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A theorem is proven for kth-order polynomial finite-difference equations that
guarantees the divergence of solutions. A ‘basin of divergence’ is characterized and an
order of divergence is provided. The basin of divergence is shown to depend on
k independent parameters. An unconventional compactification method is used.
Applications include the multi-step method in the numerical integration of ordinary
differential equations, quadratic equations and the Henon map.

1. Introduction

Let un, n = 0, 1, 2, . . . , denote scalars. Let y, yn, x, xn and p be column vectors
in R

k. Let

y† = (y1, y2, . . . , yk), y†
n = (y1

n, y2
n, . . . , yk

n),

x† = (x1, x2, . . . , xk), x†
n = (x1

n, x2
n, . . . , xk

n),

p† = (p1, p2, . . . , pk)

denote row vectors that are the transposes of y, yn, x, xn, p, respectively. Let h(y)
be a scalar polynomial of degree L > 1. The primary result of this paper is the
following theorem.

Theorem 1.1. Given the kth-order polynomial finite-difference equation, we have

un+k = h(un, un+1, . . . , un+k−1) = h0 + h1 + · · · + hL, (1.1)

where hj(un, un+1, . . . , un+k−1) are homogeneous polynomials of degree j.
Let L > 1, L being the degree of hL(un, un+1, . . . , un+k−1) and let the scalar pk

be such that

[pk]2 = 1, [pk]L+1 =
hL(0, 0, . . . , 0, pk)
|hL(0, 0, . . . , 0, pk)| . (1.2)

Then, (1.1) possesses a k-parameter family of solutions such that

lim
n→∞

un+j−1

un+k−1
= 0, j = 1, 2, . . . , k − 1, lim

n→∞
un = ±∞. (1.3)
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The + or − sign that is used in (1.3) depends on whether pk in (1.2) is +1 or
−1, respectively.

Remark 1.2. If L is odd and h(0, 0, . . . , 0, 1) < 0, then the above conclusion need
not hold. The reader will find it easy to substantiate this remark. For example, one
can show that the solution sequence to un+1 = −uL

n possesses one subsequence that
converges to ∞ and another subsequence that converges to −∞.

An immediate conclusion of theorem 1.1 is the following.

Corollary 1.3. No finite fixed point of (1.1) that is subject to (1.3) can be globally
asymptotically stable.

kth-order polynomial difference equations occur in numerous instances in both
theory and applications. They are a means for modelling natural phenomena. They
also occur in conjunction with polynomial differential equations when their dis-
cretization is called for in numerical approximations. This is substantiated by
a voluminous literature. For modelling and various applications, see, for exam-
ple, [1,4,5,7,13,21,24,31]. For a partial list of the immense literature on dynamical
systems, see, for example, [4,18,21,26,28–30]. For the numerical treatment of ordi-
nary differential equations, see, for example, [4,6,19,20,24]. For textbooks that treat
finite-difference equations and systems, see, for example, [4, 11, 22–24, 30, 31]. The-
orem 1.1 could shed some light on the stability and instability of numerical meth-
ods associated with polynomial autonomous differential equations. It is noteworthy
that multi-step numerical methods applied to polynomial autonomous differential
equations lead in a natural way to kth-order polynomial autonomous difference
equations. Moreover, the location of a bounded invariant set, of a bounded attrac-
tor or of a strange attractor is of considerable interest in studies of polynomial
autonomous difference equations. Therefore, theorem 1.1 could help in searching
for these sets, as it guarantees the existence of a basin of divergence. It goes with-
out saying that the location of a basin of divergence is mutually exclusive to, say,
the location of a bounded attractor set. In a chaotic system, slight errors in initial
conditions could give rise to results that differ wildly from the correct result. In this
sense, chaos is also intimately related to stability. The fact that a kth-order poly-
nomial finite-difference equation could possess a k-parameter family of solutions
that diverge reflects its affinity to becoming chaotic for a large set of large initial
data. For an intimate relation between stability and chaos see [10]. For related work
on asymptotic behaviour see [8, 15,16].

Theorem 1.1 will be proved in several steps. The proof uses an unconventional
mapping as a compactification tool. Unlike [2,3,17,26,28,29], here the compactifi-
cation proposed in [14] that was applied in [12] to dynamical systems is used. The
content of the remaining sections of this paper is as follows. Sections 2 and 3 bring to
the fore a few lemmas that are needed in order to prove theorem 1.1. In § 2 the orig-
inal difference equation (1.1) that engages the scalar variables un is converted into
an equivalent vector difference equation that engages a new vector variable yn. The
latter vector equation is then transformed by the mapping yn = (1 − x†

nxn)−1xn

into a compactified difference vector system that engages the bounded variable xn.
Section 3 elaborates on a perturbation lemma. Section 4 concludes the proof of
theorem 1.1. Section 5 discusses some applications.
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2. Preliminary lemmas

Lemma 2.1. Define

y1
n := un, yj

n := un+j−1, . . . , y
k
n := un+k−1, y†

n = [y1
n, y2

n, . . . , yk
n]. (2.1)

The scalar equation (1.1) can be cast in the form

un+k = h(yn) = h0 + h1(yn) + · · · + hL−1(yn) + hL(yn),

hj(yn) = hj(y1
n, y2

n, . . . , yk
n),

}
(2.2)

where hj(yn), j = 0, 1, 2, . . . , L, L > 1, are homogeneous scalar polynomials, in the
variables y1

n, y2
n, . . . , yk

n, of degree j.
Moreover, the scalar equation (1.1) is equivalent to the first-order system of dif-

ference equations

yn+1 = f(yn) =

⎡
⎢⎢⎢⎢⎢⎣

y2
n

y3
n

...
yk

n

h(yn)

⎤
⎥⎥⎥⎥⎥⎦ = f0 + f1(yn) + · · · + fL−1(yn) + fL(yn), (2.3)

where

f0 =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
h0

⎤
⎥⎥⎥⎥⎥⎦ , f1(yn) =

⎡
⎢⎢⎢⎢⎢⎣

y2
n

y3
n

...
yk

n

h1(yn)

⎤
⎥⎥⎥⎥⎥⎦ , fj(yn) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

hj(yn)

⎤
⎥⎥⎥⎥⎥⎦ , j = 2, . . . , L,

and fj(yn), j = 0, 1, 2, . . . , L, are homogeneous vector polynomials, in the variables
y1

n, y2
n, . . . , yk

n, of degree j.

Proof. It is easily verified that the relations (2.1) and (2.2) are equivalent to (1.1).
This is a standard procedure of converting a kth-order finite-difference equation
into a ‘companion’ vector system (see, for example, [11, 22]).

The following lemma is based on [14] and elaborates on properties of an uncon-
ventional compactification mapping.

Lemma 2.2. Denote by U the unit ball and by ∂U its boundary:

U := {xn ∈ R
k | x†

nxn � 1}, ∂U := {xn ∈ R
k | x†

nxn = 1}. (2.4)

Define

rn :=
√

y†
nyn = ‖yn‖, ‖xn‖ :=

√
x†

nxn = Rn. (2.5)

Consider the transformation

yn = (1 − R2
n)−1xn, (2.6)
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and define its inverse by the branch

xn =
2yn

1 +
√

1 + 4y†
nyn

. (2.7)

Then, the transformation (2.6) is a bijection from R
k onto the interior of U and is

also a bijection from the ideal set ID := {∞p | p†p = 1} onto ∂U .
Moreover,

rn =
Rn

1 − R2
n

, Rn =
2rn

1 +
√

1 + 4r2
n

.

Proof. This is proven in [14].

In the following, the difference system (2.3) is converted into a difference system
that engages the vector variable xn.

Lemma 2.3. Define

f̃ = f̃(xn, (1 − R2
n))

:= (1 − R2
n)Lf((1 − R2

n)−1xn)

= fL(xn) + (1 − R2
n)Lf0(xn) + (1 − R2

n)L−1f1(xn)

+ · · · + (1 − R2
n)2fL−2(xn) + (1 − R2

n)1fL−1(xn). (2.8)

Then, the transformation (2.6) takes the difference system (2.3) into

dn+1xn+1 = f̃(xn, (1 − R2
n)) = f̃ , xn+1 = d−1

n+1f̃ , (2.9)

that are called the compactified equations, where

d−1
n+1 =

2

(1 − R2
n)L +

√
(1 − R2

n)2L + 4f̃†f̃
. (2.10)

Proof. Upon substitution of (2.6) into (2.3) we obtain

yn+1 = (1 − R2
n+1)

−1xn+1

= f(yn)

= f((1 − R2
n)−1xn)

= (1 − R2
n)−Lf̃(xn, (1 − R2

n)). (2.11)

Equation (2.11) is an implicit system of difference equations for xn+1. In order to
convert it into an explicit equation in xn+1, we use the quantity

dn+1 := (1 − R2
n+1)

−1(1 − R2
n)L, (1 − R2

n+1) �= 0. (2.12)

dn+1 is ill behaved as
lim

n→∞
‖yn‖ = ∞.

This is the case because then

lim
n→∞

(1 − R2
n+1) = lim

n→∞
(1 − R2

n) = 0.
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However, a straightforward calculation yields a pleasant surprise. Using the solution
of (2.13),

(1 − R2
n+1)

2 + a2
n(1 − R2

n+1) − a2
n = 0, (2.13)

we obtain

(1 − R2
n+1)

−1 =
(1 − R2

n)2L +
√

(1 − R2
n)4L + 4(1 − R2

n)2Lf̃†f̃

2(1 − R2
n)2L

. (2.14)

Consequently,

dn+1 :=
(1 − R2

n)L

(1 − R2
n+1)

=
(1 − R2

n)L +
√

(1 − R2
n)2L + 4f̃†f̃

2
, (2.15)

and the result follows.

It will now be shown that certain vectors p, p† = (0, 0, . . . , 0, pk), [pk]2 = 1 solve
a certain nonlinear eigenvalue problem. These vectors p will be instrumental in the
determination of certain ‘fixed points at infinity’ for

un+k = h(un, un+1, . . . , un+k−1)

or, equivalently, for the companion system (2.3). In order to deal soundly with
vector functions that diverge to infinity, which is a central theme in this paper, we
consider the ideal set ID := {∞p | p†p = 1} and add the following.

Definition 2.4. Define limn→∞ yn = ∞p if and only if

lim
n→∞

‖yn‖ = ∞ and lim
n→∞

1
‖yn‖yn = p. (2.16)

The following lemma holds.

Lemma 2.5.

(i) limn→∞ yn = ∞p if and only if limn→∞ xn = p.

(ii) If limn→∞ yn = ∞p, then p must solve the nonlinear eigenvalue problem

sp = fL(p) =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

hL(p)

⎤
⎥⎥⎥⎥⎥⎦ , s = |hL(p)|. (2.17)

(iii) The relation (2.17) possesses a solution p if there exists pk defined by the
implicit relation

pk := lim
xn→p

|hL(xn)|−1hL(xn) (2.18)
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such that

p†p = 1, p =

⎡
⎢⎢⎢⎣

p1

p2

...
pk

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

|hL(p)|−1hL(p)

⎤
⎥⎥⎥⎥⎥⎦ =⇒ pj = 0, j = 1, 2, . . . , k − 1,

[pk]2 = 1. (2.19)

The relation |hL(p)|−1hL(p) is then defined as pk even when hL(p) = 0.

Proof. Part (i) follows from the relation (2.7). Part (ii) follows by taking the limit
xn → p in the compactified equation dn+1xn+1 = f̃(xn, (1 − R2

n)) in (2.9). Note
that, then, limxn→p(1 − R2

n) = 0 and, therefore,

lim
xn→p

(1 − R2
n)L +

√
(1 − R2

n)2L + 4f̃†f̃

2
xn+1 = sp = fL(p)

= lim
xn→p

f̃(xn, (1 − R2
n)). (2.20)

If, in addition, we assume that hL(0, 0, . . . , 0, 1) �= 0, then

hL(0, 0, . . . , 0, pk) = hL(0, 0, . . . , 0, 1)[pk]L, (2.21)

and

pk =
hL(0, 0, . . . , 0, 1)[pk]L

|hL(0, 0, . . . , 0, 1)[pk]L|

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+1 if L is even and hL(0, 0, . . . , 0, 1) > 0,

−1 if L is even and hL(0, 0, . . . , 0, 1) < 0,

±1 if L is odd and hL(0, 0, . . . , 0, 1) > 0,

exp
[
(2m + 1)πi

L − 1

]
, m = 0, 1, 2, . . . if L is odd and hL(0, 0, . . . , 0, 1) < 0.

(2.22)

Thus, it has been demonstrated that if hL(0, 0, . . . , 0, 1) �= 0, then some vector p,
p† = (0, 0, . . . , 0, pk) with [pk]2 = 1 is a solution of (2.17) unless L is odd and
hL(0, 0, . . . , 0, 1) < 0.

3. A perturbation lemma

The next aim is to transform the compactified equations (2.9) into an equivalent
finite-difference system. This is done in the following perturbation lemma.
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Lemma 3.1.

(i) Let yn+1 = f(yn) possess a fixed point ∞p.

(ii) Assume that fL(p) �= 0. Then, the compactified equation xn+1 = d−1
n+1f̃ is

equivalent to
xn+1 − p = A(xn − p) + g, (3.1)

where

A := [f†
L(p)fL(p)]−1/2[I − pp†][JfL(p) − 2fL−1(p)p†], g = O(‖xn − p‖2),

(3.2)
as xn → p and g = g((xn −p)) has a Taylor series expansion that is absolutely
convergent in a disc with centre at xn = p.

Proof. Let a, b, c be three k-dimensional column vectors. Then one can easily verify
that the following (non-associative and non-commutative) relations hold:

(a†b)c = (b†a)c = (ca†)b = (cb†)a. (3.3)

This is so because

(a†b)c =

⎡
⎢⎢⎢⎣

c1b1 c1b2 · · · c1bk

c2b1 c2b2 · · · c2bk

...
...

. . .
...

ckb1 ckb2 · · · ckbk

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a1

a2
...

ak

⎤
⎥⎥⎥⎦ = (cb†)a = (ca†)b. (3.4)

Next we expand d−1
n+1f̃ in a Taylor series expansion up to second-order terms in

(xn − p). Evidently,

1 − R2
n = −[2p† + (xn − p)†](xn − p),

(1 − R2
n+1) = −[2p† + (xn+1 − p)†](xn+1 − p).

}
(3.5)

Hence, as xn → p, we have

1 − R2
n = O(‖xn − p‖), (1 − R2

n)L = O(‖xn − p‖L). (3.6)

We focus now on the expansion of f̃ into a polynomial that depends on the
variable (xn − p). Note that

fL(xn) = {fL(p) + [JfL(p)](xn − p) + ∆2}, (3.7)

where
∆2 := fL(xn) − {fL(p) + [JfL(p)](xn − p)} = O(‖xn − p‖2) (3.8)

and ∆2 is a polynomial in the variable (xn − p). We focus on the contribution of
(1 − R2

n)1fL−1(xn) in f̃ to the Jacobian A. With the help of (3.5), we have

(1 − R2
n)1fL−1(xn) = −[2p† + (xn − p)†](xn − p)[fL−1(p) + (fL−1(xn) − fL−1(p))]

= −2p†(xn − p)fL−1(p) + ∆3,

where

∆3 := (1 − R2
n)1fL−1(xn) + 2p†(xn − p)fL−1(p) = O(‖xn − p‖2) as xn → p,
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and ∆3 is a polynomial in the variable (xn − p). By (3.3) we obtain

(1 − R2
n)1fL−1(xn) = −2[fL−1(p)p†](xn − p) + ∆3.

By (3.5) we have

∆4 := (1 − R2
n)Lf0(xn) + (1 − R2

n)L−1f1(xn) + · · · + (1 − R2
n)2fL−2(xn)

= O(‖xn − p‖2) (3.9)

as xn → p. ∆4 is a polynomial in the variable (xn − p). A summary of the above
implies that

f̃(xn, (1 − R2
n)) = fL(p) + [JfL(p) − 2fL−1(p)p†](xn − p) + ∆5, (3.10)

where

∆5 := ∆2 + ∆3 + ∆4 = O(‖xn − p‖2) (3.11)

as xn → p and ∆5 is a polynomial in the variable (xn − p). Next we expand the
function d−1

n+1 as a Taylor series about the point p. We have

d−1
n+1 =

2

(1 − R2
n)L +

√
(1 − R2

n)2L + 4f̃†f̃

=
1√
f̃†f̃

√
1 +

(1 − R2
n)2L

4f̃†f̃
= [f̃†f̃ ]−1/2

[
1 +

(1 − R2
n)2L

4f̃†f̃

]1/2

. (3.12)

Note that f̃(p) = fL(p) for p†p = 1. Due to (3.10), we have

W := fL(p) + [JfL(p) − 2fL−1(p)p†](xn − p) + ∆5, (3.13)

[f̃†f̃ ]−1/2 = [W †W ]−1/2

= {f†
L(p)fL(p) + 2f†

L(p)[JfL(p) − 2fL−1(p)p†](xn − p) + ∆6}−1/2,
(3.14)

where

∆6 := W †W − {f†
L(p)fL(p) + 2f†

L(p)[JfL(p) − 2fL−1(p)p†](xn − p)}, (3.15)

and ∆6 is a polynomial in the variable (xn − p). It is now possible to obtain

[f†
L(p)fL(p)]−1/2

[
1 +

2f†
L(p)[JfL(p) − 2fL−1(p)p†](xn − p) + ∆6

f†
L(p)fL(p)

]−1/2

= [f†
L(p)fL(p)]−1/2

[
1 −

f†
L(p)[JfL(p) − 2fL−1(p)p†](xn − p) + 1

2∆6

f†
L(p)fL(p)

+ ∆7

]
,

(3.16)
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where �7 is defined by

∆7 :=
[
1 +

2f†
L(p)[JfL(p) − 2fL−1(p)p†](xn − p) + ∆6

f†
L(p)fL(p)

]−1/2

−
[
1 −

f†
L(p)[JfL(p) − 2fL−1(p)p†](xn − p) + 1

2∆6

f†
L(p)fL(p)

]
. (3.17)

By virtue of the Taylor series expansions

∆6 := O(‖xn − p‖2), ∆7 := O(‖xn − p‖2) as xn → p, (3.18)

∆7 is an absolutely convergent Taylor series in the vector variable (xn − p) in a
disc {xn|‖xn − p‖ � γ1}, for some positive γ1. Now combine (3.16) with (3.12) to
obtain

d−1
n+1 = [f̃†f̃ ]−1/2

[
1 +

(1 − R2
n)2L

4f̃†f̃

]1/2

= [f†
L(p)fL(p)]−1/2

×
[
1 − f†

L(p)[JfL(p) − 2fL−1(p)p†](xn − p)

f†
L(p)fL(p)

+ ∆7

][
1 +

(1 − R2
n)2L

4f̃†f̃

]1/2

.

(3.19)

Thus,

d−1
n+1 = [f†

L(p)fL(p)]−1/2−[f†
L(p)fL(p)]−3/2f†

L(p)[JfL(p)−2fL−1(p)p†](xn−p)+∆8,
(3.20)

where

∆8 := d−1
n+1 − [f†

L(p)fL(p)]−1/2

− [f†
L(p)fL(p)]−3/2f†

L(p)[JfL(p) − 2fL−1(p)p†](xn − p)

= O(‖xn − p‖2) (3.21)

as xn → p. ∆8 is an absolutely convergent Taylor series in the vector variable
(xn − p) in a disc {xn|‖xn − p‖ � γ2}, for some positive γ2.

With the aid of (3.10), we have

d−1
n+1f̃ = d−1

n+1fL(p) + Q + ∆9, (3.22)

where

Q := d−1
n+1[JfL(p) − 2fL−1(p)p†](xn − p), ∆9 := d−1

n+1∆5, (3.23)

and ∆9 is an absolutely convergent Taylor series in the vector variable xn − p in
a disc {xn | ‖xn − p‖ � γ3} for some positive γ3. Recall (3.20). An elaboration on
d−1

n+1fL(p) reveals that with

S := [f†
L(p)fL(p)]−1/2 − [f†

L(p)fL(p)]−3/2f†
L(p)[JfL(p) − 2fL−1(p)p†](xn − p) + ∆8,
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we have

d−1
n+1fL(p)

= SfL(p)

= [f†
L(p)fL(p)]−1/2fL(p)

− {[f†
L(p)fL(p)]−3/2f†

L(p)[JfL(p) − 2fL−1(p)p†](xn − p)}fL(p) + ∆10.

After modifying the middle term in the formula above for d−1
n+1fL(p) according

to (3.3), we obtain

d−1
n+1fL(p) = [f†

L(p)fL(p)]−1/2fL(p)

− [f†
L(p)fL(p)]−3/2[fL(p)f†

L(p)][JfL(p) − 2fL−1(p)p†](xn − p)
+ ∆10. (3.24)

∆10 is an absolutely convergent Taylor series in the vector variable (xn − p) in a
disc {xn|‖xn − p‖ � γ4}, for some positive γ4. Note that

[f†
L(p)fL(p)]−1/2fL(p) = p

because of (2.17). Also, take into consideration that

∆10 := ∆8fL(p) = O(‖xn − p‖2) as xn → p.

All of these imply that

d−1
n+1fL(p) = p − [f†

L(p)fL(p)]−3/2[fL(p)f†
L(p)][JfL(p) − 2fL−1(p)p†](xn − p)

+ O(‖xn − p‖2). (3.25)

Turn now to the middle term Q in (3.22). By definition, we have

Q = {[f†
L(p)fL(p)]−1/2 − [f†

L(p)fL(p)]−3/2f†
L(p)[JfL(p)−2fL−1(p)p†](xn −p)+∆8}

× [JfL(p) − 2fL−1(p)p†](xn − p).

Consequently,

Q = [f†
L(p)fL(p)]−1/2[JfL(p) − 2fL−1(p)p†](xn − p) + ∆11. (3.26)

∆11 is an absolutely convergent Taylor series in the vector variable xn − p in a disc
{xn|‖xn − p‖ � γ5}, for some positive γ5. By its definition,

∆11 := Q− [f†
L(p)fL(p)]−1/2[JfL(p)−2fL−1(p)p†](xn −p) = O(‖xn −p‖2), (3.27)

as xn → p. By the discussion above we conclude that

xn+1 = d−1
n+1f̃

= p − [f†
L(p)fL(p)]−3/2[fL(p)f†

L(p)][JfL(p) − 2fL−1(p)p†](xn − p)

+ [f†
L(p)fL(p)]−1/2[JfL(p) − 2fL−1(p)p†](xn − p) + ∆12, (3.28)

where
∆12 := ∆10 + ∆11 = O(‖xn − p‖2) as xn → p.
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∆12 is an absolutely convergent Taylor series in the vector variable (xn−p) in a disc
{xn|‖xn −p‖ � γ6}, for some positive γ6. Note that fL(p)f†

L(p) = [f†
L(p)fL(p)]1pp†.

Hence, the expression
[f†

L(p)fL(p)]−3/2[fL(p)f†
L(p)]

in (3.28) simplifies to [f†
L(p)fL(p)]−1/2pp†. Keeping this simplification in mind and

transferring the term p from the right-hand side of (3.28) to the left yields

xn+1 − p = ∆12 + [f†
L(p)fL(p)]−1/2

× {[JfL(p) − 2fL−1(p)p†] − pp†[JfL(p) − 2fL−1(p)p†]}(xn − p).
(3.29)

Finally, we have xn+1 − p = A(xn − p) + ∆12 with A and ∆12 of the desired form.

4. Concluding the proof of theorem 1.1

The conclusion of the proof of theorem 1.1 involves two steps. The first step elab-
orates on the Jacobian A for the special companion system (2.3). The second step
then consists of a fixed-point argument.

Proof. We shall now determine the form of the Jacobian A in (3.1) for the special
case of (2.3) and p, p† = (0, 0, . . . , 0, pk), [pk]2 = 1. Observe that

[f̃†
L(p)f̃L(p)]

−1/2
= |aL|−1,

[I − pp†] = I −

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
pk

⎤
⎥⎥⎥⎥⎥⎦ [0, 0, . . . , 0, pk] =

[
Ik−1 O12

O21 0

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.1)

Ik−1 is the (k − 1) × (k − 1) identity matrix, O12 is the (k − 1) × 1 matrix with
entries that are zero and O21 is the 1 × (k − 1) matrix with entries that are zero.
We must now distinguish between two cases: the case where L = 2 is to be treated
after the treatment of the simpler case, where L > 2 is analysed.

We have with L > 2 that

JfL(p) =
[

O1

∇hL(p)

]
, (4.2)

−2fL−1(p)p† = −2

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0

hL−1(p)

⎤
⎥⎥⎥⎥⎥⎦ [0, 0, . . . , 0, pk] = −2

[
O11 O12

O21 pkhL−1(p)

]
, (4.3)
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where O11 is the (k − 1) × (k − 1) matrix with entries that are zero. Next we have

JfL(p) − 2fL−1(p)p† =
[

O11 O12

ϕ ψ

]
,

ϕ :=
[
∂hL

∂y1 (p),
∂hL

∂y2 (p), . . . ,
∂hL

∂yk−1 (p)
]
,

ψ :=
∂hL

∂yk
(p) − 2pkhL−1(p).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

ϕ is the 1×(k−1) matrix with entries that are defined by the first (k−1) components
of ∇hL(p) evaluated at the point p, p† = [0, 0, . . . , 0, pk]. Consequently, we have

A = −2|aL|−1
[
Ik−1 O12

O21 0

] [
O11 O12

ϕ ψ

]

= −2|aL|−1
[
Ik−1O11 + O12ϕ Ik−1O12 + O12ψ

O21O11 + 0ϕ O21O12 + 0ψ

]
= O. (4.5)

The matrix O has all of its entries zero. Recall that g = O(‖xn − p‖2) as xn → p
and g = g((xn − p)) has a Taylor series expansion that is absolutely convergent in
a disc with centre at xn = p. This implies, with a suitable norm on matrices, that

xn+1−p = g ≡ M((xn−p))[xn−p] =⇒ ‖xn+1−p‖ � ‖M((xn−p))‖‖xn−p‖. (4.6)

M((xn − p)) is a certain k × k matrix function that has a Taylor series expansion
that is absolutely convergent in a disc {xn|‖xn − p‖ � γ}, for some positive γ.
Moreover, M(0) = O and, without loss of generality, we may assume that, in the
disc above, ‖M((xn − p))‖ � σ < 1 for some constant σ. Hence, the fixed point p
is asymptotically stable in the xn space and its basin of attraction contains as a
subset an entire disc. This in turn implies that there exists a non-trivial basin of
divergence in the y space that depends on a k-parameter family of variables. Each
point y0 in this basin of divergence gives rise to a sequence yn, n = 0, 1, 2, . . . , such
that limn→∞ y†

n = ∞[0, . . . , pk].

The case that L = 2 requires modifications since the term f1(p) changes form
in (4.3). Then we have

−2f1(p)p† = −2

⎡
⎢⎢⎢⎢⎢⎣

0
...
0
pk

h1(p)

⎤
⎥⎥⎥⎥⎥⎦ [0, 0, . . . , 0, pk] = −2

⎡
⎣Ô11 Ô12

Ô21 θ

Ô21 η

⎤
⎦ , (4.7)

with
θ := [0, 1], η := [0, pkh1(p)]. (4.8)

The blocks in the above matrix are of the following sizes. Ô11 is a (k − 2) × (k − 2)
matrix with all of its entries zero, Ô12 is a (k − 2) × 2 matrix with all of its entries
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zero, Ô21 is a 1×(k−2) matrix with all of its entries zero. We now rewrite JfL(p) as
a 3×2 matrix with entries being blocks of the same size as the blocks of −2f1(p)p†:

Jf2(p) =
[

O1

∇h2(p)

]
=

⎡
⎣Ô11 Ô12

Ô21 0 0
φ τ ω

⎤
⎦ . (4.9)

O1 is a (k − 1)× k matrix with all of its entries zero. The symbols φ, τ , ω stand for
the following:

φ :=
[
∂h2

∂y1 (p),
∂h2

∂y2 (p), . . . ,
∂h2

∂yk−2 (p)
]
, τ :=

∂h2

∂yk−1 (p), ω :=
∂h2

∂yk
(p).

(4.10)
Hence,

Jf2(p) − 2f1(p)p† =

⎡
⎣Ô11 Ô12

Ô21 0 0
φ τ ω

⎤
⎦ − 2

⎡
⎣Ô11 Ô12

Ô21 θ

Ô31 η

⎤
⎦ =

⎡
⎣Ô11 Ô12

Ô21 [0 − 2]
φ [τµ]

⎤
⎦ , (4.11)

with

µ :=
∂h2

∂yk
(p) − pkh1(p). (4.12)

We now need to express the matrix [I − pp†] as a 3 × 3 matrix with entries that
are blocks. This is in preparation for the multiplication of [I − pp†] by [Jf2(p) −
2f1(p)p†] in order to obtain the final form of A. Let Õk−2 be a (k − 2) × 1 column
vector, with all of its entries zero. We set

[I − pp†] =
[
Ik−1 O12

O21 0

]
=

⎡
⎢⎣

Ik−2 Õk−2 Õk−2

Õ†
k−2 1 0

Õ†
k−2 0 0

⎤
⎥⎦ . (4.13)

We are now ready to compute

A = −2|aL|−1

⎡
⎢⎣

Ik−2 Õk−2 Õk−2

Õ†
k−2 1 0

Õ†
k−2 0 0

⎤
⎥⎦

⎡
⎢⎣

Ô11 Ô12

Ô21 [0 − 2]

φ [τµ]

⎤
⎥⎦

= −2|aL|−1

⎡
⎢⎣

Ik−2Ô11 + Õk−2Ô21 + Õk−2φ Ik−2Ô12 + Õk−2[0 − 2] + Õk−2[τµ]

Õ†
k−2Ô11 + 1Ô21 + 0φ Õ†

k−2Ô12 + 1[0 − 2] + 0[τµ]

Õ†
k−2Ô11 + 0Ô21 + 0φ Õ†

k−2Ô12 + 0[0 − 2] + 0[τµ]

⎤
⎥⎦

= 4|aL|−1

⎡
⎢⎣

Ô11 Õk−2 Õk−2

Õ†
k−2 0 1

Õ†
k−2 0 0

⎤
⎥⎦ . (4.14)
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Thus, A is a k × k matrix with one non-zero entry in its ((k − 1), k) location. It is
then easily verified that A2 = O. This has the following implications:

xn+1 − p = A(xn − p) + g((xn − p)) =⇒ xn+2 − p = A(xn+1 − p) + g((xn+1 − p)),
(4.15)

xn+2 − p = A[A(xn − p) + g((xn − p))] + g([A(xn − p) + g((xn − p))])
= G((xn − p)), (4.16)

where

G((xn − p)) := 0 + Ag((xn − p)) + g([A(xn − p) + g((xn − p))]). (4.17)

Evidently, G((xn − p)) = O(‖xn − p‖2) as xn → p and G((xn − p)) has a Taylor
series expansion that is absolutely convergent in a disc {xn|‖xn − p‖ � γ} for some
positive γ. Without loss of generality, we may assume that, in this disc, we have

xn+2 − p = G((xn − p)) ≡ M((xn − p))[xn − p]
=⇒ ‖xn+2 − p‖ � ‖M((xn − p))‖‖xn − p‖. (4.18)

M((xn − p)) is a certain k × k matrix function. Moreover, M(0) = O and, without
loss of generality, we may assume that, in the disc above, ‖M((xn − p))‖ � σ < 1
for some constant σ. We consider the sequence xn that satisfies

xn+1 − p = A(xn − p) + g((xn − p)) with ‖x0‖ < 1

as a union of two subsequences. The subsequence SE := {x0, x2,, . . . } (a sequence
with even indexes) and the subsequence SO := {x1, x2,, . . . } (a sequence with odd
indexes). We claim that if xn, n = 0, 1, 2, . . . , is a sequence solution satisfying the
compactified equation xn+1 = d−1

n+1f̃ , then

‖x0‖ < 1 =⇒ ‖xn‖ < 1 for n = 1, 2, . . . .

This follows by observing that |d−1
n+1f̃ | < 1. This, of course, also implies that none

of the elements xn, n = 0, 1, 2, . . . , is equal to p. Each subsequence satisfies the
relation (4.18). Hence, the fixed point p is asymptotically stable in the xn space
and its basin of attraction contains an entire disc as a subset. This in turn implies
that there exists a non-trivial basin of divergence in the y space. Each point y0 in
this basin of divergence gives rise to a sequence yn, n = 0, 1, 2, . . . , such that

lim
n→∞

y†
n = ∞[0, . . . , pk].

This implies that

lim
n→∞

yk
n = lim

n→∞

xk
n

1 − x†
nxn

= lim
n→∞

−[pk + (xk
n − pk)]

[2p† + (xn − p)†](xn − p)
= ∞pk

and

lim
n→∞

un+j−1

un+k−1
= lim

n→∞

yj
n

yk
n

= lim
n→∞

xj
n

xk
n

=
0
pk

= 0, j = 1, 2, . . . , k − 1.
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Remark 4.1. It follows from the contraction relations (4.6) and (4.18) that the
order of divergence is O(µn) for some µ > 1.

5. Some applications

A few applications of theorem 1.1 to specific equations are provided below.

Example 5.1. The Henon map

un+2 = h(un, un+1) := 1 + bun − au2
n+1, a �= 0, (5.1)

has attracted a considerable amount of attention. So far, studies of the Henon map
in the literature exclude the analysis of fixed points at infinity (see, for example, [22,
31]). Theorem 1.1 makes it possible to broaden our understanding of this equation,
of its direction field for large values of un and, of course, of its divergent solutions.
First, note that, consistent with the notation in (1.1), the decomposition of h into
homogeneous parts is as follows:

L = 2, h0 = 1, h1 = bun, h2 = −au2
n+1, h2(0, 1) = −a.

Consider the case where a > 0. We enquire first about the existence of fixed points
of the compactified system (2.9) that relate to fixed points at infinity of the Henon
map. In this case, we have

[pk]2 = 1, [pk]2+1 =
h2(0, pk)
|h2(0, pk)| = −1 =⇒ pk = −1.

The initial conditions y1
0 = u0, y2

0 = u1 for (5.1) need to be chosen in such a manner
that x1

0 is close to zero and x2
0 be is close to pk = −1. This is done in order to satisfy

the conditions of theorem 1.1 as given in the fixed-point arguments of § 4. We use
the scalar version of the compactification mapping

un = y1
n = (1 − R2

n)−1x1
n, un+1 = y2

n = (1 − R2
n)−1x2

n. (5.2)

Note that if x1
0 is close to zero and if x2

0 is close to pk = −1, then (1 − R2
0)

−1 is
large and positive. From the ratio of the two equations in (5.2) we obtain

u0

u1
=

y1
0

y2
0

=
x1

0

x2
0
,

and we can conclude that the ratio x1
0/x2

0 must be small. Therefore, there exists a
positive number ε, 1 > ε > 0 and a positive number K > 0 such that if u1 < −K
and |u0/u1| < ε, then

lim
n→∞

un = lim
n→∞

un+1 = −∞ and lim
n→∞

un

un+1
= 0.

Consider the case where a < 0. Then the following relations hold:

[pk]2 = 1, [pk]2+1 =
h2(0, pk)
|h2(0, pk)| = 1 =⇒ pk = 1.
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Theorem 1.1 then guarantees that there exists a positive number K > 0 and a
positive number ε, 1 > ε > 0, such that if u1 > K and |u0/u1| < ε, then

lim
n→∞

un = lim
n→∞

un+1 = ∞ and lim
n→∞

un

un+1
= 0.

A more general quadratic difference equation is given in the example below.

Example 5.2. The references (for example, [4, 9, 18, 21, 28]) bring to the fore a
wealth of quadratic dynamical systems and equations. Numerous variants of their
discretization lead to the second-order quadratic difference equations with real coef-
ficients that are of the form

un+2 = a0 + a1,0un + a0,1un+1 + a2,0u
2
n + a1,1unun+1 + a2u

2
n+1. (5.3)

Modelling in various disciplines, with (5.3), is also described in, for example, [7,
11, 22]. The difference equation (5.3) is amenable to theorem 1.1 with a2 �= 0. The
analysis of it is similar to the analysis of the Henon map. Theorem 1.1 guarantees
that there exists a two-parameter family of solutions that diverge for each of the
two cases, a2 < 0 and a2 > 0.

We now consider an example that is motivated by numerical analysis.

Example 5.3. A rich field for applications of theorem 1.1 is also provided by the
multi-step method (see, for example, [6, 19]). Consider a polynomial scalar differ-
ential equation

u′ = f(u) = a0+a1u+ · · · aL−1u
L−1+aLuL, aL �= 0, u, aj ∈ R, j = 0, 1, 2, . . . , L,

with an initial condition u(t0) = u0.
A linear multi-step method will convert the above initial-value problem into the

discrete form

un+k = h(un, un+1, . . . , un+k−1)
:= ck−1un+k−1 + ck−2un+k−2 + · · · + c0un

+ θ[bkf(un+k) + bk−1f(un+k−1) + bk−2f(un+k−2) + · · · + b0f(un)],
(5.4)

where θ > 0 denotes the time-step size and

ck−1, ck−2, . . . , c0, bk, bk−1, bk−2, . . . , b0

are certain constants that determine the method. Consider the case where bk = 0,
namely, that the method is explicit, with bk−1aL > 0. We need to determine the
highest degree term hL on the right-hand side of (5.4). An examination of (5.4)
reveals that

hL = θaL[bk−1u
L
n+k−1 + bk−2u

L
n+k−2 + · · · + b0u

L
n ], (5.5)

which implies that

hL(0, 0, . . . , 0, pk) = θaLbk−1u
L
n+k−1. (5.6)
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The nonlinear eigenvalue relation (2.17) requires

[pk]2 = 1, [pk]L+1 =
hL(0, 0, . . . , 0, pk)
|hL(0, 0, . . . , 0, pk)| =

θaLbk−1[pk]L

|θaLbk−1[pk]L| = [pk]L =⇒ pk = 1.

Fix θ > 0. Theorem 1.1 then predicts that there are K > 0 and ε0, ε1, . . . , εk−2,
(k − 1) positive numbers such that if uk−1 > K and |uj/uk−1| < εj , j = 0, 1, . . . ,
(k − 2), then (no matter how small the step size θ is) divergence will occur such
that

lim
n→∞

un+j−1

un+k−1
= 0, j = 1, 2, . . . , k − 1, lim

n→∞
un = ∞.
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