groups [5, Theorem 1′]. We prove this result for a certain extension of abelian
groups (see Theorem 1.1) and obtain interesting applications (see Corollary 3.1) as
in [5, Theorem 3]. We also obtain some general results in the case of tdlc groups (see
Section 4).
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There is a close connection with finite covolume subgroups (see [4, 5]). In this
context, we say that a locally compact group has property (M) if, for any closed
subgroup H of G with G/H admitting a finite G-invariant measure, G/H is compact
(see [1, 8] for further details on property (M)). It can be easily seen that abelian groups
and compact groups have property (M). We obtain the following result.

THEOREM 1.1. Let G be a locally compact group and let x ∈ G be such that μ(Cx) = 1
for some conjugate-invariant finite measure μ. If G has a closed abelian normal
subgroup A such that G/A has property (M), then Cx has compact closure: that is,
x ∈ B(G).

In particular, if G is a metabelian locally compact group, then Cx has compact
closure: that is, x ∈ B(G).

REMARK 1.2. An example of a metabelian group G having a finite covolume subgroup
that is not cocompact is provided in [1]. Hence, groups under consideration in
Theorem 1.1 need not have property (M).

2. Automorphisms of bounded displacement

Following [9], a (bicontinuous) automorphism α of a locally compact group G is
called an automorphism of bounded displacement if {α(x)x−1 | x ∈ G} has compact
closure. If α is an inner automorphism defined by x ∈ G (that is, α(g) = xgx−1), then α
is an automorphism of bounded displacement if and only if x ∈ B(G). Thus, in order
to identify elements in B(G), we study automorphisms of bounded displacement. We
obtain the following result.

PROPOSITION 2.1. Let G be a locally compact group containing a closed abelian nor-
mal subgroup A such that G/A has property (M). Suppose that α is an automorphism
of G such that G/H has a finite G-invariant measure, where H = {x ∈ G | α(x) = x}
and α(A) = A. Then α is an automorphism of bounded displacement.

Our proof relies on certain shift-invariant properties in convolutions of probability
measures on locally compact groups. For a locally compact group X, let M(X) be
the space of all regular Borel probability measures (that is, positive measures with
total measure one) on X equipped with the weak* topology: that is, ρn → ρ ∈ M(X) if∫

f (x) dρn(x)→
∫

f (x) dρ(x) for all continuous bounded functions f on X. For x ∈ X
and ρ inM(X), xρ and ρx ∈ M(X) are defined by xρ(E) = ρ(x−1E) and ρx(E) = ρ(Ex−1)
for any Borel set E in X. The convolution of two measures μ, λ ∈ M(X) is denoted by
μ ∗ λ and is defined by μ ∗ λ(E) =

∫
μ(Ex−1) dλ(x) for any Borel set E in X. For any

automorphism α of X and μ ∈ M(X), define α(μ) by α(μ)(E) = μ(α−1(E)) for any Borel
set E in X (see [6] for more details on probability measures on groups).

LEMMA 2.2. Let G be a locally compact group and let A be a closed abelian
normal subgroup of G. Suppose that β : G→ A is a continuous map such that β(xy) =
β(x)xβ(y)x−1 for all x, y ∈ G. Then H = {x ∈ G | β(x) = e} is a closed subgroup. If G/H
has a finite G-invariant measure, then β(A) is contained in a compact subgroup of A.
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PROOF. Since β is continuous, H is a closed subgroup. Assume that G/H carries
a finite G-invariant measure μ, say. Normalising μ, we may assume that μ is a
probability measure. For x ∈ G and h ∈ H, we have β(xh) = β(x). Hence, β induces
a continuous map β̃ : G/H → A defined by β̃(xH) = β(x) for all x ∈ G. Take λ = β̃(μ).
Then λ is a Borel probability measure on A such that β(x)xλx−1 = λ for all x ∈ G.
Since A is an abelian group, λ = β(a)aλa−1 = β(a)λ. Let M = {a ∈ A | aλ = λ}. Then,
by [6, Theorems 1.2.4 and 1.2.7], M is a compact subgroup of A and β(A) ⊂ M. �

PROOF OF PROPOSITION 2.1. Let N = AH. Then N is a closed α-invariant subgroup
of G. Since H ⊂ N, G/N has a finite G-invariant measure. Since G/N is a quotient of
G/A, the assumption that G/A has property (M) implies that G/N is compact.

Define β on N by β(x) = α(x)x−1 for all x ∈ N. Since α(x) = x for all x ∈ H, we
have β(x) ∈ A. Thus, β : N → A is a well-defined continuous map. Also, β(xy) =
β(x)xβ(y)x−1 for all x, y ∈ N and H = {x ∈ N | β(x) = e}. Since G/H has a finite
G-invariant measure and H ⊂ N, it follows that N/H has a finite N-invariant measure.
By Lemma 2.2, there is a compact subgroup M of A such that β(A) ⊂ M. Since
β(ah) = β(a), we have β(AH) ⊂ M and, since AH is dense in N, β(N) ⊂ M. Thus,
α(x) ⊂ Mx for all x ∈ N and M is a compact subgroup of A.

Since G/N is compact, there is a compact subset C of G such that G =
CN. For g ∈ G, there are x ∈ N and y ∈ C such that g = yx. This implies that
α(g)g−1 = α(y)α(x)x−1y−1 ⊂ α(C)MC−1. Thus, α is an automorphism of bounded
displacement. �

3. Theorem 1.1 and applications

PROOF OF THEOREM 1.1. Let α be the inner automorphism defined by x−1 and define
H = {g ∈ G | gx = xg}. The group G has a canonical action on G/H on the left and
G acts on Cx by conjugation. The map θ : Cx → G/H defined by θ(gxg−1) = gH is a
well-defined G-equivariant Borel isomorphism and θ(μ) is a finite G-invariant measure
on G/H. It follows from Proposition 2.1 that α is an automorphism of bounded
displacement. Thus, there is a compact set C such that α(g) ⊂ Cg for all g ∈ G. This
implies that x−1gxg−1 ⊂ C for all g ∈ G and hence gxg−1 ⊂ xC for all g ∈ G. Thus, the
conjugacy class Cx containing x has compact closure. �

The following result on the centraliser of finite covolume subgroups is a kind of
density theorem in the sense that any element commuting with a finite covolume
subgroup commutes with all elements up to a compact set.

COROLLARY 3.1. Let G be a locally compact group containing a closed abelian
normal subgroup A such that G/A has property (M) and H is a finite covolume
subgroup of G. Then Z(H) ⊂ B(G).

PROOF. Let x ∈ Z(H). Then Z(x) contains H, and hence G/Z(x) has a finite G-invariant
measure. Let η : G/Z(x)→ Cx be η(g) = gxg−1. Then η is a well-defined continuous
map preserving the G-action. Hence, the conjugacy class of x supports a finite

https://doi.org/10.1017/S0004972724001266 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724001266


4 C. R. E. Raja [4]

G-invariant measure. Therefore, by Theorem 1.1, the conjugacy class of x has compact
closure. Thus, Z(H) ⊂ B(G). �

We now look at the case when A, as above, has no compact subgroups. As examples,
R

n and Zn have no compact subgroups.

COROLLARY 3.2. Let G, H, A and α be as in Proposition 2.1. Suppose that A has
no compact subgroups. Then G/H is compact. In particular, if x ∈ G is such that
μ(Cx) > 0 for some conjugate-invariant finite measure μ, then the corresponding
conjugacy class Cx is compact.

PROOF. Let β : A→ A be β(a) = α(a)a−1 for all a ∈ A. Then β is a continuous map and
β(xy) = β(x)xβ(y)x−1 = β(x)β(y) as A is abelian. By Lemma 2.2, β(A) is contained in a
compact subgroup of A. Since A has no compact subgroup, β is trivial. Thus, A ⊂ H
and G/H is a quotient of G/A. By the assumption that G/A has property (M), G/H is
compact. �

4. Tdlc groups

We now consider tdlc groups. For an automorphism α of a tdlc group G,
define the α-invariant subgroups Uα = {x ∈ G | limn→∞ α

n(x) = e} and Mα = {x ∈ G |
{αn(x) | n ∈ Z} is compact}, where Uα is called the contraction group of the automor-
phism α (see [2] for various results on Uα and Mα). In the tdlc case, we obtain the
following result.

PROPOSITION 4.1. Let G be a tdlc group and let α be an automorphism of G. Suppose
that G/H has a finite G-invariant measure, where H = {x ∈ G | α(x) = x}. Then α fixes
a compact open subgroup of G and Mα is a subgroup of finite index in G.

PROOF. Let N = HUα. Since α(x) = x for x ∈ H, H normalises Uα. Then N is a tdlc
group invariant under α. Let β : N/H → N be β(xH) = α(x)x−1 for all x ∈ N. Since
α(x) = x for all x ∈ H, β is a well-defined continuous map on N/H. Since N = HUα
and α(x) = x for all x ∈ H, we have β(N) ⊂ Uα. By [2, Corollaries 3.27 and 3.30],
Uα = U0Uα, where U0 is an α-invariant compact subgroup of G. In fact, we have
U0 = Uα ∩ Uα−1 . This implies that αn(x)U0 → U0 for all x ∈ Uα.

Let ᾱ : N/H → N/H be ᾱ(xH) = α(x)H for all x ∈ N. Since α(H) = H, ᾱ is a
continuous map (in fact, ᾱ is an N-equivariant homeomorphism).

For x ∈ N, β(ᾱ(xH)) = α2(x)α(x−1) = α(β(x)). Thus, βᾱ = αβ.
Since H ⊂ N, N/H has an N-invariant probability measure μ, say. Let λ = β(μ).

Since β is a continuous map, λ is a probability measure on N. Since μ is an N-invariant
probability measure and ᾱ(gxH) = α(g)ᾱ(xH) for all g, x ∈ G, it follows that μ is
ᾱ-invariant. Since βᾱ = αβ, λ is α-invariant, and hence λ = αn(λ) for all n.

Let ρ be the normalised Haar measure on the compact subgroup U0. Since α(U0) =
U0, ρ is α-invariant. Since αn(x)U0 → U0 for all x ∈ Uα, we have αn(λ ∗ ρ)→ ρ. But
αn(λ ∗ ρ) = αn(λ) ∗ αn(ρ) = λ ∗ ρ, so λ ∗ ρ = ρ. By considering the supports of the
measures, we see that λ is supported on U0.
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Since μ is an N-invariant measure on N/H, the support of μ is N. Since β(μ) = λ,
β(N) is the support of λ, and hence β(N) ⊂ U0. This implies that α(x) ⊂ U0x for all
x ∈ Uα. Let x ∈ Uα. Then, for each n ≥ 1, we have αn(x) = gnx for some gn ∈ U0. Since
U0 is compact and αn(x)→ e as n→ ∞, we have x ∈ U0. Thus, Uα ⊂ U0 ⊂ Uα, and
hence Uα = U0. Similarly, we may show that Uα−1 = U0. By [2, Proposition 3.24], α
fixes a compact open subgroup K, say.

Since Mα = {x ∈ G | {αn(x) | n ∈ Z} is compact}, K ⊂ Mα, and so Mα is open. Since
α(x) = x for all x ∈ H, H ⊂ Mα. This implies that G/Mα is a discrete G-space with a
finite G-invariant measure and hence G/Mα is finite. �

As a consequence, we have the following result on property (M) for tdlc groups.

COROLLARY 4.2. Let G be a tdlc group and let H be a closed subgroup of G such that
G/H has a finite G-invariant measure. If H is a compactly generated abelian group,
then G/H is compact.

REMARK 4.3. For the metabelian counter-example provided in [1], the finite covolume
subgroup H, although abelian, is not compactly generated. It may be noted that any
compactly generated abelian tdlc group is a direct product of Zn and a compact
group.

PROOF OF COROLLARY 4.2. Let H be a compactly generated abelian subgroup of G
with finite covolume. For x ∈ H, let αx be the inner automorphism defined by x on
G: that is, αx(g) = xgx−1 for all g ∈ G. Since H is abelian, H ⊂ Z(x). Thus, G/Z(x)
has a finite G-invariant measure. By Proposition 4.1, each x ∈ H fixes a compact open
subgroup in G. Since H is a compactly generated abelian group, [10, Theorem 5.9]
implies that H normalises a compact open subgroup K of G. Then HK is a open
subgroup G and hence G/HK is a discrete G-space with a finite G-invariant measure.
Therefore, G/HK is finite. Thus, G/H is compact. �

We also have the following result for expansive automorphisms. An automorphism
α of a tdlc group G is called expansive if

⋂
αn(U) = {e} for some compact open

subgroup U of G (see [3] for more details on expansive automorphisms on tdlc
groups).

COROLLARY 4.4. Let G be a tdlc group and let α be an expansive automorphism of
G. Suppose that G/H has a finite G-invariant measure, where H = {x ∈ G | α(x) = x}.
Then α fixes a compact open subgroup of G that is normalised by H and G/H is
compact.

PROOF. By Proposition 4.1, Uα = Uα−1 = U0 = Uα ∩ Uα−1 . Since α is expansive on G,
Lemma 1.1 of [3] implies that UαUα−1 is open, and hence U0 is open. Since α(x) = x
for all x ∈ H and U0 = Uα, it follows that H normalises U0. Since G/H has a finite
G-invariant measure, G/HU0 is a discrete G-space with a finite G-invariant measure
and hence G/HU0 is finite. Thus, G/H is compact. �
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