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SUMMARY
In this work a novel spatial hyper-redundant manipulator
inspired in the motions of the worms is introduced. The
displacement analysis is presented in a semi-closed form
solution, whereas the velocity and acceleration analyses
are carried out by means of the theory of screws. Among
typical applications of most hyper-redundant manipulators,
interesting biomechanical applications such as the simulation
of the motion of the spine are available for this new artificial
worm.
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Space kinematics.

1. Introduction
As pointed out by Chirikjian,1 “The term hyper-redundant
refers to robotic manipulators and mobile robots with a
very large, possibly infinite, number of actuable degrees of
freedom. These robots are analogous in morphology and
operation to snakes, worms, elephant trunks, and tentacles.”
This concept is here adopted in order to develop a new
manipulator provided with an optional number of extra
degrees of freedom; however, it is important to recognize
that due to the emergence of several branches approaching
this topic, such terminology was redefined may be with the
purpose to identify the different ways to obtain the desired
hyper-redundancy, e.g. as it is correctly noted by one of
the reviewers: “Trunks and tentacles are continuum systems
while snakes are hyper redundant mechanical systems.
Worms are muscular hydrostatic and are also not hyper
redundant mechanical systems.” The authors agree that it is
necessary to unify the terminology and it is worth mentioning
that IFToMM had made significative advances2 in the
subject; however, the simplest concept of hyper-redundant
manipulator3 as a robot with numerous independent degrees
of freedom to perform a task introduced almost two decades
ago will be used in this paper.

Examples of the performance of redundant manipulators
can be found in the nature itself, giving birth to several hyper-
redundant manipulators with suggestive names like tentacle,4

serpentine,5 snake,6 or elephant’s trunk.7 Furthermore,
considering that a worm is a terrestrial locomotion system

* Corresponding author. E-mail: gjaime@itc.mx

without active legs and wheels producing undulatory
motions, then a worm can be an inspiration to develop
new hyper-redundant manipulators. Certainly, by observing
worm motions it is possible to note complicated internal
motions yielding sophisticated undulatory trajectories that
however are modeled considering only one dominant linear
dimension.8–10

The benefits of hyper-redundancy kinematics are well
studied in quite different scientific communities. Modeling
the motions of human body is an opportunity to introduce
hyper-redundant manipulators. For example, simulating the
kinematics of the spine is a challenging task due to the
complexity of several interconnected bodies that form a
larger locomotion system. It is remarkable how this subject
has attracted the attention of many researchers. Using basic
biomechanics, individual segmental range of motions was
quantified for all spinal levels by Panjabi and White.11

Dimnet et al.12 reported a technique, based on lateral-view-
X-ray, to determine parameters for describing the centers
of rotation and curvature of the spine. Gracovetsky and
Farfan13 proposed a novel theory based on the mechanical
behavior of intervertebral joints capable of computing both
spinal motions and muscular actions. By means of the
technique of videofluoroscopy, Cholewicki and MacGill14

studied the kinematics of the lumbar spine. Yoganandan
et al.15 determined the kinematic response of the lumbar
spine using instrumented transpedicular screws and plates.
It is well-known that a structure is any assemblage of
materials that is intended to sustain loads, a strong argument
to simulate the spine, in that way Levin16 proposes tensegrity
structures to simulate the kinematics of the spine. Willems
et al.17 provided preliminary information about the spatial
kinematics of the thoracic spine in vivo. Faber et al.18

proposed a method to compute Euler’s angles of rotation
of a body segment during locomotion and applied it to
in vivo spinal kinematics. Garcia and Ravani19 presented
a biomechanical evaluation of whiplash injury potential
during the initial extension motion of the head in a rear-
end collision in which a four-segment dynamic model is
developed in the sagittal plane for the analysis that is
available for the cervical spine. In order to demonstrate in
vivo intervertebral-coupled motions of the upper cervical
spine, Yoshikawa et al.20 studied the spatial kinematics
of the upper cervical spine during head rotation using
three-dimensional magnetic resonance imaging (MRI) in
healthy volunteers. Ziddiqui et al.21 investigated the sagittal
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kinematics in vivo of the lumbar spine at the instrumented
level. Ishii et al.22 studied the spatial kinematics of the
cervical spine during lateral bending while Konz et al.23

investigated the spatial kinematics of spinal during walking.
Chanceya et al.24 determined the center of rotation of
the upper cervical considering pure bending. Gill et al.25

examined the effect of changes in horizontal lift distance on
the amount of flexion in different spine regions according
to different lift styles. In order to approach the so-called
shaken baby syndrome, recently Jones et al.26 proposed
a methodology for the kinematic analysis of infant spine.
Finally, Iqbal and Roy27 introduced a planar four-segment
neuromusculoskeletal model consisting of the ankle, knee,
and hip to analyze the dynamic stability and control
in a multisegment biomechanical model. Most of the
contributions above cited require experimental resources, so
cheap and practical mathematical tools, such as the theory
of screws, can be used in order to validate/improve these
works. Consider, for instance, that Zhu et al.28 proposed
some parallel manipulators capable of simulating, by means
of the theory of screws, the finite kinematics at the end of
the spinal column. Mobile robots are another interesting
application of hyper-redundancy kinematics such as the
development of hybrid robots devoted to search and rescue
tasks.29

In this paper, a novel spatial hyper-redundant manipulator
(SHRM) inspired by the motions of the worms is introduced.
An application of the proposed SHRM discussed herein
may include devices for high manipulability in the
context of space robotics, obstacle avoidance ability, and
biomechanical applications such as the kinematic analysis
of the spine. The forward displacement analysis of the
proposed SHRM is presented in a semi-closed form solution
that allows to compute all the feasible configurations of
the proposed SHRM, given the generalized coordinates
of the spatial mechanism. Thereafter, the velocity and
acceleration analyses are carried out using the theory of
screws. Simple and compact expressions are derived here
for solving the infinitesimal kinematics of the SHRM by
applying the concept of reciprocal screws. Note that the
kinematic analysis of a hyper-redundant manipulator is a
rather complicated task. This subject has been approached
by means of a continuous backbone curve which contains
essential macroscopic geometric features of the desired
motions.30–32 Finally, a numerical example which consists of
solving the forward displacement, velocity, and acceleration
analyses of an SHRM built with four modules is included.

2. Description of the Proposed Hyper-Redundant
Manipulator
The proposed hyper-redundant manipulator consists of an
optional number of identical redundant parallel manipulators
with autonomous motions assembled in series connection;
see Fig. 1, where n is called the output platform, k and k − 1
are two consecutive platforms, and 0 is the fixed platform.

The base module of the proposed SHRM consists of two
platforms, for instance labeled 1 and 0, connected each other
by means of a spherical parallel manipulator (SPM) and a
redundant planar parallel manipulator (RPPM). Evidently,

Fig. 1. The proposed hyper-redundant manipulator.

the position and orientation of body 1 with respect to body
0 are controlled independently by means of the SPM and
the RPPM, respectively. Hence, the base module can be
considered as a decoupled robot. Clearly, the kinematics
of a decoupled robot is simpler than the generated in a
parallel manipulator with coupled motions over the moving
platform.33–36

The SPM is a three degrees of freedom parallel
manipulator with limbs of the type Spherical + Prismatic +
Spherical (SPS), where the prismatic joints have the privilege
to be considered as the active kinematic pairs of the SPM.
On the other hand, the RPPM is a planar mechanism with
limbs of the type Revolute + Revolute + Revolute + Spherical
(RRRS). Since the role of the RPPM is to control the position
of one point of body 1, for simplicity its geometric center,
only two generalized coordinates are necessary to meet this
goal; however, the RPPM is conveniently provided with
an extra limb in order to give each module the potential
possibility to avoid or to escape from possible singularities
by actuating the corresponding additional kinematic chain,
which under normal conditions of operation plays the role of
a simple passive limb. Thus, the base module is a redundant
five degrees of freedom decoupled robot with a parallel
architecture, three rotations and two translations available
for one platform with respect to the other.

Finally, note the great similarity of the proposed SHRM
with the spine. Certainly, the simulation of the kinematics
of the spine by means of parallel manipulators is a real
possibility; see for instance Walker and Dickey37 and Zhu
et al.28,38

3. Finite Kinematics
Let OXYZ be a reference frame attached at the fixed platform
and let oxyz be a reference frame attached at the output
platform. The statement of the displacement analysis of the
SHRM is as follows: Given the instantaneous generalized
coordinates of the SHRM, compute the feasible locations
that the output platform can reach with respect to the fixed
platform expressed in the global reference frame OXYZ.

As an initial step, first, the displacement analysis of the
parallel manipulator containing platforms 1 and 0, namely the
base module, is presented. Later, the displacement analysis
of the SHRM is computed by applying recursively the
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Fig. 2. The base module and its geometric scheme.

expressions thus obtained. To this end, subchains 1 and 2 are
chosen as the active limbs of the 3-RRR parallel manipulator.
Furthermore, in order to simplify the displacement analysis,
the global reference frame OXYZ is placed in such a way
that the X and Z axes are located in the plane formed by the
points Ai(i = 1, 2, 3), which denote the nominal positions of
the revolute joints attached at the fixed platform; see Fig. 2.

To compute the coordinates of point C ′ = (CX, 0, CZ), it
immediately emerges that

(C ′ − Di) • (C ′ − Di) − e2
i = 0, i = 1, 2 (1)

where C ′ and Di denote the position of points C ′ and Di ,
respectively. On the other hand, subchain 3 is a passive
element and therefore does not affect the position of point
C ′. Subchain 3 is used as an active element if, and only if, the
3-RRR redundant planar parallel manipulator is at a singular
configuration, if any.

From expressions (1) a linear equation with two unknowns,
CX and CZ , is immediately obtained by subtracting each
other the two equations given in (1). Solving this equation
for CX or CZ and substituting it in any of the expressions (1),
a quadratic equation for computing the remaining unknown
is generated. Finally, the center of platform 1, point C, results
in C = (CX, h, CZ). This type of solution is called a closed-
form solution, and clearly in this case two different poses are
available for platform 1, with respect to platform 0, given a
set of generalized coordinates {q1, q2}.

In what follows, the coordinates of points Si =
(Xi, Yi, Zi) i = 4, 5, 6, denoting the centers of the
corresponding spherical joints attached to platform 1, are
computed using simple geometric procedures.

It is evident that the center C of the triangle �S4S5S6 gives
the following closure equation:

(S4 + S5 + S6)/3 = C, (2)

where Si(i = 4, 5, 6) denotes the position vector of the ith
point Si(i = 4, 5, 6). Furthermore, the extendible limbs must

satisfy the following kinematic constraint equations:

(Si − S′
i) • (Si − S′

i) = q2
i , i = 4, 5, 6, (3)

where the vector S′
i(i = 4, 5, 6) denotes the position of

the point S ′
i(i = 4, 5, 6) associated with the corresponding

spherical joint attached at the fixed platform.
Finally, three compatibility expressions can be written as

(Si − C) • (Si − C) = r2, i = 4, 5, 6 (4)

where r is the radius of platform 1.
Subtracting Eqs. (3) and (4), it follows that

2Si • (C − S′
i) + Si • S′

i − C i • C i − q2
i + r2 = 0,

i = 4, 5, 6. (5)

Expressions (2) and (5) represent a linear system of six
equations in nine unknowns. Solving (2) and (5) in terms of
the unknowns X4, Y5, and Z6 and substituting it into Eq. (3)
a higher non-linear system of three equations results in

k1X
2
4Y

2
5 + k2X

2
4Y5 + k3X4Y

2
5 + k4X4Y5

+ k5X4 + k6Y5 + k7 = 0
k′

1X
2
4Z

2
6 + k′

2X
2
4Z6 + k′

3X4Z
2
6 + k′

4X4Z6

+ k′
5X4 + k′

6Z6 + k′
7 = 0

k′′
1Y 2

5 Z2
6 + k′′

2Y 2
5 Z6 + k′′

3Y5Z
2
6 + k′′

4Y5Z6

+ k′′
5Y5 + k′′

6Z6 + k′′
7 = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(6)

where the coefficients k∗, k′
∗, and k′′

∗ are computed given the
parameters, including of course the center of platform 1, and
generalized coordinates of the spherical parallel manipulator.
Expressions (6) are solved by using recursively the
Sylvester dialytic elimination method (Innocenti and Parenti-
Castelli,39 Tsai,40 Gallardo-Alvarado et al.41), yielding a
semi-closed form solution. With this procedure, 16 possible
locations, including reflected solutions, of platform 1 with
respect to platform 0 are available. Furthermore, considering
that two different locations are available for point C, platform
1 can reach 32 different locations or poses with respect to
platform 0.

Once the coordinates of the points Si(i = 4, 5, 6) are
computed, the rotation matrix 0R1 of body 1 with respect
to body 0 can be obtained, see Gallardo-Alvarado et al.,42 as

0R1 = [ûX ûY ûZ], (7)

where the unit vectors û∗ are given by

ûZ = (S3 − S2) × (S1 − S2)

‖(S3 − S2) × (S1 − S2)‖
ûX = (S1 − C + λ(S3 − S1))

‖S1 − C + λ(S3 − S1)‖
ûY = ûZ × ûX

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(8)

and the scalar λ is computed according to the known
vectors S3 and S1. It must be noted that Eq. (7) requires
that C ′ − S′

i = C − Si(i = 4, 5, 6), otherwise the rotation
between these vectors should be considered in (7).
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It is straightforward to show that the method to compute
the rotation matrix 0R1 can be applied recursively to find the
rotation matrix of any moving platform k of the SHRM with
respect to the fixed platform, matrix 0Rk , including of course
the output platform n. In fact, clearly

0Rk = 0R1 1R2 . . . k−1Rk, k = 1, 2, . . . , n. (9)

Furthermore, the homogeneous transformation matrix 0T1

of body 1 with respect to body 0 is given by

0T1 =
[ 0R1 C

01×3 1

]
. (10)

Thereafter, the transformation matrix between any moving
platform k of the SHRM and the fixed platform is obtained
as follows:

0Tk = 0T1 1T2 . . . k−1Tk k = 1, 2, . . . , n. (11)

Considering that 32 different solutions, including reflected
solutions, are available for the forward displacement analysis
of each module, if the SHRM is built with n modules then
the output platform can reach 32n different locations with
respect to the fixed platform, without doubt a significative
number of possible poses of the body n that shows the
extraordinary manipulability of the proposed SHRM. Finally,
it is straightforward to show that the coordinates of any
point attached at the output platform, expressed in the global
reference frame OXYZ, can be computed by expression (11).

4. Infinitesimal Kinematics
The mathematical tool to approach the velocity and
acceleration analyses is the theory of screws, and following
the trend of Section 3, first, the infinitesimal kinematics of
the base module is presented.

4.1. Velocity analysis
Consider the base module which contains platforms 1 and
0, and let 0V 1

P 1 = [0ω1; 0v1
P 1]T be the velocity state, or twist

about a screw,43 of body 1 with respect to body 0, where 0ω1

and 0v1
P 1 are the angular and linear velocities, respectively, of

body 1 with respect to body 0 so that the subscript P 1 denotes
a point of body 1 that is instantaneously coincident with a
point fixed at the local reference frame, for simplicity P 1 is
chosen at the origin of the global reference frame OXYZ.
Then, the velocity state can be written in screw form, the
corresponding model of the infinitesimal screws is depicted
in Fig. 2, for any of the limbs, as

0ω
i
1

0$1
i + 1ω

i
2

1$2
i + · · · + 5ω

i
6

5$6
i = 0V 1

P 1

i = 1, 2, . . . , 6 (12)

or

Ji�i = 0V 1
P 1, (13)

where Ji = [0$1
i ; 1$2

i ; 2$3
i ; 3$4

i ; 4$5
i ; 5$6

i ] is the screw-
coordinate Jacobian matrix of the ith limb and �i =
[0ω

i
1; 1ω

i
2; 1ω

i
2; 2ω

i
3; 3ω

i
4; 4ω

i
5; 5ω

i
6]T is a matrix containing

the joint velocity rates of the ith leg. Note that the
joint velocity rates {0ω

1
1 = q̇1, 0ω

2
1 = q̇2, 2ω

1
3 = q̇4, 2ω

2
3 =

q̇5, 0ω
1
1 = q̇6} have the privilege to be considered as the active

kinematic pairs of the base module. Furthermore, the screws
2$3

i (i = 1, 2) are elements associated with fictitious prismatic
pairs in which evidently 2ω

1
3 = 2ω

2
3 = 0. These fictitious

elements are included only for the sake of completeness of an
algebraic requirement, specifically for completing the rank
of the Jacobian matrix of limbs 1 and 2.

The inverse velocity analysis (IVA), a necessary task to
approach the acceleration analysis, consists of finding the
joint velocity rates of the limbs of the base module, given
the velocity state of platform 1 with respect to platform 0.
The IVA is computed directly from Eq. (13) as

�i = J−1
i

0V 1
P 1. (14)

On the other hand, the forward velocity analysis (FVA)
consists of finding the velocity state 0V 1

P 1 of body 1 with
respect to body 0 given a set of active joint velocity rates
{q̇1, q̇2, q̇4, q̇5, q̇6}. The FVA is simplified considerably by
applying the concept of reciprocal screw. To this end, note
that the screw 3$4

1 is reciprocal to all the screws of limb 1,
except the screw 0$1

1, which is associated with the active joint
velocity rate q̇1. Therefore, the application of the Klein form1

of screw 3$4
1 with both sides of the corresponding Eq. (12),

the reduction of terms leads to{
3$4

1; 0V 1
P 1

} = q̇1
{

3$4
1; 0$1

1

}
, (15)

similarly, from limb 2 it follows that{3$4
2; 0V 1

P 1

} = q̇2
{

3$4
2; 0$1

2

}
. (16)

Furthermore, the screws 5$6
4, 5$6

5, and 5$6
6 are reciprocal to

all the revolute joints in the same limb. Therefore,{
5$6

i ; 0V 1
P 1

} = q̇i , i = 4, 5, 6. (17)

In order to satisfy an algebraic requirement, note that the
screw 5$6

1 is reciprocal to all the screws of limb 1 and,
therefore, one can obtain{

5$6
1; 0V 1

P 1

} = 0. (18)

Casting Eqs. (15)–(18) into a matrix–vector form, a
compact velocity expression is formulated as follows:

JT � 0V 1
P 1 = [

q̇1
{

3$4
1; 0$1

1

}
; q̇2

{
3$4

2; 0$1
2

}
; q̇4; q̇5; q̇6; 0

]T
,

(19)

where J = [3$4
1; 3$4

2; 5$6
4; 5$6

5; 5$6
6; 5$6

1] is the active screw-
coordinate Jacobian matrix of the base module and
�= [ O

I
I
O ] is an operator of polarity which is a 6 × 6 matrix

defined by the identity matrix I and the zero matrix O.

1 Let $1 = (ŝ1, sO1) and $2 = (ŝ2, sO2) be two elements of the Lie
algebra e(3), which is isomorphic to screw theory, then the Klein
form, {∗; ∗}, is defined as follows:

{$1; $2} = ŝ1 • sO2 + ŝ2 • sO1.

It is said that the screws $1 and $2 are reciprocal if {$1; $2}= 0.
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Since the velocity state satisfies the conditions of helicoidal
vector fields, see Gallardo-Alvarado et al.,44 it is possible to
write

0V 1
O =

[
0ω1

0v1
P 1 + 0ω1 × rO/P 1

]
, (20)

where rO/P 1, known as the vector of the helicoidal field,
is the position vector of point O with respect to point P 1.
Furthermore, the velocity state between any moving platform
k, including the output platform n, and the fixed platform,
body 0, can be obtained, see Rico and Duffy,45 as

0V k
O = 0V 1

O + 1V 2
O + · · · + k−1V k

O k = 1, 2, . . . , n,

(21)

where each relative velocity state k−1V k
O(k = 1, . . . , n)

is computed, using properly the corresponding reference
frames, according to Eqs. (19) and (20).

Finally, once the velocity state of the output platform with
respect to the fixed platform is computed, six-dimensional
vector 0V n

O = [0ωn; 0vn
O]T, the linear velocity of the center of

the output platform is obtained using elementary kinematics
as follows:

0vn
o = 0vn

O + 0ωn × ro/O, (22)

where ro/O is the position vector of the origin of the reference
frame oxyz with respect to the origin of the global reference
frame OXYZ.

4.2. Singularity analysis
Since the base module is a 3SPS+3RRRS decoupled parallel
manipulator, the singularity analysis is approached by
analyzing separately the spherical and translational parallel
manipulators.

The singularity analysis of the 3SPS parallel manipulator
was successfully approached in Alici and Shirinzadeh46 and,
therefore, it is unnecessary to include it here. On the other
hand, it is evident that the singularities of the translational
parallel manipulator can be investigated by considering it as
a 5R closed chain; see Fig. 3. Initially, the manipulator under
study is modeled as an open serial chain in which the velocity
state of body 5 with respect to body 0 is given by

0ω1
0$1 + 1ω2

1$2 + 2ω3
2$3 + 3ω4

3$4 + 4ω5
4$5 = 0V 5,

(23)

where the screws are reduced to three-dimensional vectors.
As demonstrated by Rico et al.,47 in a serial manipulator the
screws connecting it to the base link and the end-effector are
not responsible to fall or to escape the manipulator from a
singular configuration and therefore the joint rates 0ω1 and
4ω5, associated with the active joints q1 and q2, respectively,
must be disregarded immediately from the analysis, even
though they are the motors of the manipulator. On the other
hand, if body 5 is joined to body 0, then the open manipulator
becomes a closed chain where 0V 5 = 0. Thereafter, Eq. (23)

Fig. 3. The 5R manipulator and some of its singular configurations.

Fig. 4. The 5R manipulator escaping from a singularity.

is rewritten in a matrix–vector form as

Js

⎡
⎣ 1ω2

2ω3

3ω4

⎤
⎦ = − 0ω1

0$1 − 4ω5
4$5, (24)

where Js = [1$2, 2$3, 3$4]. In order to solve (24) it is
necessary that det(Js) �= 0. In other words, the closed chain is
at a singular configuration if the screws 1$2, 2$3, and 3$4 are
linearly independent, which implies that dim(Js) < 3, which
occurs mainly when the revolute joints of such screws are
aligned; see Fig. 3.

In what follows, it is shown how the closed chain can
escape from a singularity by means of a simple case. To this
end, consider the singular configuration depicted in Fig. 4.

https://doi.org/10.1017/S0263574710000421 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574710000421


576 A worm-inspired new spatial hyper-redundant manipulator

In order to escape from the singularity, the following steps
are suggested:

(1) Detect the singularity. Since det(Js) = 0, the closed chain
is at a singular configuration.

(2) Lock the revolute joint q1, e.g. q̇1 = 0, and unlock q2 such
that this revolute joint becomes a passive element.

(3) Consider the third limb, containing q3, as an active leg
which implies that point C ′ can move along a circular
trajectory.

(4) Since none of the closed chains are at a singular
configuration (dealing with the inverse velocity analysis),
the motor q3 can be actuated producing a circular
trajectory over point C ′ eliminating the undesirable
alignment of the revolute joints responsible for causing
the singularity of the original closed chain.

(5) Finally, once the closed chain is out of the singularity,
the motors q1 and q2 can recover their roles of active
kinematic joints.

4.3. Acceleration analysis
Consider the base module which contains platforms 1 and
0, and let 0 A1

P 1 = [0ω̇1; 0a1
P 1 − 0ω1 × 0v1

P 1]T be the reduced
acceleration state, or accelerator for brevity, of body 1 with
respect to body 0, where 0ω̇1 and 0a1

P 1 are the angular and
linear accelerations of body 1, respectively, with respect to
body 0 taking point P 1 as the reference pole. Then, the
accelerator can be written in screw form, see Rico and
Duffy,45 for any of the limbs as follows:

0ω̇
i
1

0$1
i + 1ω̇

i
2

1$2
i + · · · + 5ω̇

i
6

5$6
i + Li = 0 A1

P 1,

i = 1, 2, . . . , 6, (25)

where Li is the Lie screw of the ith limb that is computed by
means of the composed Lie products as follows:

Li = [
0ω

i
1

0$1
i 1ω

i
2

1$2
i + · · · + 5ω

i
6

5$6
i

] + · · ·
+ [

4ω
i
5

4$5
i 5ω

i
6

5$6
i

]
(26)

in which the brackets [· · ·] denote the Lie product of two
six-dimensional vectors.

Equation (25) can be rewritten in a more compact form as
follows:

Ji�̇i = 0 A1
P 1 − Li , (27)

where �̇i = [0ω̇
i
1; 1ω̇

i
2; 1ω̇

i
2; 2ω̇

i
3; 3ω̇

i
4; 4ω̇

i
5; 5ω̇

i
6]T is a matrix

containing the joint acceleration rates of the ith leg.
Furthermore, the joint acceleration rates {0ω̇

1
1 = q̈1, 0ω̇

2
1 =

q̈2, 2ω̇
1
3 = q̈4, 2ω̇

2
3 = q̈5, 0ω̇

1
1 = q̈6} are the generalized accele-

rations of the base module.
The inverse acceleration analysis (IAA) consists of finding

the joint acceleration rates of the limbs of the base module
given the accelerator of platform 1 with respect to platform
0. The IAA is computed directly from Eq. (27) as

�̇i = J−1
i

(
0 A1

P 1 − Li

)
. (28)

On the other hand, the forward acceleration analysis (FAA)
consists of finding the reduced acceleration state 0 A1

P 1 of

body 1 with respect to body 0 given a set of active joint
acceleration rates {q̈1, q̈2, q̈4, q̈5, q̈6}. Following the trend
of the FVA, the systematic application of the Klein form
between the reciprocal screws indicated in the FVA with
both sides of expression (25), and casting into a matrix–
vector form the equations thus derived, leads to

JT � 0 A1
P 1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̈1
{

3$4
1; 0$1

1

} + {
3$4

1;L1
}

q̈2
{

3$4
2; 0$1

2

} + {
3$4

2;L2
}

q̈4 + {
5$6

4;L4
}

q̈5 + {
5$6

5;L5
}

q̈6 + {
5$6

6;L6
}{

5$6
1;L1

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (29)

Furthermore, since the accelerator satisfies the conditions of
a helicoidal vector field, see Gallardo-Alvarado et al.,44 it is
possible to obtain the accelerator of platform 1 with respect
to platform 0 taking the origin O of the global reference
frame OXYZ as the reference pole as follows:

0 A1
O =

[
0ω̇1

D
(

0 A1
P 1

) + 0ω̇1 × rO/P 1

]
, (30)

where D denotes the dual part of the indicated six-
dimensional vector. Thereafter, the procedure to compute
the accelerator can be repeated systematically for obtaining
the accelerator of any moving platform k of the SHRM with
respect to the fixed platform, 0 Ak

O . In fact, see Rico et al.,48

it is possible to write

0 Ak
O = 0 A1

O + 1 A2
O + . . . + k−1 Ak

O

+ [
0V 1

O
1V 2

O + . . . + k−1V k
O

]
+ [

1V 2
O

2V 3
O + . . . + k−1V k

O

] + . . .

+ [
k−2V k−1

O
k−1V k

O

]
k = 1, 2, . . . , n, (31)

where each relative accelerator k−1 Ak
O(k = 1, . . . , n) is

computed, using properly the corresponding reference
frames, according to Eqs. (29) and (30).

Finally, once the reduced acceleration state of the output
platform with respect to the fixed platform is computed,
six-dimensional vector 0 An

O = [0ω̇n; 0an
O − 0ωn × 0vn

O]T, the
linear acceleration of the center of the output platform
is obtained combining elementary kinematics and the
properties of a helicoidal vector field as follows:

0an
o = D

(
0 An

O

) + 0ω̇n × ro/O + 0ωn × (
0vn

o

)
. (32)

5. Numerical Example
In this section the kinematics of an SHRM built with four
modules is presented. The parameters, using SI units, for the
base module and its home position are listed in Table I.

The home position of the base module is repeated for
each module by increasing in nmodh(nmod = 2, 3, 4) times
the coordinate along the Y-axis. Keeping this in mind, the
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Table I. Parameters and home position of the base module.

A1 = (0.05, 0.0, 0.0), A2 = (−0.025, 0,−0.0433)
A3 = (−0.025, 0, 0.0433), S ′

4 = (0.025, 0,−0.0433)
S ′

5 = (−0.05, 0.0, 0.0), S ′
6 = (0.025, 0, 0.0433)

S4 = (0.025, 0,−0.02), S5 = (−0.029, 0.05,−0.011)
S6 = (0.004, 0.05, 0.03165)
D1 = (0.025, 0.0175,−0.025),D2 = (−0.034, 0.0175,−0.0091)
D3 = (0.009, 0.0175, 0.034), C ′ = (0, 0, 0), C = (0, 0.05, 0)
d1 = d2 = d3 = e1 = e2 = e3 = 0.0353, h = 0.05, r = 0.032

Table II. Coefficients of the generalized coordinates.

j C
j

1 C
j

2 C
j

4 C
j

5 C
j

6

1 0.1 −0.125 −0.0025 0.01 −0.005
2 −0.25 0.1 0.005 −0.01 0.005
3 0.125 −0.125 0.0035 −0.01 0.0075
4 0.1 −0.125 −0.0025 0.01 −0.0075

resulting home position of the SHRM is depicted in Fig. 1.
Furthermore, the actuable joints are affected by periodical
functions of the form C

j

i sin(t), where C
j

i is the coefficient
associated with the ith generalized coordinate in the jth
module; these coefficients are given in Table II. With these
data, the exercise consists of finding the time history of the
angular and linear kinematic properties of the center of the
output platform with respect to the fixed platform, expressed
in the reference frame OXYZ.

As expected, due to the periodical functions, three-
dimensional undulatory motions are generated in the SHRM,
animations in mpg format are available for this example, and
the most representative numerical results obtained for it are
given in Fig. 5. Finally, the numerical results obtained via
screw theory are compared with results generated with the
aid of special software such as ADAMS c©.

6. Conclusions
In this paper, a new spatial hyper-redundant manipulator is
introduced. The proposed spatial mechanism is built with
an optional number of tandem-assembled identical modules.
The base module brings the following features:

• Decoupled architecture, which is a combination of a
spherical parallel manipulator with a redundant planar
parallel manipulator for controlling the orientation and
position, respectively, of one platform with respect to the
other.

• The forward displacement analysis is presented in a semi-
closed form solution. All the feasible locations of one
platform, with respect to the other, can be calculated
given the generalized coordinates. The solution of the
FDA, a challenging intensive task for most parallel
manipulators, does not require the implementation of
a numerical technique such as the Newton–Raphson
method. Furthermore, the position and orientation are,
conveniently, computed separately.

• A redundant limb allows the module to avoid/escape from
possible singular configurations.
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Fig. 5. Time history of the kinematics of the center of the output
platform.

• Simple and compact expressions for solving the velocity
and acceleration analyses are derived here by applying the
concept of reciprocal screws via the Klein form of the Lie
algebra e(3), which is isomorphic to screw theory.

• The base module is a non-overconstrained parallel
manipulator and therefore does not require additional
conditions of manufacture like concurrent revolutes.

The kinematic analysis, expressed in a global reference
frame attached at the fixed platform, of the SHRM is carried
out using recursively the results obtained for the base module.

Among typical applications of spatial hyper-redundant
manipulators such as devices for high manipulability in the
context of space robotics and obstacle avoidance ability,
biomechanical applications are available for this new SHRM,
which was inspired by the motions of worms; in fact,
the similarity of the proposed SHRM with the spine is
indisputable. In that way, it is opportune to mention that
considerable and valuable literature is reported day by day
in order to approach the kinematic analysis of the spine;
however, van Dieën et al.49 pointed out that changes in the
movement pattern at the level of a single or a number of
motion segments of the spine will be missed by any method
that treats the trunk, like the spine, as a rigid segment. Using
the proposed SHRM, the spine can be modeled as several
parallel manipulators, with autonomous motions, assembled
in series connection, which without doubt is a viable option.
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Finally, an example, whose numerical results are validated
with the aid of special software such as ADAMS c© is
provided.
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