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The prediction of the first fluidized path of yield-stress fluids in complex porous media is
a challenging yet important task to understand the fundamentals of fluid flow in several
industrial and biological processes. In most cases, the conditions that open this first path
are known either through experiments or expensive computations. Here, we present a
simple network model to predict the first open channel for a yield-stress fluid in a porous
medium. For porous media made of non-overlapping discs, we find that the pressure drop
ΔPc required to open the first channel for a given yield stress τy depends on both the
relative discs size Rs to the macroscopic length L of the system and the packing fraction
φ. The non-dimensional pressure gradient ΔPcRs/τyL (i.e. the critical yield number),
however, depends on the packing fraction φ only, leading to a mastercurve for all examined
ratios of Rs/L. In the case of non-overlapping discs, we find ΔPcRs/τyL ∼ φ/(1 − φ).
We also report the statistics on the arclength of the first open path. Finally, we discuss
the implication of our results for the design of porous media used in energy storage
applications.

Key words: porous media, plastic materials

1. Introduction

Fluid flows in porous media have been studied for more than a century due to their high
relevance to several engineering applications such as enhanced oil recovery (Green &
Willhite 1998; Sahimi 2011; Farajzadeh et al. 2012; Fraggedakis et al. 2015), filtration
and separation (Herzig, Leclerc & Goff 1970; Tien & Payatakes 1979; Jaisi et al.
2008), fermentation (Pandey 2003; Aufrecht et al. 2019), soil sequestration (Schlesinger

† Email address for correspondence: dimfraged@gmail.com

© The Author(s), 2021. Published by Cambridge University Press 911 A58-1

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

11
05

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:dimfraged@gmail.com
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2020.1105&domain=pdf
https://doi.org/10.1017/jfm.2020.1105


D. Fraggedakis, E. Chaparian and O. Tammisola

1999), energy storage (Duduta et al. 2011; Sun et al. 2019) and food processing
(Greenkorn 1983). In most cases, the fluids involved in these applications exhibit yield
stress/viscoplastic behaviour (Bonn & Denn 2009; Balmforth, Frigaard & Ovarlez 2014).
Thus, understanding the conditions – critical pressure drop and/or stresses – that lead to
fluidization of yield-stress fluids in porous media can help boost the efficiency and lower
the operational cost of several industrial applications.

In pressure-driven flows, the critical pressure drop ΔPc required to fluidize the
yield-stress fluid and open the first channel (Chen, Rossen & Yortsos 2005; Hewitt et al.
2016; Waisbord et al. 2019) depends on the heterogeneous geometric characteristics and
porosity 1 − φ of the porous medium, where φ is the volume fraction of the solid phase
(Talon et al. 2013; Bauer et al. 2019; Chaparian & Tammisola 2021). Therefore, it is crucial
to understand the relation between the yielding conditions and the structure of the porous
medium, which will lead to predictive models for both the first open channel and ΔPc. The
classic studies in this era date back to the 1950s and 1960s; the main concern was filtration
and oil recovery and limiting pressure gradient models have been proposed (e.g. see Entov
1967; Barenblatt, Entov & Ryzhik 1989). A brief review on the history of the field can be
found in Frigaard, Paso & de Souza Mendes (2017).

The classical way to study yield-stress fluids is by solving the momentum equations
using viscoplastic constitutive relations, such as the Bingham and Herschel–Bulkley
models (Huilgol 2015; Saramito 2016). The yield-stress behaviour, however, leads to an
ill-defined problem that does not describe the stress distribution within the unyielded
regions of the fluid (Balmforth et al. 2014; Saramito & Wachs 2017). Common ways
to resolve this problem are by using either optimization- (Hestenes 1969; Powell
1978; Glowinski 2008; Glowinski & Wachs 2011) or regularization-based methods
(Papanastasiou 1987; Frigaard & Nouar 2005). The former are accurate in predicting
the yielded/unyielded boundaries and the flow field, however, they are computationally
expensive, especially near the yield limit (Saramito & Wachs 2017). Although the
latter reduce the computational cost, they introduce non-physical parameters that lead
to non-physical solutions, incorrect location of yield/unyield boundaries and inaccurate
yield limits (Frigaard & Nouar 2005; Tsamopoulos et al. 2008; Dimakopoulos, Pavlidis
& Tsamopoulos 2013). Here, we are interested in determining the statistics of the critical
ΔPc for a yield-stress fluid in a porous medium. Thus, we need to use models that can
predict accurately and efficiently ΔPc along with the first open channel.

Fluid flow in a porous medium is traditionally described through network models (Fatt
1956) that represent the complex geometric characteristics of the domain with spherical
pore throats and cylindrical edges (Bryant, King & Mellor 1993; Blunt 2001; Blunt et al.
2013; Alim et al. 2017; Stoop et al. 2019). In addition to their wide applicability in
Newtonian fluids, network models have also been applied to describe ΔPc and the flow
behaviour with respect to the applied pressure drop in yield-stress fluids (Balhoff &
Thompson 2004; Balhoff 2005; Chen et al. 2005; Sochi 2005; Balhoff et al. 2012; Liu
et al. 2019; Talon & Hansen 2020). When the relation between the local flow rate and the
pressure drop is known, the network representation allows for the use of graph theoretic
tools (Kharabaf & Yortsos 1997; Chen et al. 2005; Balhoff et al. 2012; Liu et al. 2019) to
quickly evaluate ΔPc and the flow response of the system. In general, however, the results
of network viscoplastic models in complex porous media have been rarely compared and
validated against those produced by solving the full fluid problem, and thus the conditions
of their validity/applicability are still unknown.

The goal of the present work is to predict the first open channel for a yield-stress fluid
in a porous medium along with the critical applied pressure drop required to open it.
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We develop a simple network model based on realistic porous medium configurations, and
use graph theoretical tools to study the statistics of the yielding conditions in terms of the
medium porosity. We validate our results against pressure-driven simulations of Bingham
fluids in porous media. Indeed, we bridge the gap between the continuum flow approaches
and network models and also report/analyse the functionality of the critical pressure drop
on the porosity. Finally, we discuss the relevance of our study to applications such as
semi-solid flow batteries and propose possible extensions.

2. Theory

2.1. Network generation and topology
We are interested in the construction of realistic network models that capture the complex
morphology of real porous media. The main scope of our work is to understand the
statistics of the critical conditions that lead to fluidization in terms of the porosity 1 − φ

and the topological characteristics of the medium.
To a first approximation, we assume a porous medium that consists of monodisperse

non-overlapping discs (two-dimensional problem) of radius Rs, as shown in figure 1(a).
It is apparent that the structure of the void space depends on the solid volume fraction
defined as φ = NsAs/At, where Ns is the total number of discs, As = πR2

s is the area of an
individual disc and At = L × L the total area of the system.

For the generation of porous media that consist of non-overlapping discs, we
implemented the random sequential addition algorithm (Cule & Torquato 1999; Torquato,
Uche & Stillinger 2006; Zhang & Torquato 2013). The procedure described by Torquato
et al. (2006) allows for a fast generation of randomly packed discs with the desired volume
fractions. Due to the constraint of non-overlapping discs, all generated microstructures
never exceed φ = 0.52 in two dimensions.

Based on the generated porous medium structure, we can create its network
representation as shown in the right image of figure 1(a). The network consists of nodes
and edges that span the entire medium, where its complex topological characteristics
are encoded on the connectivity between them (Gostick 2017). The local geometric
characteristics of the porous medium are included in the length �i and gap 2hi of each
individual edge, as we show in figure 1(b).

For the generation of the network model, we implemented the maximal ball algorithm
(Silin & Patzek 2006; Al-Kharusi & Blunt 2007; Dong & Blunt 2009) which allows us to
obtain the hi and length �i for each edge. The maximal ball algorithm ‘fits’ a circle/sphere
within each pore (Alim et al. 2017), the radius of which represents hi. As will be discussed
in § 3.2, there are recently developed methods (Gostick 2017) that can extract hi and �i
using image processing, such as the watershed segmentation. Other choices of hi can be
considered (e.g. equivalent gap/radius etc.), however, our choice for the local radius works
well in predicting both the first open channel and the critical pressure drop required to open
it. The generated network was represented by a graph with vertices V and edges E using
the open source library NetworkX (Hagberg, Swart & Chult 2008). For demonstration, we
show in figure 1(c) the pore-size distribution for the configuration of figure 1(a).

2.2. Yield-stress fluid in a network
Yield-stress fluids are characterized by their solid–liquid transition when the Euclidean
norm of the stress field exceeds the value of yield stress (i.e. von Mises criterion; see Hill
1998; Gurtin, Fried & Anand 2010). The typical shear stress response in simple shear flow
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Figure 1. (a) Typical configuration of a porous medium of length L and porosity 1 − φ that is made of
non-overlapping monodisperse discs of radius Rs, and its network representation. Across the domain, a
macroscopic pressure gradient ΔP/L is applied. (b) Schematic of three network edges with different hi and
�i(i = 1, 2, 3). The network representation includes the local geometric characteristics of the complex porous
medium structure. (c) Characteristic pore-size distribution for the network shown in (a) as derived from the
network model. (d) Typical shear stress response τ as a function of the applied shear rate γ̇ of a viscoplastic
fluid with yield stress τy.

is shown in figure 1(d), where for γ̇ → 0 the shear stress reaches its critical value τ → τy.
The most common constitutive relations used to describe ‘simple’ yield-stress fluids are
the Bingham and Herschel–Bulkley models, which differ in their viscosity functional.
Both of them, however, predict the same yield limit (Frigaard 2019) since the viscous
dissipation is negligible compared to the plastic one for γ̇ → 0. Therefore, it is sufficient
to discuss only the Bingham model for a porous medium to understand the connection
between the yielding conditions and the geometric and topological characteristics of the
network.

For a Bingham fluid pressure-driven flow close to the yield limit (i.e. the linearization
of the flow rule), the local flow rate qi of edge i is described in terms of the local geometric
properties hi, �i, the local pressure drop along the edge ΔPi and the yield stress τy of the
fluid as,

qi ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h3
i

�i

(
ΔPi − τy�i

hi

)
for ΔPi >

τy�i

hi
,

0 for |ΔPi| <
τy�i

hi
,

h3
i

�i

(
ΔPi + τy�i

hi

)
for ΔPi < −τy�i

hi
.

(2.1)
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Near the no-flow limit qi → 0, we see from (2.1) that ΔPi → τy�i/hi, and thus channels
that are smaller in radius and/or longer in length require a larger applied pressure drop to
yield. This is the common yield criterion for plane Poiseuille flow of a Bingham fluid in
a channel of width 2hi and length �i. Across the first open channel, we can calculate the
total pressure drop across the medium to be ΔPc ≡ ∑N

i=1 ΔPc,i = τy
∑N

i=1 �i/hi, where
N is the total number of edges across the path. From this expression, we can see that the
connectivity between the edges determines the first open channel in a real porous medium,
and it corresponds to the path of ‘least resistance’. Thus, the problem of finding ΔPc can
be formulated as finding the path of the minimum pressure drop as follows (Liu et al. 2019)

ΔPc

τy
= min

C∈Cin−out

N∑
i=1

�i

hi
, (2.2)

where Cin−out is the set of all paths between the corresponding boundaries. The problem of
(2.2) satisfies the principle of minimum dissipation rate and is valid near equilibrium (De
Groot & Mazur 1984). In particular, for isothermal pressure-driven flow of temperature T ,
the energy dissipation according to linear irreversible thermodynamics is Φ = qΔP (De
Groot & Mazur 1984). Thus, for conditions near the solid–liquid transition where q → 0+,
the minimum pressure drop path also minimizes Φ.

To solve equation (2.2), we transform the generated network into a graph with edges that
have weights equal to �i/hi and use the Dijkstra method (Dijkstra 1959) for directed graphs
to determine the first open channel. This method is known to scale quadratically with the
path length (Bollobás 2013), and therefore the computational cost increases for complex
domains with a larger number of edges. For a single porous medium configuration,
however, the overall computational time to determine the first open channel is much
lower (seconds to minutes) than that required to solve the full fluid flow problem using
optimization methods (days to weeks) (Dimakopoulos et al. 2018; Chaparian & Tammisola
2021).

3. Results

3.1. The first open channel
When the applied pressure drop approaches the critical value ΔP → ΔP+

c , there exists a
single open channel across the entire medium. Here, we test the validity of the proposed
approach to determine the first open channel when the solid–liquid transition occurs. For
comparison, we solve the full flow field under pressure-driven conditions for a yield-stress
fluid for the porous media shown in figure 2. We consider the cases of φ = 0.3 and φ =
0.5, respectively. All the lengths are normalized with the macroscopic length of the system
L and also Rs/L = 0.02 and Rs/L = 0.1. In this study, we investigate two-dimensional
porous media, however, the network approach is general and can also be used to study
three-dimensional geometries.

Figure 2(a) shows the normalized velocity magnitude from the solution of the
momentum equation (i.e. Stokes equation) for a Bingham fluid (Chaparian & Tammisola
2021). Details of the numerical simulation of the fluid flow problem shown in figure 2(a)
are discussed by Chaparian & Tammisola (2021). To highlight, the porous medium is
designed with a desirable porosity by randomizing non-overlapping monodisperse discs.
To solve the equations of motion (Stokes equation), we use the augmented Lagrangian
method implemented in a finite element environment (FreeFEM++; see Hecht 2012)
coupled with adaptive mesh (Roquet & Saramito 2003). At the inlet (left side of
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Figure 2. Validation of the network model for the first open channel against simulations for a pressure-driven
Bingham fluid in a porous medium with Rs/L = 0.02 and Rs/L = 0.1. (a) Simulation results of the open
pathway for conditions near the critical pressure drop ΔPc. The contour plot shows the magnitude of the local
velocity, normalized with the maximum velocity across the channel. (b) Network model predictions for the
first open channel. The cases of φ = 0.3 and φ = 0.5 are examined. It is clear that both the full Bingham fluid
simulation and the network model predict the same location for the first open channel.

the computational box) we set the flow rate (see Roustaei & Frigaard (2015), for the
algorithm), and as a result, we calculate the pressure drop for different values of yield
stress. More precisely, the velocity is scaled with the average inlet velocity U, hence,
the non-dimensional flow rate is always equal to unity. Therefore, the yield limit is
transferred to τy�ch/μU → ∞ (i.e. Bingham number → ∞), where �ch is a characteristic
length. When τy�ch/μU → ∞ the non-dimensional pressure drop goes to infinity as
well ΔP�2

ch/μUL → ∞. However, the ratio of the non-dimensional pressure drop to
the Bingham number, ΔP�ch/τyL or the yield number, is of interest, which at this limit
asymptotically reaches a finite value. So the limiting pressure drop to open the first channel
can be computed by considering the limit τy�ch/μU → ∞. For more details, we refer the
interested reader to Chaparian et al. (2020) and Chaparian & Tammisola (2021).

Figure 2(b) depicts the predictions for the first open channel after solving the
minimization problem of (2.2). In all cases (i.e. φ = 0.3 and 0.5 and Rs/L = 0.02 and
0.1), the network model is able to reproduce the results of the fluid flow problem (i.e.
(a)) for the first open path. In the full fluid flow problem for Rs/L = 0.02, we can see
the existence of minor tiny ‘roundabout’ paths in the vicinity of the major path. However,
it is clear from figure 2(a) that the flow rate in those minor paths is negligible and does
not contribute to the leading order of the dissipation that is attributed to the major route
predicted by the network model, figure 2(b).

3.2. Critical pressure drop ΔPc and its statistics in porous media
In addition to the first open path, the network model can predict the critical pressure
difference ΔPc required to yield the fluid in the porous medium.

In table 1 we show the predictions of the normalized critical pressure drop ΔPc/τy for
both the network model and the full simulations. For φ = 0.3 and 0.5 we consider the
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φ Rs/L
ΔPc

τy
network

ΔPc

τy
simulations Rel. error %

0.1 0.02 22.16 22.63 1.87
0.3 0.02 61 65.2 6.43
0.5 0.02 142.16 145.28 2.05
0.5 0.1 36.7817 32.7868 12.18

Table 1. Predicted normalized critical pressure drop ΔPc required to open the first open channel for the
configurations shown in figure 2. We show both the predictions of the network model and the full simulation
results, along with the relative error (ΔPsim

c − ΔPnet
c )/ΔPsim

c . The network model is adequate on predicting
both the first open channel and the critical pressure drop required to open it.

configurations shown in figure 2. In the cases of Rs/L = 0.02, it is clear that the relative
difference in the predicted ΔPc by the two approaches never exceeds 6.5 %. The negligible
difference can be justified by the simplification of the geometric characteristics of the
medium by its network representation. For Rs/L = 0.1, the relative error is approximately
12.1 %, which we attribute to the large curvature effects of the discs that the network model
cannot capture. We conclude, however, that network-based models are adequate to predict
both the first open path and the critical pressure drop required to open it.

Before we proceed with the analysis of the model, we want to comment on the choice
of hi and �i for calculating the critical pressure drop. Given the geometric irregularities
of porous media, the choice of the local geometric quantities present in the model is
non-trivial. Here, in the case of non-overlapping discs, we used the hi and �i that were
directly calculated by the maximum-ball algorithm. Other choices are possible, where
for instance one can use the equivalent gap length for evaluating hi defined as the ratio
of the area of the channel to its perimeter. To better understand the influence of such a
choice, we repeated the calculations for φ = 0.5 and Rs/L = 0.02 where now hi is the
equivalent gap length and has been extracted by the image processing methods described
by Gostick et al. (2019). While the results for the first open path are identical, we find
ΔPc,equiv/τy � 1016.6, which is an order of magnitude larger than the fluid flow simulation
predictions. This comparison indicates that the critical pressure drop is sensitive to the
choice of hi and �i, however, the location as well as the topology of the first open path tend
to be unchanged.

The validation of the model allows us to predict ΔPc as a function of φ and the
geometric characteristics of the system. For a porous medium made of non-overlapping
monodispersed discs, we control the microstructure characteristics by changing the ratio
Rs/L. For each combination of φ and Rs/L, we generate 500 realizations to gather the
statistics of ΔPc.

Figure 3(a) shows the normalized critical pressure drop ΔPc/τy in terms of φ.
The coloured lines indicate different values of Rs/L ∈ [0.02, 0.1], while the error bars
correspond to the variance of the statistical sample. For all Rs/L the normalized pressure
drop increases with increasing φ. This behaviour is expected as hi of each edge decreases
monotonically as φ increases (Torquato & Haslach 2002). Additionally, we observe that
decreasing the ratio Rs/L leads to an increase in ΔPc, in qualitative agreement with
experiments (Waisbord et al. 2019). The reason for this behaviour can be explained by
examining the arclength (defined as Lc = ∑N

i �i) for the first open channel.
Figure 3(b) illustrates the histogram of Lc for φ = 0.3 and 0.5 as well as Rs/L = 0.02

and 0.08. In both cases we observe that increasing the solid volume fraction leads to an
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Figure 3. Statistics of the predictions of the network model for 500 realizations per value of φ. (a) Critical
pressure drop ΔPc as a function of the volume fraction φ for different ratios of Rs/L; ΔPc is normalized with
the yield stress of the fluid τy. The error bars indicate the variance around the mean value. Inset – scaled critical
pressure drop ΔPcRs/τyL in terms of φ. For non-overlapping discs, the results for different Rs/L collapse into a
master curve. (b) Probability density distributions for the normalized arclength of the first open channel Lc/L −
1. The cases of Rs/L = 0.02 and Rs/L = 0.08 are shown, respectively, for φ = 0.1 and φ = 0.5. In general,
increasing φ leads to increase of ΔPc required to open the first channel, but also leads to a wide distribution of
arclengths, which provide a large uncertainty in the critical macroscopic pressure gradient ΔPc/Lc required to
yield the fluid in the porous medium.

increase in the total length of the first open path. While large φ results in almost similar
behaviour for both Rs/L, it is apparent that decreasing the size of the discs results in more
tortuous paths, even for low solid volume fraction.

Dimensional analysis of (2.2) indicates that ΔPc follows a simple scaling with Rs/L. In
particular, by rescaling the local hi with the discs radius Rs, we find ΔP̃c = ΔPcRs/τyL =∑N

i=1(�i/L)(Rs/hi). This form can be interpreted as the ratio between the applied pressure
drop ΔP/L over the local shear force per volume generated by the existence of particles
with radius Rs.

The inset in figure 3(a) shows the rescaled form of the critical pressure drop for all
Rs/L, where for non-overlapping discs a mastercurve exists for all the examined values of
φ. To better understand the functional dependence of ΔP̃c with φ, we follow a mean-field
approach and approximate its expression as

ΔP̃c � N
〈
�

L

〉 〈
Rs

h

〉
=

〈
Lc

L

〉 〈
Rs

h

〉
, (3.1)

where N is the number of segments of the path, while 〈�〉 and 〈1/h〉 are the mean length
and inverse gap of each edge, respectively. To find the functional dependence for both
〈Lc/L〉 and 〈Rs/h〉, we calculate their average directly from our collected data values
where we find 〈Lc/L〉 ∼ 0.5φ and 〈Rs/h〉 ∼ 2/(1 − φ); see figures 4(a) and 4(b). In the
porous medium community, Lc/L is known as the geometric tortuosity τg and several
analytical and empirical relations have been proposed to describe its form as a function
of the porosity (1 − φ) (Guo 2012). To a first approximation, we describe 〈Lc/L〉 with the
Bruggeman relation for cylinders 〈Lc/L〉 ∼ (1 − φ)−1/2 (Tjaden et al. 2016). In the limit of
φ → 0, we find 〈Lc/L〉 � 1 + 0.5φ + O(φ2), which shows a very similar behaviour to the
scaling reported in figure 4(b). While this limit corresponds to a dilute mixture of particles
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Figure 4. Scalings of the geometric characteristics of a porous medium made of non-overlapping discs.
(a) Inverse channel gap 〈Rs/h〉 thickness vs. (1 − φ)−1. From our calculations it is clear that 〈Rs/h〉 scales
with the inverse of the porosity 1 − φ. (b) First open channel length 〈Lc/L〉 vs. φ. Based on a simple estimate
of the geometric tortuosity, we find that 〈Lc/L〉 scales linearly with φ. (c) Non-dimensional pressure gradient
ΔP̃c = ΔPcRs/τyL vs. φ/(1 − φ). According to (3.1), the product of 〈Lc/L〉 and 〈Rs/h〉 indicates that ΔP̃c
scales with φ/(1 − φ).

in a permeable matrix, the geometric characteristics of the first open roughly follow this
estimation in the range of studied porosities.

To this end, we can approximate ΔP̃c � Af (φ) for monodisperse discs of radius Rs,
where A is a proportionality constant and f (φ) = φ/(1 − φ). In figure 4(c) we show the
dimensionless pressure drop ΔP̃c vs. f (φ), where we see a linear relationship between the
two quantities, with A � 3, validating the mean-field assumption considered in (3.1).

4. Summary and discussion

4.1. Summary
In this work, we investigated the application of network models for yield-stress fluids
in porous media. We find that network models provide an efficient and accurate way to
describe the fluidization conditions in porous media. In particular, they capture the first
open channel, which is equivalent to the path of least resistance through the entire medium.
We also demonstrated the capabilities of the network model to predict the critical applied
pressure drop required to open the first channel in the medium. This was rationalized
by comparing the network results with direct numerical simulations of the fluid flow
problem. We showed the accuracy and computational efficiency of the network-based
models in the context of solid–liquid transition. Also, we performed statistical analyses
on different two-dimensional porous media made of non-overlapping discs to understand
the dependence of the critical pressure drop ΔPc on the solid volume fraction φ and
the geometric characteristics of the solid matrix. For two-dimensional porous media that
consist of non-overlapping discs, we revealed that the ratio ΔPcRs/τyL scales linearly with
φ/(1 − φ), which is a result of the average geometric characteristics of the first open path.

4.2. Discussion
The present model considers only the case of viscoplastic materials and disregards the
fluid elasticity (Saramito 2007; Fraggedakis, Dimakopoulos & Tsamopoulos 2016a,b;
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Chaparian et al. 2020) prior to yielding. Therefore, further analysis is required to connect
the yield criterion to the elastic modulus of the fluid, which can provide insights for
engineering both the porous medium and the fluid itself. Additionally, the yielding
and/or stoppage conditions might be further affected by possible thixotropic (Mewis &
Wagner 2012) and kinematic hardening (Gurtin et al. 2010; Dimitriou & McKinley 2019)
phenomena.

Beyond the rheological characteristics of the model, more complete closures for
the yielding criterion, (2.2), can be considered that take into account the geometric
irregularities of the channels. For instance, Roustaei et al. (2016) showed that ΔPc,i,
even for quite smooth channels, can be up to 25 % different compared to that predicted
for a typical planar Poiseuille flow. Also, irregular channels that show fracture-like
characteristics tend to yield at a smaller applied pressure drop compared to straight
channels. Another complication on the yield-stress criterion might come from the
dimensionality of the porous medium. In three-dimensional structures, the description of
open channels as tubes might not be adequate, and the geometric quantities hi and �i
need to be chosen carefully (Waisbord et al. 2019). Thus, for irregular porous media, the
yielding criterion, and thus the expression related to the minimum pressure to open the
first channel, should be modified.

The mean-field approximation for the critical pressure drop ΔP̃c as given in (3.1),
indicates that one can develop analytical approximations for the critical pressure drop
based only on geometries quantities of a medium that consists of non-overlapping objects.
In particular, one can follow a more rigorous approach to estimate 〈Rs/h〉 analytically, as
presented by Torquato & Haslach (2002). In particular, 〈Rs/h〉 = 〈1/(l − 1)〉 where l is the
nearest-neighbour distance between particles, and can be formally calculated as

〈
1

l − 1

〉
=

∫ ∞

1

1
l − 1

HP(l) dl, (4.1)

where HP is the ‘particle’ nearest-neighbour probability density function and depends
on the geometry and dimensionality of the particles (Torquato, Lu & Rubinstein 1990)
as well as on the protocol used to generate the particle configuration. The random
sequential addition algorithm used here produces non-equilibrium configurations where
no analytical expressions for HP are known. However, when equilibrium configurations
are generated (e.g. through Monte Carlo algorithms), Torquato (1995) has reported exact
and approximate expressions for HP for monodisperse rods, discs and spheres.

Our results on the normalized critical pressure drop can be used to design porous
media systems with the desired flow properties. In applications such as semi-solid flow
batteries (Duduta et al. 2011), it is critical to keep the contact between the active material
(electrode particles) and the conductive wiring (carbon nanoparticle network) intact during
operation (Wei et al. 2015). This can be achieved by immersing the active material and
the electronically conductive agent in yield-stress fluids like Carbopol (Zhu et al. 2020).
Therefore, we can use the predicted ΔPc/τy to determine the size of the active particles to
optimize the design and operation of semi-solid electrodes.

The present model can also provide insights into the design of porous media. By taking
advantage of the computational efficiency of the proposed network model, we can perform
on-the-fly optimization to construct porous media with optimal mixing and transport
properties (Lester, Metcalfe & Trefry 2013). Such ideas have recently been implemented
in elastic networks with optimal phonon band structures (Ronellenfitsch & Dunkel 2019),
and we believe they can also be used for designing porous media immersed in yield-stress
fluids.
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Given their inherent node/edge structure, network models are fairly simple to analyse
using graph theoretical tools. The unique property of yield-stress fluid, namely the
fluidization condition, allows us to use algorithms that can find the minimum resistance
pathways with minimal effort. In coarse-grained domains, however, where the microscopic
geometric irregularities are encoded in the heterogeneous ‘permeability’ tensor (Hewitt
et al. 2016), graph theory tools might not be the most suitable ones. An alternative way to
calculate the first open channel in a continuum with spatially variable properties is through
methodologies used in physical chemistry to identify reaction pathways (Henkelman,
Uberuaga & Jónsson 2000). There, the first open channel corresponds to the path that
passes through the minimum energy barrier, namely the transition state point.
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